Electrocatalytic Oxidation for Efficient Toluene Removal with a Catalytic Cu-MnOx/GF Electrode in a Solid-State Electrocatalytic Device
Abstract
1. Introduction
2. Results and Discussion
2.1. Structure and Characterization of Catalytic Electrodes
2.1.1. XRD { TC “5.3.1 Structure and Composition Analysis of Catalytic Electrode” \l 3 }
2.1.2. SEM
2.1.3. Thermogravimetric Analysis
2.1.4. XPS
2.1.5. Raman Spectra
2.1.6. Cyclic Voltammetry Curve
2.2. Evaluation of Catalytic Electrode Activity { TC “5.3.3 Catalyst Activity Evaluation” \l 3 }
2.2.1. Electrocatalytic Oxidation of Toluene in a Dry Environment
2.2.2. Electrocatalytic Oxidation of Toluene at 50% RH
2.2.3. Electrocatalytic Toluene Oxidation at Different Catalytic Electrodes
2.2.4. Electrocatalytic Oxidation of Toluene at Different RHs
2.2.5. Cyclic Stability of Catalytic Electrode for Toluene Oxidation { TC “5.3.4 Stability Analysis of Catalytic Electrode for Catalytic Oxidation ” \l 3 }
2.3. Analysis of Electrocatalytic Oxidation Mechanism { TC “5.3.5 Mechanism Analysis of Electro-Catalytic Oxidation” \l 3 }
3. Materials and Methods
3.1. Preparation of Cu-MnOx/GF Catalytic Electrodes
3.2. Characterization Cu-MnOx/GF Catalytic Electrodes
3.3. Electrocatalytic Oxidation Activity of Catalytic Electrode for Toluene
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lu, Y.; Deng, H.; Pan, T.; Wang, L.; Zhang, C.; He, H. Interaction between Noble Metals (Pt, Pd, Rh, IR, Ag) and Defect-Enriched TiO2 and its Application in Toluene and Propene Catalytic Oxidation. SSRN Electron. J. 2022, 606, 154834. [Google Scholar] [CrossRef]
- Liang, X.; Zhang, J.; Tian, J.; Xie, Z.; Liu, Y.; Liu, P.; Ye, D. Insight into catalytic performance and reaction mechanism for toluene total oxidation over Cu-Ce supported catalyst. J. Environ. Sci. 2024, 149, 476–487. [Google Scholar] [CrossRef]
- Cheng, G.; Song, Z.; Mao, Y.; Zhang, J.; Wang, K.; Li, H.; Huang, Z. Effect of Ce2O3 phase transition on the catalytic oxidation for toluene over CeO2 catalysts. Fuel 2024, 368, 131641. [Google Scholar] [CrossRef]
- Wang, X.; Wang, Y.; Li, J.; Peng, C.; Liu, Z. Recent advances in the catalytic oxidation of toluene on Mn-based catalysts. Catal. Rev. 2024, 67, 173–243. [Google Scholar] [CrossRef]
- Zhu, G.; Zhu, J.; Jiang, W.; Zhang, Z.; Wang, J.; Zhu, Y.; Zhang, Q. Surface oxygen vacancy induced α-MnO2 nanofiber for highly efficient ozone elimination. Appl. Catalysis B Environ. 2017, 209, 729–737. [Google Scholar] [CrossRef]
- Jia, J.; Zhang, P.; Chen, L. The effect of morphology of α-MnO2 on catalytic decomposition of gaseous ozone. Catalysis Sci. Technol. 2016, 6, 5841–5847. [Google Scholar] [CrossRef]
- Kim, W.-K.; Verma, S.; Ahmadi, Y.; Cho, M.-S.; Kim, K.-H. The effects of metal-oxide content in MnO2-activated carbon composites on reactive adsorption and catalytic oxidation of formaldehyde and toluene in air. Sci. Total. Environ. 2024, 926, 172137. [Google Scholar] [CrossRef]
- Huang, Z.; Li, H.; Zhang, X.; Mao, Y.; Wu, Y.; Liu, W.; Gao, H.; Zhang, M.; Song, Z. Catalytic oxidation of toluene by manganese oxides: Effect of K+ doping on oxygen vacancy. J. Environ. Sci. 2023, 142, 43–56. [Google Scholar] [CrossRef]
- Panizza, M.; Cerisola, G. Direct and mediated anodic oxidation of organic pollutants. Chem. Rev. 2009, 109, 6541–6569. [Google Scholar] [CrossRef]
- Yang, C.; Lin, L.; Shang, S.; Ma, S.; Sun, F.; Shih, K.; Li, X. Packed OV-SnO2-Sb bead-electrodes for enhanced electrocatalytic oxidation of micropollutants in water. Water Res. 2023, 245, 120628. [Google Scholar] [CrossRef]
- Lv, Y.; Peng, M.; Yang, W.; Liu, M.; Kong, A.; Fu, Y.; Li, W.; Zhang, J. Surface reconstruction enabling MoO2/MoP hybrid for efficient electrocatalytic oxidation of p-xylene to terephthalic acid. Appl. Catalysis B Environ Ment. 2024, 340, 123229. [Google Scholar] [CrossRef]
- Shi, J.; He, H.; Zhang, Y.; Li, J.; Cai, W. Efficient electrocatalytic formate oxidation on copper oxide cat-alyst mediated lithium recovery coupled hydrogen production. Chem. Eng. J. 2024, 489, 151477. [Google Scholar] [CrossRef]
