Optimization of Sustainable Copper Leaching Using Glycine and Oxidizing Agents in an Alkaline Medium
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Mineralogical and Elemental Characterization
2.3. Thermodynamic Simulation
2.4. Leaching Conditions
3. Results
3.1. Chemical Analysis
3.2. Granulometric Analysis
3.3. Mineralogical Characterization
3.4. Secondary Electron Micrography
3.5. Thermodynamic Simulation of the Gly-Cu-H2O System
3.6. Comparative Study of Copper Leaching in Glycine-MM and Glycine-MC Systems
3.7. Comparative Study of Oxidative Copper Leaching in the Glycine System
3.8. Residual Solids Characterization
4. Discussion
4.1. Influence of Mineralogical Composition
4.2. Stability of the Cu-Gly Complex and Selectivity of Glycine
4.3. Effect of Glycine Concentration
4.4. Comparison Between Oxidizing Agents: O3 vs. H2O2
4.5. Solid Residue Analysis
4.6. Economic Comparison of the Leaching Process
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rówiński, E.; Pławecki, M. Structural and electrical properties of electrodeposited single junction of cuprous (I) oxide copper. arXiv 2016. [Google Scholar] [CrossRef]
- Van Yken, J.; Boxall, N.J.; Cheng, K.Y.; Nikoloski, A.N.; Moheimani, N.R.; Kaksonen, A.H. E-waste recycling and resource recovery: A review of technologies, barriers, and facilitators with a focus on Oceania. Metals 2021, 11, 1313. [Google Scholar] [CrossRef]
- Kumari, R.; Prabhakar, R.; Samadder, S.R. Enhanced copper extraction from waste printed circuit boards using glycine after supercritical methanol pre-treatment: Process optimization, leaching kinetics, and thermodynamic analysis. Waste Manag. 2025, 193, 551–560. [Google Scholar] [CrossRef] [PubMed]
- Nazer, A.; Pavez, O.; Rojas, F.; Aguilar, C. A review of copper slag applications. In Proceedings of the Iberomet XI. X Conamet/Sam, Viña del Mar, Chile, 2–5 November 2010. [Google Scholar] [CrossRef]
- Alguacil, F.J. Copper recovery through leaching–solvent extraction–electrowinning: Towards the 21st century. Rev. De Met. 1998, 34, 499–506. [Google Scholar] [CrossRef]
- Herreros, O.; Bernal, N.; Quiroz, R.; Fuentes, G.; Viñals, J. Leaching of copper concentrates using NaCl and the soluble copper provided by the concentrate itself. Rev. De Met. 2005, 41, 384–392. [Google Scholar] [CrossRef]
- Guamán, F. A look at digital television through IPTV technologies over copper network with ADSL technology. Rev. De La Fac. De Cienc. Químicas 2017, 41–55. [Google Scholar]
- Yin, S.; Wang, L.; Kabwe, E.; Chen, X.; Yan, R.; An, K.; Wu, A. Copper bioleaching in China: Review and perspective. Minerals 2018, 8, 32. [Google Scholar] [CrossRef]
- Safari, H.; Rezaee, M.; Chelgani, S.C. Ecofriendly leaching agents for copper extraction—An overview of amino and organic acid applications. Green Smart Min. Eng. 2024, 1, 336–345. [Google Scholar] [CrossRef]
- Hong, J.; Chen, Y.; Liu, J.; Ma, X.; Qi, C.; Ye, L. Análisis del ciclo de vida de la producción de cobre: Un estudio de caso en China. Int. J. Life Cycle Assess 2018, 23, 1814–1824. [Google Scholar] [CrossRef]
