Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (571)

Search Parameters:
Keywords = CuAg alloy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 2764 KiB  
Article
AlxCoCrFeNi High-Entropy Alloys Enable Simultaneous Electrical and Mechanical Robustness at Thermoelectric Interfaces
by Xiaoxia Zou, Wangjie Zhou, Xinxin Li, Yuzeng Gao, Jingyi Yu, Linglu Zeng, Guangteng Yang, Li Liu, Wei Ren and Yan Sun
Materials 2025, 18(15), 3688; https://doi.org/10.3390/ma18153688 (registering DOI) - 6 Aug 2025
Abstract
The interface between high-performance thermoelectric materials and electrodes critically governs the conversion efficiency and long-term reliability of thermoelectric generators under high-temperature operation. Here, we propose AlxCoCrFeNi high-entropy alloys (HEA) as barrier layers to bond Cu-W electrodes with p-type skutterudite (p-SKD) thermoelectric [...] Read more.
The interface between high-performance thermoelectric materials and electrodes critically governs the conversion efficiency and long-term reliability of thermoelectric generators under high-temperature operation. Here, we propose AlxCoCrFeNi high-entropy alloys (HEA) as barrier layers to bond Cu-W electrodes with p-type skutterudite (p-SKD) thermoelectric materials. The HEA/p-SKD interface exhibited excellent chemical bonding with a stable and controllable reaction layer, forming a dense, defect-free (Fe,Ni,Co,Cr)Sb phase (thickness of ~2.5 μm) at the skutterudites side. The interfacial resistivity achieved a low value of 0.26 μΩ·cm2 and remained at 7.15 μΩ·cm2 after aging at 773 K for 16 days. Moreover, the interface demonstrated remarkable mechanical stability, with an initial shear strength of 88 MPa. After long-term aging for 16 days at 773 K, the shear strength retained 74 MPa (only 16% degradation), ranking among the highest reported for thermoelectric materials/metal joints. Remarkably, the joint maintained a shear strength of 29 MPa even after 100 continuous thermal cycles (623–773 K), highlighting its outstanding thermo-mechanical stability. These results validate the AlxCoCrFeNi high-entropy alloys as an ideal interfacial material for thermoelectric generators, enabling simultaneous optimization of electrical and mechanical performance in harsh environments. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

22 pages, 9293 KiB  
Article
Thermal Stability of the Ultra-Fine-Grained Structure and Mechanical Properties of AlSi7MgCu0.5 Alloy Processed by Equal Channel Angular Pressing at Room Temperature
by Miloš Matvija, Martin Fujda, Ondrej Milkovič, Marek Vojtko and Katarína Gáborová
Crystals 2025, 15(8), 701; https://doi.org/10.3390/cryst15080701 - 31 Jul 2025
Viewed by 162
Abstract
Understanding the limitations of cold-formed aluminum alloys in practice applications is essential, particularly due to the risk of substructural changes and a reduction in strength when exposed to elevated temperatures. In this study, the thermal stability of the ultra-fine-grained (UFG) structure formed by [...] Read more.
Understanding the limitations of cold-formed aluminum alloys in practice applications is essential, particularly due to the risk of substructural changes and a reduction in strength when exposed to elevated temperatures. In this study, the thermal stability of the ultra-fine-grained (UFG) structure formed by equal channel angular pressing (ECAP) at room temperature and the mechanical properties of the AlSi7MgCu0.5 alloy were investigated. Prior to ECAP, the plasticity of the as-cast alloy was enhanced by a heat treatment consisting of solution annealing, quenching, and artificial aging to achieve an overaged state. Four repetitive passes via ECAP route A resulted in the homogenization of eutectic Si particles within the α-solid solution, the formation of ultra-fine grains and/or subgrains with high dislocation density, and a significant improvement in alloy strength due to strain hardening. The main objective of this work was to assess the microstructural and mechanical stability of the alloy after post-ECAP annealing in the temperature range of 373–573 K. The UFG microstructure was found to be thermally stable up to 523 K, above which notable grain and/or subgrain coarsening occurred as a result of discontinuous recrystallization of the solid solution. Mechanical properties remained stable up to 423 K; above this temperature, a considerable decrease in strength and a simultaneous increase in ductility were observed. Synchrotron radiation X-ray diffraction (XRD) was employed to analyze the phase composition and crystallographic characteristics, while transmission electron microscopy (TEM) was used to investigate substructural evolution. Mechanical properties were evaluated through tensile testing, impact toughness testing, and hardness measurements. Full article
(This article belongs to the Special Issue Celebrating the 10th Anniversary of International Crystallography)
Show Figures