- Da Silva, L.M.; Gonçalves, I.C.; Teles, J.J.S.; Franco, D.V. Application of oxide fine-mesh electrodes composed of Sb-SnO2 for the elec-trochemical oxidation of Cibacron Marine FG using an SPE filter-press reactor. Electrochim. Acta 2014, 146, 714–732. [Google Scholar] [CrossRef]
- Zhang, B.; Chen, M.; Wang, L.; Zhao, X.; Hu, R.; Chen, A.; Xie, P.; Zhang, C.; He, H. Electrochemical oxidation of volatile organic compounds in all-solid cell at ambient tem-perature. Chem. Eng. J. 2018, 354, 93–104. [Google Scholar] [CrossRef]
- Ovando-Medina, V.M.; Escobar-Villanueva, A.G.; Martínez-Gutiérrez, H.; Martínez-López, F.J. Microwave expanded graphite felt coated with sulfonated polystyrene as light absorber and self-floating in photothermal water desalination. Int. J. Energy Res. 2022, 46, 15639–15653. [Google Scholar] [CrossRef]
- Dubey, A.; Dube, C.L. Microwave processing of carbon-based materials: A review. Nano Struct. Nano Objects 2024, 38, 101136. [Google Scholar] [CrossRef]
- Lyu, Z.; Zhu, S.; Xie, M.; Zhang, Y.; Chen, Z.; Chen, R.; Tian, M.; Chi, M.; Shao, M.; Xia, Y. Controlling the surface oxidation of Cu nanowires improves their catalytic selectivity and stability toward C2+ products in CO2 reduction. Angew. Chem. Int. Ed. 2020, 60, 1909–1915. [Google Scholar] [CrossRef]
- Kong, L.; Wei, W.; Zhao, Q.; Wang, J.-Q.; Wan, Y. Active Coordinatively Unsaturated Manganese Monoxide-Containing Mesoporous Carbon Catalyst in Wet Peroxide Oxidation. Acs Catal. 2012, 2, 2577–2586. [Google Scholar] [CrossRef]
- Eiteneer, B.; Frenklach, M. Experimental and modeling study of shock-tube oxidation of acetylene. Int. J. Chem. Kinet. 2003, 35, 391–414. [Google Scholar] [CrossRef]
- Raj, A.M.E.; Victoria, S.G.; Jothy, V.B.; Ravidhas, C.; Wollschläger, J.; Suendorf, M.; Neumann, M.; Jayachandran, M.; Sanjeeviraja, C. XRD and XPS characterization of mixed valence Mn3O4 hausmannite thin films prepared by chemical spray pyrolysis technique. Appl. Surf. Sci. 2010, 256, 2920–2926. [Google Scholar] [CrossRef]
- Nijjer, S.; Thonstad, J.; Haarberg, G.M. Oxidation of manganese(II) and reduction of manganese dioxide in sulphuric acid. Electrochim. Acta 2000, 46, 395–399. [Google Scholar] [CrossRef]
- Lloyd, D.; Vainikka, T.; Murtomäki, L.; Kontturi, K.; Ahlberg, E. The kinetics of the Cu2+ /Cu+ redox couple in deep eutectic solvents. Electrochim. Acta 2011, 56, 4942–4948. [Google Scholar] [CrossRef]
- Pulgarin, C.; Adler, N.; Peringer, P.; Comninellis, C. Electrochemical detoxification of a 1, 4-benzoquinone solution in wastewater treat-ment. Water Res. 1994, 28, 887–893. [Google Scholar] [CrossRef]
Sample | Mn4+ (% Atom) | Mn2+ (% Atom) | Mn4+/Mn2+ | Cu2+ (% Atom) | Cu+ (% Atom) | Cu2+/Cu+ |
---|---|---|---|---|---|---|
Cu-MnOx/GF | 59.39 | 40.61 | 1.17 | 55.70 | 44.30 | 1.26 |
Sample | Olatt (% Atom) | Oads (% Atom) | Oads/Olatt |
---|---|---|---|
Cu-MnOx/GF | 66.54 | 33.46 | 1.99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Liu, M.; Zhao, X.; Zhou, P.; Song, Z.; Wang, W.; Sun, J.; Mao, Y. Electrocatalytic Oxidation for Efficient Toluene Removal with a Catalytic Cu-MnOx/GF Electrode in a Solid-State Electrocatalytic Device. Catalysts 2025, 15, 749. https://doi.org/10.3390/catal15080749
Liu H, Liu M, Zhao X, Zhou P, Song Z, Wang W, Sun J, Mao Y. Electrocatalytic Oxidation for Efficient Toluene Removal with a Catalytic Cu-MnOx/GF Electrode in a Solid-State Electrocatalytic Device. Catalysts. 2025; 15(8):749. https://doi.org/10.3390/catal15080749
Chicago/Turabian StyleLiu, Haozhen, Mingxin Liu, Xiqiang Zhao, Ping Zhou, Zhanlong Song, Wenlong Wang, Jing Sun, and Yanpeng Mao. 2025. "Electrocatalytic Oxidation for Efficient Toluene Removal with a Catalytic Cu-MnOx/GF Electrode in a Solid-State Electrocatalytic Device" Catalysts 15, no. 8: 749. https://doi.org/10.3390/catal15080749
APA StyleLiu, H., Liu, M., Zhao, X., Zhou, P., Song, Z., Wang, W., Sun, J., & Mao, Y. (2025). Electrocatalytic Oxidation for Efficient Toluene Removal with a Catalytic Cu-MnOx/GF Electrode in a Solid-State Electrocatalytic Device. Catalysts, 15(8), 749. https://doi.org/10.3390/catal15080749