- Reyes, A.M.; Pompa, N.P.; Montoya, M.D. Environmental impact assessment produced by residuals from La Mina Grande on the Cobre River. Rev. Cuba. De Química 2009, 21, 59–65. [Google Scholar]
- Schlesinger, M.E.; King, M.J.; Sole, K.C.; Davenport, W.G. Extractive Metallurgy of Copper; Elsevier: Amsterdam, The Netherlands, 2011; ISBN 0-08-0440290. [Google Scholar]
- Habashi, F. Principles of Extractive Metallurgy; Routledge: Boca Raton, Fl, USA, 2017. [Google Scholar] [CrossRef]
- Prado, O.A. Situation and Perspectives of Metallic Mining in Argentina; Economic Commission for Latin America and the Caribbean (CEPAL): Santiago, Chile, 2005. [Google Scholar]
- Brierley, C.L. How will biomining be applied in future? Trans. Nonferrous Met. Soc. China 2008, 18, 1301–1310. [Google Scholar] [CrossRef]
- Martínez, L.O. Copper mining in the Norte Chico (traditional) and the perspective of medium and small producers. Si Somos Am. Rev. De Estud. Transfronterizos 2010, 10, 37–59. [Google Scholar]
- Perea, C.G.; Ihle, C.; Dyer, L.; Díaz Quezada, S.; Estay, H. Study of Copper Oxide Leaching in Alkaline Monosodium Glutamate Solution. Minerals 2024, 14, 714. [Google Scholar] [CrossRef]
- Lagos, G. Environmental impacts of mining in Chile. Ambiente Y Desarro. 1997, 4, 13–20. [Google Scholar]
- Watling, H.R. Chalcopyrite hydrometallurgy at atmospheric pressure: Review of acidic sulfate, sulfate–chloride, and sulfate–nitrate process options. Hydrometallurgy 2013, 140, 163–180. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Guidelines for Drinking-Water Quality, 4th ed.; WHO: Geneva, Switzerland, 2011; ISBN 978-92-4-154761-1. [Google Scholar]
- Biswas, A.K.; Davenport, W.G. Extractive Metallurgy of Copper: International Series on Materials Science and Technology; Elsevier: Amsterdam, The Netherlands, 2013; Volume 20, ISBN 0-08-024736-9. [Google Scholar]
- Torres, D.A.G. Sulfuric Acid Consumption and Kinetics of Leaching from Oxidized Copper Minerals. Bachelor’s Thesis, Universidad de Chile, Santiago, Chile, 2011. [Google Scholar] [CrossRef]
- Trujillo, J.Y.; Cisternas, L.A.; Gálvez, E.D.; Mellado, M.E. Optimal design and planning of heap leaching process. Application to copper oxide leaching. Chem. Eng. Res. Des. 2014, 92, 308–317. [Google Scholar] [CrossRef]
- Araya, G.; Toro, N.; Castillo, J.; Guzmán, D.; Guzmán, A.; Hernández, P.; Jeldres, R.I.; Sepúlveda, R. Lixiviación de minerales de óxido de cobre mediante adición de ácido débil de fundiciones de cobre. Metales 2020, 10, 627. [Google Scholar] [CrossRef]
- Petersen, J.; Dixon, D.G. Modeling and optimization of heap bioleaching processes. In Biomining; Springer: Berlin/Heidelberg, Germany, 2007; pp. 153–176. [Google Scholar] [CrossRef]
- Deng, Z.; Oraby, E.; Li, H.; Eksteen, J. Extracción de cobre de calcopirita mediante soluciones alcalinas de glicina-amoníaco. Minerals 2022, 12, 1507. [Google Scholar] [CrossRef]
- Wu, J.; Ahn, J.; Lee, J. A Sustainable Complexation Leaching of Critical Metals from Spent Lithium-Ion Batteries by Glycine in a Neutral Solution. Min. Metall. Explor. 2024, 41, 1605–1617. [Google Scholar] [CrossRef]