Figure 1

13 pages, 5877 KiB  
Article
Effect of Interval Time Between Pre-Deformation and Artificial Aging on Mechanical Properties of Er-Containing 7075 Aluminum Alloy
by Yingze Liu, Zhiqian Liao, Desheng Wang, Guoyuan Liu, Jiangyi Ren, Wenfu Li, Yunao Yang, Lingjie Chen and Yue Wang
Metals 2025, 15(8), 841; https://doi.org/10.3390/met15080841 - 28 Jul 2025
Viewed by 192
Abstract
In order to obtain the optimal heat treatment process of Er-containing 7075 aluminum alloy, the effects of pre-stretching and the interval time between pre-stretching and aging on the microstructure and mechanical properties of Er-containing 7075 aluminum alloy during solution treatment followed by pre-stretching [...] Read more.
In order to obtain the optimal heat treatment process of Er-containing 7075 aluminum alloy, the effects of pre-stretching and the interval time between pre-stretching and aging on the microstructure and mechanical properties of Er-containing 7075 aluminum alloy during solution treatment followed by pre-stretching and two-stage aging processes were investigated by mechanical property tests, metallographic tests, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The results show that the mechanical properties of Er-containing 7075 aluminum alloy can be significantly improved by increasing the extrusion ratio. Pre-stretching provides nucleation sites for the precipitation of reinforcing phases, accelerates the aging strengthening process, and shortens the peak aging time. The crack source of fracture in Er-containing 7075 aluminum alloy is attributed to the segregated second phases containing Cu and Er in the alloy. The research results have significant engineering significance for the optimization of the heat treatment process of Er-containing 7075 aluminum alloy. Full article
Show Figures

Figure 1

15 pages, 10188 KiB  
Article
The Effect of Aging Treatment on the Properties of Cold-Rolled Cu-Ni-Si-Co Alloys with Different Mg Contents
by Dan Wu, Jinming Hu, Qiang Hu, Lingkang Wu, Bo Guan, Siqi Zeng, Zhen Xing, Jiahao Wang, Jing Xu, Guojie Huang and Jin Liu
Materials 2025, 18(14), 3263; https://doi.org/10.3390/ma18143263 - 10 Jul 2025
Viewed by 358
Abstract
Cu-Ni-Si is a prominent example of a high-end lead frame copper alloy. The enhancement of strength without compromising electrical conductivity has emerged as a prominent research focus. The evolution of the precipitates exerts a significant influence on the strength and electrical conductivity of [...] Read more.
Cu-Ni-Si is a prominent example of a high-end lead frame copper alloy. The enhancement of strength without compromising electrical conductivity has emerged as a prominent research focus. The evolution of the precipitates exerts a significant influence on the strength and electrical conductivity of Cu-Ni-Si-Co-Mg alloys. In this paper, the effects of aging treatment and Mg addition on the properties and precipitates of cold-rolled Cu-Ni-Si-Co alloys were studied. The precipitate was (Ni, Co)2Si and was in a strip shape. During aging, precipitation and coarsening of the (Ni, Co)2Si precipitates were observed. In the early stage of aging, a significant number of fine (Ni, Co)2Si precipitates were formed. These fine precipitates could not only have a better effect of precipitation strengthening, but also impeded the dislocation movement, thus increasing the dislocation density and improving the dislocation strengthening effect. However, the coarsening of the precipitates became dominant with increasing aging times. Therefore, the strengthening effect was weakened. The addition of 0.12% Mg promoted finer and more diffuse precipitates, which not only improving the tensile strength by 100–200 MPa, but also exhibiting a smaller effect on the electrical conductivity. However, further increases in Mg contents resulted in a significant decrease in electrical conductivity, with little change in the tensile strength. The optimum amount of added Mg was 0.12%, and the aging parameters were 300 °C and 20 min. Full article
Show Figures

Figure 1

18 pages, 1972 KiB  
Article
Lithium Growth on Alloying Substrates and Effect on Volumetric Expansion
by Laura C. Merrill, Robert L. Craig, Damion P. Cummings and Julia I. Deitz
Batteries 2025, 11(7), 249; https://doi.org/10.3390/batteries11070249 - 29 Jun 2025
Viewed by 347
Abstract
The widespread implementation of next-generation Li metal anodes is limited, in part, due to the formation of dendritic and/or mossy electrodeposits during cycling. These morphologies can lead to battery failure due to the formation of short circuits and significant volumetric expansion at the [...] Read more.
The widespread implementation of next-generation Li metal anodes is limited, in part, due to the formation of dendritic and/or mossy electrodeposits during cycling. These morphologies can lead to battery failure due to the formation of short circuits and significant volumetric expansion at the anode. One strategy to control the electrodeposition of Li metal is to use lithiophilic materials at the anode. Here, we evaluate the impact of Ag and Au on the early stages of Li metal electrodeposition and cycling. The alloying substrates decrease the voltage for Li reduction and improve Li wetting/adhesion. We probe volumetric expansion directly through dilatometry measurements and find that the degree of volumetric expansion is less when lithium is cycled on an alloying substrate compared to a non-alloying substrate (Cu). Dilatometry experiments reveal that Au has the least amount of volumetric expansion and coin cell cycling experiments indicate that Ag yields more stable cycling compared to Au or Cu. The evaluation of in situ cross-sectional images of cycled coin cells shows that Ag has the lowest volumetric expansion in a coin cell format. Full article
(This article belongs to the Special Issue Batteries: 10th Anniversary)
Show Figures

Figure 1

14 pages, 5105 KiB  
Article
Effect of Heat Treatment Conditions on Mechanical Properties of Die-Casting Al–Si–Cu–xLa Alloys
by Kyeonghun Kim, Uro Heo, Younghun Bae, Seongtak Kim, NamHyun Kang and Haewoong Yang
Materials 2025, 18(13), 3046; https://doi.org/10.3390/ma18133046 - 26 Jun 2025
Viewed by 422
Abstract
In this study, lanthanum (La), a rare earth element, was added at concentrations of 0.25 wt.%, 0.5 wt.%, and 0.75 wt.% to an Al–10%Si–2%Cu-based alloy prepared by die casting. The effects of solution and aging heat treatment conditions on the mechanical properties and [...] Read more.
In this study, lanthanum (La), a rare earth element, was added at concentrations of 0.25 wt.%, 0.5 wt.%, and 0.75 wt.% to an Al–10%Si–2%Cu-based alloy prepared by die casting. The effects of solution and aging heat treatment conditions on the mechanical properties and corrosion resistance were investigated. Microstructural changes, hardness, and corrosion behavior were analyzed as functions of La content and heat treatment parameters. The optimal hardness was achieved at a solution treatment temperature of 500 °C or higher and an aging time of 2 h. In particular, the addition of 0.5 wt.% La led to significant refinement of the α-Al grains, enhancing hardness through the Hall–Petch strengthening mechanism. Furthermore, the combined effects of aging treatment and La addition promoted the formation of a fine, uniform microstructure and stable dispersion of precipitates, resulting in improved mechanical performance. Electrochemical polarization tests revealed that the alloy containing 0.5 wt.% La exhibited the best corrosion resistance. This enhancement was attributed to the formation of the LaCu2Al4Si intermetallic compound, which has a lower electrochemical potential than the Al2Cu phase, thereby reducing corrosion susceptibility within the microstructure. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

23 pages, 8782 KiB  
Article
Microstructure and Properties of Laser-Remelted Al-Cu-Mn Alloy
by Jibo Hou, Huiru Li, Qingnan Dong and Zhanyong Zhao
Metals 2025, 15(7), 693; https://doi.org/10.3390/met15070693 - 21 Jun 2025
Viewed by 358
Abstract
This article studies the effects of a laser remelting treatment on the microstructure and properties of Al-Cu-Mn alloy surfaces, as well as the effects of a heat treatment process on the microstructure and mechanical properties of the matrix zone and remelting zone. The [...] Read more.
This article studies the effects of a laser remelting treatment on the microstructure and properties of Al-Cu-Mn alloy surfaces, as well as the effects of a heat treatment process on the microstructure and mechanical properties of the matrix zone and remelting zone. The results showed that the remelting zone structure was mainly composed of equiaxed dendrites and fine columnar dendrites. The α(Al) phase and θ(Al2Cu) phase were greatly refined after laser remelting. The T(Al12CuMn2) phase was completely dissolved into the α(Al) matrix. The hardness of the remelting zone increased significantly with an increase in the height of the molten pool, and the strengthening mechanism was mainly fine grain strengthening and second phase strengthening. For identical aging treatments, the solution treatment at 530 °C for 4 h yielded the highest hardness. Relative to samples aged without prior solution treatment, hardness increased by 80% in the matrix zone and 59.1% in the remelting zone. When the solid solution process was the same, the time to reach peak hardness was shortened when the aging temperature increased, and the hardness of both the matrix zone and remelting zone reached its peak at 175 °C for 8 h of aging. After aging, the friction coefficient of the alloy decreased due to the increase in the strength of the alloy. Full article
Show Figures