- Mohammed, T.; Bezuidenhout, G.A.; Oraby, E.A.; Eksteen, J.J. Separación secuencial de cobalto, cobre y níquel de soluciones alcalinas de glicinato mediante extracción con disolventes. J. Sustain. Metall. 2024, 10, 2455–2468. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, D.; Liu, H.; Fan, G.; Peng, W.; Cao, Y. Selective complexation leaching of copper from copper smelting slag with an alkaline glycine solution: An effective recovery method of copper from secondary resources. Sep. Purif. Technol. 2023, 326, 124619. [Google Scholar] [CrossRef]
- Eksteen, J.J.; Oraby, E.A.; Tanda, B.C. A conceptual process for copper extraction from chalcopyrite in alkaline glycinate solutions. Miner. Eng. 2017, 108, 53–66. [Google Scholar] [CrossRef]
- Oraby, E.A.; Eksteen, J.J. Selective leaching of copper from a gold–copper concentrate in glycine solutions. Hydrometallurgy 2014, 65, 96–102. [Google Scholar]
- Gutiérrez, E.R.C.; Sarmiento, A.W.S. Evaluation of the basic medium leaching process for oxidized copper minerals. Rev. Investig. Altoandinas 2015, 17, 411–416. [Google Scholar]
- Hurtado, R.; Suazo, A. High-temperature silver leaching in complex pyrite ore. Rev. De La Soc. Química Del Perú 2019, 85, 97–108. [Google Scholar]
- Flores, D.J.; Graber, T.A.; Angel-Castillo, A.H.; Hernández, P.C.; Taboada, M.E. Uso de peróxido de hidrógeno como agente oxidante en la lixiviación de calcopirita: Una revisión. Metals 2025, 15, 531. [Google Scholar] [CrossRef]
- Celik, H. Extraction of gold and silver from a Turkish gold ore through thiourea leaching. Min. Metall. Explor. 2004, 21, 144–148. [Google Scholar] [CrossRef]
- Lira, J.M.G.; Aguilar, M.D.J.S.; Pedroza, F.R.C.; González, E.N.A. A comparison of alternative reagents to cyanide as gold leaching agents: A review. Cienc. Lat. Rev. Científica Multidiscip. 2023, 7, 2410–2434. [Google Scholar] [CrossRef]
- González, C.; Valbuena, A.; Celis, B.; Perentena, L.; Colina, M. Oxidative degradation of chitosan with hydrogen peroxide. Rev. Iberoam. De Polímeros Y Mater. 2015, 16, 43–68. [Google Scholar]
- Wang, J.; Faraji, F.; Ghahreman, A. Evaluation of ozone as an efficient and sustainable reagent for chalcopyrite leaching: Process optimization and oxidative mechanism. J. Ind. Eng. Chem. 2021, 104, 333–344. [Google Scholar] [CrossRef]
- Xie, F.; Chen, J.-N.; Wang, J.; Wang, W. Review of gold leaching in thiosulfate-based solutions. Trans. Nonferrous Met. Soc. China 2021, 31, 3506–3529. [Google Scholar] [CrossRef]
- Barros, K.S.; Vielmo, V.S.; Moreno, B.G.; Riveros, G.; Cifuentes, G.; Bernardes, A.M. Datos de composición química de las principales etapas de la producción de cobre a partir de minerales sulfurados en Chile: Una revisión para contribuir a los estudios de economía circular. Minerals 2022, 12, 250. [Google Scholar] [CrossRef]
- Bazán, V.; Sarquis, P.; Brandaleze, E. Characterization of a copper mineral in Argentina for matte production. Dyna 2011, 78, 220–228. [Google Scholar]
- Guo, S.; Zhou, X.; Song, S.; Mei, Y.; Zhao, J.; Fang, Y. Optimization of leaching conditions for removing sodium from sodium-rich coals by orthogonal experiments. Fuel 2017, 208, 499–507. [Google Scholar] [CrossRef]