Figure 1

16 pages, 4578 KiB  
Article
Corrosion Behavior Analysis of Novel Sn-2.5Ag-1.0Bi-0.8Cu-0.05Ni and Sn-1.8Bi-0.75Cu-0.065Ni Pb-Free Solder Alloys via Potentiodynamic Polarization Test
by Sang Hoon Jung and Jong-Hyun Lee
Metals 2025, 15(6), 670; https://doi.org/10.3390/met15060670 - 17 Jun 2025
Viewed by 274
Abstract
The corrosion behaviors of newly developed solder alloys with excellent mechanical properties, Sn-2.5 Ag-1.0 Bi-0.8 Cu-0.05 Ni (SABC25108N) and Sn-1.5 Bi-0.75 Cu-0.065 Ni (SBC15075N), are analyzed to supplement the corrosion behavior of the limited corrosion data in Pb- and Zn-free solder compositions. A [...] Read more.
The corrosion behaviors of newly developed solder alloys with excellent mechanical properties, Sn-2.5 Ag-1.0 Bi-0.8 Cu-0.05 Ni (SABC25108N) and Sn-1.5 Bi-0.75 Cu-0.065 Ni (SBC15075N), are analyzed to supplement the corrosion behavior of the limited corrosion data in Pb- and Zn-free solder compositions. A potentiodynamic polarization test is conducted on these compositions in a NaCl electrolyte solution, the results of which are compared with those of conventional Sn-3.0 (wt%) Ag-0.5Cu and Sn-1.2Ag-0.5Cu-0.05Ni alloys. The results indicate that SBC15075N exhibits the lowest corrosion potential and highest corrosion current density, thus signifying the lowest corrosion resistance. By contrast, SABC25108N exhibits the lowest corrosion current density and highest corrosion resistance. Notably, SABC25108N shows a slower corrosion progression in the active state and exhibits the longest passive state. The difference in corrosion resistance is affected more significantly by the formation and distribution of the Ag3Sn intermetallic compound phase owing to the high Ag content instead of by the presence of Bi or Ni. This uniform dispersion of Ag3Sn IMC phases in the SABC25108N alloy effectively suppressed corrosion propagation along the grain boundaries and reduced the formation of corrosion products, such as Sn3O(OH)2Cl2, thereby enhancing the overall corrosion resistance. These findings provide valuable insights into the optimal design of solder alloys and highlight the importance of incorporating sufficient Ag content into multicomponent compositions to improve corrosion resistance. Full article
(This article belongs to the Special Issue New Welding Materials and Green Joint Technology—2nd Edition)
Show Figures

Figure 1

12 pages, 12973 KiB  
Article
Effect of Different Heat Treatment Processes on the Microstructure and Properties of Cu-15Ni-3Al Alloys
by Jinchun Ren, Qiangsong Wang, Liyan Dong, Junru Gao and Xinlu Chai
Materials 2025, 18(12), 2678; https://doi.org/10.3390/ma18122678 - 6 Jun 2025
Viewed by 387
Abstract
This study systematically investigates the influence of different heat treatment processes on the microstructural evolution and mechanical properties of Cu-15Ni-3Al alloys, with particular emphasis on the synergistic strengthening mechanisms of spinodal decomposition and precipitation hardening. Two distinct aging routes—solution aging and direct aging—were [...] Read more.
This study systematically investigates the influence of different heat treatment processes on the microstructural evolution and mechanical properties of Cu-15Ni-3Al alloys, with particular emphasis on the synergistic strengthening mechanisms of spinodal decomposition and precipitation hardening. Two distinct aging routes—solution aging and direct aging—were designed to facilitate a comparative assessment of microstructural characteristics and their correlation with mechanical performance. Comprehensive characterization was conducted using scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM), and room-temperature tensile testing to elucidate the structure–property relationships. The results reveal that direct aging promotes the formation of fine, coherent L12-type Ni3Al precipitates and the evolution of Ni-enriched regions initially generated through spinodal decomposition into stable Ni3Al precipitates. These microstructural features act as effective barriers to dislocation motion, thereby significantly enhancing both strength and ductility. The findings provide valuable insights into optimizing heat treatment strategies to improve the performance of Cu-Ni-Al alloys. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

18 pages, 9085 KiB  
Article
Optimizing the Tribological Performance of Copper-Reinforced A356 Aluminum Alloy: Influence of Heat Treatment and Composition Variation
by G. Divya Deepak, Nithesh Kashimat, Karthik Birur Manjunathaiah, Vignesha Nayak, Gajanan Anne and Sathyashankara Sharma
J. Compos. Sci. 2025, 9(6), 287; https://doi.org/10.3390/jcs9060287 - 4 Jun 2025
Viewed by 602
Abstract
Recent progress in metal matrix composites (MMCs) has led to significant research efforts aimed at refining reinforcement methods and processing techniques and enhancing material properties. Incorporating reinforcements has notably improved both mechanical strength and tribological performance while addressing issues such as porosity and [...] Read more.
Recent progress in metal matrix composites (MMCs) has led to significant research efforts aimed at refining reinforcement methods and processing techniques and enhancing material properties. Incorporating reinforcements has notably improved both mechanical strength and tribological performance while addressing issues such as porosity and particle agglomeration. This study investigates the impact of copper reinforcement (1–4 wt.%) on the tribological characteristics of A356 alloy under both as-cast and heat-treated conditions. The process of heat treatment involved age hardening, where the composites were solution heat treated (SHT) at 535 °C for 2 h, followed by rapid quenching and aging at 100 °C and 200 °C. The results demonstrate that increasing the copper content enhances the composite’s mechanical properties. Specifically, heat treatment promoted the redistribution of the Al2Cu intermetallic phase during peak aging, leading to improved hardness and wear resistance. Wear testing demonstrated that heat-treated composites exhibited significantly better wear resistance than their as-cast counterparts, with improvements of 50–60% under lower loads and 80–90% under higher loads. Among the tested samples, A356 alloy reinforced with 4 wt.% copper showed the lowest wear rate across all the applied loads, along with a reduced coefficient of friction and enhanced load-bearing capacity, minimizing material deformation. Additionally, aging at 100 °C resulted in the greatest hardness and the lowest wear rate in comparison to untreated A356 alloy. These findings underscore the viability of copper-reinforced A356 composites for applications demanding enhanced mechanical characteristics and wear resistance. Full article
(This article belongs to the Special Issue Mechanical Properties of Composite Materials and Joints)
Show Figures

Figure 1

17 pages, 3655 KiB  
Article
Potential Function-Based Molecular Dynamics Simulation of Al-Cu-Li Alloys and Comparison with Experiments
by Fei Chen, Han Wang, Yu Liu, Liangtao Qi and Quanqing Zeng
Materials 2025, 18(11), 2420; https://doi.org/10.3390/ma18112420 - 22 May 2025
Viewed by 451
Abstract
Due to their excellent specific strength and lightweight characteristics, Al-Cu-Li alloys are widely used in aerospace applications. The newly developed three-stage creep aging (CA) process ensures both the formability and high performance of the Al alloy. However, research at the atomic scale investigating [...] Read more.
Due to their excellent specific strength and lightweight characteristics, Al-Cu-Li alloys are widely used in aerospace applications. The newly developed three-stage creep aging (CA) process ensures both the formability and high performance of the Al alloy. However, research at the atomic scale investigating the relationship between the microstructure and performance of ternary alloys under intricate heat treatment conditions remains scarce. This study investigates the microstructural evolution of Al-Cu-Li alloys during multi-stage low-high-low temperature CA experiments, combined with molecular dynamics (MD) simulations based on the neuroevolutionary machine learning potential (NEP) function. The simulation results indicate that the segregation state of lithium atoms at low temperatures is unstable and cannot persist at elevated temperatures. As the aging temperature in the second stage increases, the segregation of lithium atoms gradually diminishes. However, the low-temperature aging in the third stage facilitates continued atomic segregation, although the recovery is somewhat limited. Additionally, it was observed that high-temperature aging in the second stage reduces the material’s performance, while the low-temperature aging in the third stage contributes to the recovery of its properties. The experimental results indicate that the degree of precipitation phase enrichment decreases with the increase in temperature during the second stage but slightly increases with the low-temperature aging in the third stage. The excellent agreement between the experimental and simulation results validates the reliability of the MD simulations, providing a valuable reference for the performance enhancement and microstructural optimization of Al-Cu-Li alloys. Full article
Show Figures