- Oraby, E.A.; Eksteen, J.J. Gold and copper leaching from gold-copper ores and concentrates using a glycine-based process. Hydrometallurgy 2017, 169, 195–204. [Google Scholar]
- Behera, S.K.; Meena, H.; Chakraborty, S.; Meikap, B.C. Application of response surface methodology (RSM) for optimization of leaching parameters for ash reduction from low-grade coal. Int. J. Min. Sci. Technol. 2018, 28, 621–629. [Google Scholar] [CrossRef]
- Petrović, S.J.; Bogdanović, G.D.; Antonijević, M.M. Leaching of chalcopyrite with hydrogen peroxide in hydrochloric acid solution. Trans. Nonferrous Met. Soc. China 2018, 28, 1444–1455. [Google Scholar] [CrossRef]
- Karaca, H.; Ceylan, K. Chemical cleaning of Turkish lignites by leaching with aqueous hydrogen peroxide. Fuel Process. Technol. 1997, 50, 19–33. [Google Scholar] [CrossRef]
- Ji, G.; Liao, Y.; Wu, Y.; Xi, J.; Liu, Q. A review on hydrometallurgical leaching research of low-grade complex chalcopyrite. J. Sustain. Metall. 2022, 8, 964–977. [Google Scholar] [CrossRef]
- Ballester, A.; Felipe Verdeja, L.; Sancho, J. Extractive Metallurgy, 2nd ed.; Síntesis: Barcelona, Spain, 2000; Volume 1, ISBN 84-7738-802-4. [Google Scholar]
- Megaw, P.K.M.; Ruiz, J.; Titley, S.R. High-temperature, carbonate-hosted Ag-Pb-Zn(Cu) deposits of northern Mexico. Econ. Geol. 1988, 83, 1856–1885. [Google Scholar] [CrossRef]
- Shabani, M.A.; Irannajad, M.; Azadmehr, A.R. Investigación sobre la lixiviación de malaquita con ácido cítrico. Int. J. Miner. Met. Mater. 2012, 19, 782–786. [Google Scholar] [CrossRef]
- Mexicano, S.G. Mapimí Geological-Mining Map, G13-D14, Dgo., Scale 1: 50,000. Boletín: FGDC-STD-001-1998. Servicio Geologico Mexicano: Pachuca, Hidalgo, México, 2006.
- Tanda, B.C.; Eksteen, J.J.; Oraby, E.A. An investigation into the leaching behavior of copper oxide minerals in aqueous alkaline glycine solutions. Hydrometallurgy 2017, 167, 153–162. [Google Scholar] [CrossRef]
- Rey, E.O.C.M.J.d.P.Á.; Cervantes, M.L.R. Metallic Elements and Their Main Compounds, 1st ed.; Uned Universidad Nacional de Educacion a Distancia: Madrid, Spain, 2024; Volume 1, ISBN 9788436279559. [Google Scholar]
- Lide, D.R. Handbook of Chemistry and Physics, 89th ed.; CRC Press: Boston, MA, USA, 2008; Volume 1, ISBN 0-8493-0485-7. [Google Scholar]
- Toro, N.; Gálvez, E.; Robles, P.; Castillo, J.; Villca, G.; Salinas-Rodríguez, E. Uso de recursos hídricos alternativos en procesos de lixiviación de cobre en la industria minera chilena: Una revisión. Metals 2022, 12, 445. [Google Scholar] [CrossRef]
- Hamada, Y.Z.; Makoni, N.; Hamada, H. Cu2+ complexes with the simplest amino acid glycine (Gly). J. Nanomed. Res. 2017, 5, 00123. [Google Scholar] [CrossRef]
- Mestizo, P.D.; Narváez, D.M.; Pinzón-Ulloa, J.A.; Di Bello, D.T.; Franco-Ulloa, S.; Macías, M.A.; Groot, H.; Miscione, G.P.; Suescun, L.; Hurtado, J.J. Nuevos complejos con ligandos donantes de bases de Schiff de cumarina tetradentada de ONNO: Estructuras de rayos X, cálculos de DFT, dinámica molecular y posible actividad anticancerígena. Biometals 2021, 34, 119–140. [Google Scholar] [CrossRef]
- Havlik, T.; Skrobian, M. Acid leaching of chalcopyrite in the presence of ozone. Can. Metall. Q. 1990, 29, 133–139. [Google Scholar] [CrossRef]