Figure 1

14 pages, 8387 KiB  
Article
Liquid-State Interfacial Reactions of Lead-Free Solders with FeCoNiCr and FeCoNiMn Medium-Entropy Alloys at 250 °C
by Chao-Hong Wang and Yue-Han Li
Materials 2025, 18(10), 2379; https://doi.org/10.3390/ma18102379 - 20 May 2025
Viewed by 448
Abstract
This study investigates the interfacial reactions of FeCoNiCr and FeCoNiMn medium-entropy alloys (MEAs) with Sn and Sn-3Ag-0.5Cu (SAC305) solders at 250 °C. The evolution of interfacial microstructures is analyzed over various aging periods. For comparison, the FeCoNiCrMn high-entropy alloy (HEA) is also examined. [...] Read more.
This study investigates the interfacial reactions of FeCoNiCr and FeCoNiMn medium-entropy alloys (MEAs) with Sn and Sn-3Ag-0.5Cu (SAC305) solders at 250 °C. The evolution of interfacial microstructures is analyzed over various aging periods. For comparison, the FeCoNiCrMn high-entropy alloy (HEA) is also examined. In the Sn/FeCoNiCr system, a faceted (Fe,Cr,Co)Sn2 layer initially forms at the interface. Upon aging, the significant spalling of large (Fe,Cr,Co)Sn2 particulates into the solder matrix occurs. Additionally, an extremely large, plate-like (Co,Ni)Sn4 phase forms at a later stage. In contrast, the Sn/FeCoNiMn reaction produces a finer-grained (Fe,Co,Mn)Sn2 phase dispersed in the solder, accompanied by the formation of the large (Co,Ni)Sn4 phase. This observation suggests that Mn promotes the formation of finer intermetallic compounds (IMCs), while Cr facilitates the spalling of larger IMC particulates. The Sn/FeCoNiCrMn system exhibits stable interfacial behavior, with the (Fe,Cr,Co)Sn2 layer showing no significant changes over time. The interfacial behavior and microstructure are primarily governed by the dissolution of the constituent elements and composition ratio of the HEAs, as well as their interactions with Sn. Similar trends are observed in the SAC305 solder reactions, where a larger amount of fine (Fe,Co,Cu)Sn2 particles spall from the interface. This behavior is likely attributed to Cu doping, which enhances nucleation and stabilizes the IMC phases, promoting the formation of finer particles. The wettability of SAC305 solder on MEA/HEA substrates was further evaluated by contact angle measurements. These findings suggest that the presence of Mn in the substrate enhances the wettability of the solder. Full article
(This article belongs to the Section Thin Films and Interfaces)
Show Figures

Figure 1

35 pages, 6059 KiB  
Article
Modelling of Hardness and Electrical Conductivity of Cu-4Ti (wt.%) Alloy and Estimation of Aging Parameters Using Metaheuristic Algorithms
by Jarosław Konieczny, Krzysztof Labisz, Satılmış Ürgün, Halil Yiğit, Sinan Fidan, Mustafa Özgür Bora, Şaban Hakan Atapek and Janusz Ćwiek
Materials 2025, 18(10), 2366; https://doi.org/10.3390/ma18102366 - 19 May 2025
Viewed by 519
Abstract
This study focuses on cold deformation and age effects on the microhardness and electric conductivity of the Cu-4Ti (wt.%) alloys. The samples were solution treated at 900 °C, quenched in water, and aged at 450–600 °C for 1–120 min. Fifty percent cold rolling [...] Read more.
This study focuses on cold deformation and age effects on the microhardness and electric conductivity of the Cu-4Ti (wt.%) alloys. The samples were solution treated at 900 °C, quenched in water, and aged at 450–600 °C for 1–120 min. Fifty percent cold rolling was performed before aging to analyze the impact on their microstructure and properties. Hardness and electric conductivity were examined by the Vickers microhardness and Förster testing. Hardness increased significantly while electric conductivity was maintained. The optimal hardness of 298 HV appeared following 50% cold rolling and aging for 120 min at 450 °C, and an electric conductivity of 9.4 MS/m was achieved after 120 min at 600 °C in cold-rolled materials. The deformed and solution-treated materials reached 244 HV after 120 min at 500 °C, and electric conductivity reached 7.7 MS/m. Polynomial models of regression were used to analyze the impact of aging parameters on properties. Process parameters were properly optimized by applying metaheuristic algorithms. These contributions ensure a better understanding of the relationship between the microstructure and properties in Cu-Ti alloys, as well as their application in aircraft and electronics. Full article
Show Figures