- Umbarila-Ortega, M.F.; Prado-Rodríguez, J.S.; Agudelo-Valencia, R.N. Sulfide removal using ozone as an oxidizing agent in tannery wastewater. Rev. Fac. De Ing. 2019, 28, 25–38. [Google Scholar] [CrossRef]
- Sokić, M.; Marković, B.; Stanković, S.; Kamberović, Ž.; Štrbac, N.; Manojlović, V.; Petronijević, N. Kinetics of chalcopyrite leaching by hydrogen peroxide in sulfuric acid. Metals 2019, 9, 1173. [Google Scholar] [CrossRef]
- Liu, C.; Chen, Y.; He, C.; Yin, R.; Liu, J.; Qiu, T. Ultrasound-enhanced catalytic ozonation oxidation of ammonia in aqueous solution. Int. J. Environ. Res. Public Health 2019, 16, 2139. [Google Scholar] [CrossRef]
- Zhao, L.; Ma, J.; Zhai, X. Enhanced mechanism of catalytic ozonation by ultrasound with orthogonal dual frequencies for the degradation of nitrobenzene in aqueous solution. Ultrason. Sonochem. 2010, 17, 84–91. [Google Scholar] [CrossRef]
- Gutiérrez, E.R.C. Copper recovery from malachite using tartrate solutions in the leaching process, Puno 2017. Rev. De Investig. 2020, 9, 35–46. [Google Scholar] [CrossRef]
- Barragán-Mantilla, S.P.; Gascó, G.; Almendros, P.; Méndez, A. Insights into the use of green leaching systems based on glycine for the selective recovery of copper. Miner. Eng. 2024, 206, 108534. [Google Scholar] [CrossRef]
- Torres, J.V. Capitalismo y minería global: Perspectivas latinoamericanas 1500–1914. Hist. Crítica 2023, 89, 43–76. [Google Scholar] [CrossRef]
- Mark, A.; Petersen, M.A.; Della Libera, M.; Jannas, R.R.; Maynard, S.R. Geología del depósito de oro y plata relacionado con el pórfido de Cerro San Pedro, San Luis Potosí, México. Soc. Econ. Geol. 2001, 217–230. [Google Scholar] [CrossRef]
- Seal, S.; Kuiry, S.C.; Heinmen, B. Effect of glycine and hydrogen peroxide on chemical–mechanical planarization of copper. Thin Solid Film. 2003, 423, 243–251. [Google Scholar] [CrossRef]
- Du, T.; Luo, Y.; Desai, V. The combinatorial effect of complexing agent and inhibitor on chemical–mechanical planarization of copper. Microelectron. Eng. 2004, 71, 90–97. [Google Scholar] [CrossRef]
- Gurol, M.D.; Singer, P.C. Kinetics of ozone decomposition: A dynamic approach. Environ. Sci. Technol. 1982, 16, 377–383. [Google Scholar] [CrossRef]
- Weavers, L.K.; Hoffmann, M.R. Sonolytic decomposition of ozone in aqueous solution. Environ. Sci. Technol. 1998, 32, 3941–3947. [Google Scholar] [CrossRef]
- Zhang, D.; Fu, L.; Liu, H.; Li, H.; Wang, S.; Zhang, M.; Zhu, M.; Zhang, L. High-efficiency leaching of chalcopyrite by ozone with ultrasonic promotion: Kinetics and mechanism. J. Mol. Liq. 2024, 401, 124682. [Google Scholar] [CrossRef]
- Li, H.; Hu, C.; He, X.; Wang, J.; Tian, S.; Zhu, X.; Mao, X. Mechanism and kinetics study of vanadium leaching from landfilled metallurgical residues by ultrasonic with ozonation enhancement in a low-acid medium. Ultrason. Sonochem. 2024, 109, 106998. [Google Scholar] [CrossRef]
- Parvulescu, V.I.; Epron, F.; Garcia, H.; Granger, P. Recent progress and prospects in catalytic water treatment. Chem. Rev. 2021, 122, 2981–3121. [Google Scholar] [CrossRef]