Figure 1

13 pages, 2407 KiB  
Article
Study of the Effect of Tin Addition in Aluminum–Copper Alloys Obtained from Elemental Powders
by Pedro José Olendski Elias Junior, Ederson Bitencourt das Neves, Luciano Volcanoglo Biehl, Ismael Cristofer Baierle, Carlos Otávio Damas Martins and Jorge Luis Braz Medeiros
Metals 2025, 15(5), 559; https://doi.org/10.3390/met15050559 - 19 May 2025
Viewed by 425
Abstract
Powder metallurgy enables the production of composite materials, which are of great interest to different branches of the automotive, aerospace, and medical industries. This work investigated the sintering of an Al-xCu and Al-xCu-0.1Sn alloy, with copper concentration between 3.5 and 4.5% and tin [...] Read more.
Powder metallurgy enables the production of composite materials, which are of great interest to different branches of the automotive, aerospace, and medical industries. This work investigated the sintering of an Al-xCu and Al-xCu-0.1Sn alloy, with copper concentration between 3.5 and 4.5% and tin added in the range of 0.1%. Compressibility curves were drawn, and the samples were sintered in a high-purity nitrogen-controlled atmosphere furnace. The composites were subjected to subsequent solubilization heat treatment, with cooling in low concentration polymer solutions and artificial aging (T6). The samples were studied using optical, scanning electron, Vickers microhardness, and X-ray diffraction techniques. The results indicated the effectiveness of cooling the samples after solubilization in polymer solutions, the influence of the addition of tin on the aging time, and the mechanical properties of the alloys as a function of the T6 cycles applied. Full article
(This article belongs to the Special Issue Fabricating Advanced Metallic Materials)
Show Figures

Graphical abstract

16 pages, 4346 KiB  
Article
First-Principles Calculations of Plasmon-Induced Hot Carrier Properties of μ-Ag3Al
by Zihan Zhao, Hai Ren, Yucheng Wang, Xiangchao Ma, Jiali Jiang, Linfang Wei and Delian Liu
Nanomaterials 2025, 15(10), 761; https://doi.org/10.3390/nano15100761 - 19 May 2025
Viewed by 422
Abstract
Non-radiative decay of surface plasmon (SP) offers a novel paradigm for efficient conversion of photons into carriers. However, the narrow bandwidth of SP has been a significant obstacle to the widespread applications. Previously, research and applications mainly focused on noble metals such as [...] Read more.
Non-radiative decay of surface plasmon (SP) offers a novel paradigm for efficient conversion of photons into carriers. However, the narrow bandwidth of SP has been a significant obstacle to the widespread applications. Previously, research and applications mainly focused on noble metals such as Au, Ag, and Cu. In this article, we report an Ag-Al alloy material, μ-Ag3Al, in which the surface plasmon operating bandwidth is 1.7 times that of Ag and hot carrier transport properties are comparable with those of AuAl. The results show that μ-Ag3Al allows efficient direct interband electronic transitions from ultraviolet (UV) to near infrared range. Spherical nanoparticles of μ-Ag3Al exhibit the localized surface plasmon resonance (LSPR) effect in the ultraviolet region. Its surface plasmon polariton (SPP) shows strong non-radiative decay at 3.36 eV, which is favorable for the generation of high-energy hot carriers. In addition, the penetration depth of SPP in μ-Ag3Al remains high across the UV to the near-infrared range. Moreover, the transport properties of hot carriers in μ-Ag3Al are comparable with those in Al, borophene and Au-Al intermetallic compounds. These properties can provide guidance for the design of plasmon-based photodetectors, solar cells, and photocatalytic reactors. Full article
Show Figures

Figure 1

Back to TopTop