- Shi, R.; Wang, B.; Tang, D.; Wei, X.; Zhou, G. Towards high value-added recycling of spent lithium-ion batteries for catalysis application. Electrochem. Energy Rev. 2024, 7, 28. [Google Scholar] [CrossRef]
- Işildar, A. Metal Recovery from Electronic Waste: Biological Versus Chemical Leaching for Recovery of Copper and Gold; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Bartucca, M.L.; Cerri, M.; Del Buono, D.; Forni, C. Use of biostimulants as a new approach for the improvement of phytoremediation performance—A Review. Plants 2022, 11, 1946. [Google Scholar] [CrossRef] [PubMed]
- González-Quero, M.; Aguilar-Garrido, A.; Paniagua-López, M.; García-Huertas, C.; Sierra-Aragón, M.; Blasco, B. Physiological Response of Lettuce (Lactuca sativa L.) Grown on Technosols Designed for Soil Remediation. Plants 2024, 13, 3222. [Google Scholar] [CrossRef] [PubMed]
- Jamett, I.; Carrasco, P.; Olmos, M.; Hernández, P. Glycine/glutamate: “Green” alternatives to recover metals from minerals/residues—Review of current research. Minerals 2022, 13, 22. [Google Scholar] [CrossRef]
- Tanda, B.C.; Oraby, E.A.; Eksteen, J.J. Recovery of copper from alkaline glycine leach solution using solvent extraction. Sep. Purif. Technol. 2017, 187, 389–396. [Google Scholar] [CrossRef]
Experimental Reagents | ||
---|---|---|
Reagents | Leaching Solutions | Concentration |
Blank | Mineral-Glycine | Glycine (mol L−1): 0.1, 0.3, 0.5, 0.7, 1, 1.5, 2 |
H2O2 | Mineral-Glycine-H2O2 | H2O2 (%): 0.5, 0.7, 1, 1.5, 2, 2.5, 3 |
O3 | Mineral-Glycine-O3 | O3 (L min−1): 0.2, 0.5, 0.7, 1, 1.5, 2 |
Experimental conditions | ||
Stirring speed (rpm) | 800 | |
Solution Volume (mL) | 300 | |
Sample (g) | 0.1 | |
Temperature (°C) | 30 | |
Reaction Time (min) | 240 | |
Sampling intervals (min) | 5, 10, 20, 40, 60, 90, 120, 150,180, 210, 240 | |
pH | 10 |
Analyzed by | MC Copper Cut-off Grade | MM Copper Cut-off Grade |
---|---|---|
ICP | 21.6% | 12.7% |
AAS | 21.3% | 12.5% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martínez, J.I.; Teja, A.M.; Reyes, M.; Toro, N.; Cisneros, G.; Flores, U.M.; Labra, M.P.; Urbano, G.; Juarez, J.C. Optimization of Sustainable Copper Leaching Using Glycine and Oxidizing Agents in an Alkaline Medium. Metals 2025, 15, 617. https://doi.org/10.3390/met15060617
Martínez JI, Teja AM, Reyes M, Toro N, Cisneros G, Flores UM, Labra MP, Urbano G, Juarez JC. Optimization of Sustainable Copper Leaching Using Glycine and Oxidizing Agents in an Alkaline Medium. Metals. 2025; 15(6):617. https://doi.org/10.3390/met15060617
Chicago/Turabian StyleMartínez, Jesús I., Aislinn M. Teja, Martín Reyes, Norman Toro, Gabriel Cisneros, Uriel M. Flores, Miguel Pérez Labra, Gustavo Urbano, and Julio C. Juarez. 2025. "Optimization of Sustainable Copper Leaching Using Glycine and Oxidizing Agents in an Alkaline Medium" Metals 15, no. 6: 617. https://doi.org/10.3390/met15060617
APA StyleMartínez, J. I., Teja, A. M., Reyes, M., Toro, N., Cisneros, G., Flores, U. M., Labra, M. P., Urbano, G., & Juarez, J. C. (2025). Optimization of Sustainable Copper Leaching Using Glycine and Oxidizing Agents in an Alkaline Medium. Metals, 15(6), 617. https://doi.org/10.3390/met15060617