Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,216)

Search Parameters:
Keywords = CoPt

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3282 KiB  
Article
First-Principles Study on Periodic Pt2Fe Alloy Surface Models for Highly Efficient CO Poisoning Resistance
by Junmei Wang, Qingkun Tian, Harry E. Ruda, Li Chen, Maoyou Yang and Yujun Song
Nanomaterials 2025, 15(15), 1185; https://doi.org/10.3390/nano15151185 (registering DOI) - 1 Aug 2025
Abstract
Surface and sub-surface atomic configurations are critical for catalysis as they host the active sites governing electrochemical processes. This study employs density functional theory (DFT) calculations and Monte Carlo simulations combined with the cluster-expansion approach to investigate atom distribution and Pt segregation in [...] Read more.
Surface and sub-surface atomic configurations are critical for catalysis as they host the active sites governing electrochemical processes. This study employs density functional theory (DFT) calculations and Monte Carlo simulations combined with the cluster-expansion approach to investigate atom distribution and Pt segregation in Pt-Fe alloys across varying Pt/Fe ratios. Our simulations reveal a strong tendency for Pt atoms to segregate to the surface layer while Fe atoms enrich the sub-surface region. Crucially, the calculations predict the stability of a periodic Pt2Fe alloy surface model, characterized by specific defect structures, at low platinum content and low annealing temperatures. Electronic structure analysis indicates that forming this Pt2Fe surface alloy lowers the d-band center of Pt atoms, weakening CO adsorption and thereby enhancing resistance to CO poisoning. Although defect-induced strains can modulate the d-band center, crystal orbital Hamilton population (COHP) analysis confirms that such strains generally strengthen Pt-CO interactions. Therefore, the theoretical design of Pt2Fe alloy surfaces and controlling defect density are predicted to be effective strategies for enhancing catalyst resistance to CO poisoning. This work highlights the advantages of periodic Pt2Fe surface models for anti-CO poisoning and provides computational guidance for designing efficient Pt-based electrocatalysts. Full article
(This article belongs to the Section Theory and Simulation of Nanostructures)
Show Figures

Figure 1

20 pages, 3979 KiB  
Article
Theoretical Study of CO Oxidation on Pt Single-Atom Catalyst Decorated C3N Monolayers with Nitrogen Vacancies
by Suparada Kamchompoo, Yuwanda Injongkol, Nuttapon Yodsin, Rui-Qin Zhang, Manaschai Kunaseth and Siriporn Jungsuttiwong
Sci 2025, 7(3), 101; https://doi.org/10.3390/sci7030101 - 1 Aug 2025
Abstract
Carbon monoxide (CO) is a major toxic gas emitted from vehicle exhaust, industrial processes, and incomplete fuel combustion, posing serious environmental and health risks. Catalytic oxidation of CO into less harmful CO2 is an effective strategy to reduce these emissions. In this [...] Read more.
Carbon monoxide (CO) is a major toxic gas emitted from vehicle exhaust, industrial processes, and incomplete fuel combustion, posing serious environmental and health risks. Catalytic oxidation of CO into less harmful CO2 is an effective strategy to reduce these emissions. In this study, we investigated the catalytic performance of platinum (Pt) single atoms doped on C3N monolayers with various vacancy defects, including single carbon (CV) and nitrogen (NV) vacancies, using density functional theory (DFT) calculations. Our results demonstrate that Pt@NV-C3N exhibited the most favorable catalytic properties, with the highest O2 adsorption energy (−3.07 eV). This performance significantly outperforms Pt atoms doped at other vacancies. It can be attributed to the strong binding between Pt and nitrogen vacancies, which contributes to its excellent resistance to Pt aggregation. CO oxidation on Pt@NV-C3N proceeds via the Eley–Rideal (ER2) mechanism with a low activation barrier of 0.41 eV for the rate-determining step, indicating high catalytic efficiency at low temperatures. These findings suggest that Pt@NV-C3N is a promising candidate for CO oxidation, contributing to developing cost-effective and environmentally sustainable catalysts. The strong binding of Pt atoms to the nitrogen vacancies prevents aggregation, ensuring the stability and durability of the catalyst. The kinetic modeling further revealed that the ER2 mechanism offers the highest reaction rate constants over a wide temperature range (273–700 K). The low activation energy barrier also facilitates CO oxidation at lower temperatures, addressing critical challenges in automotive and industrial pollution control. This study provides valuable theoretical insights for designing advanced single-atom catalysts for environmental remediation applications. Full article
Show Figures

Graphical abstract

23 pages, 854 KiB  
Article
Adopting Generative AI in Future Classrooms: A Study of Preservice Teachers’ Intentions and Influencing Factors
by Yang Liu, Qiu Wang and Jing Lei
Behav. Sci. 2025, 15(8), 1040; https://doi.org/10.3390/bs15081040 - 31 Jul 2025
Abstract
This study investigated pre-service teachers’ (PTs) intentions to adopt generative AI (GenAI) tools in future classrooms by applying an extended Technology Acceptance Model (TAM). Participants were enrolled in multiple teacher-preparation programs within a single U.S. higher education institution. Through a structured GenAI-integrated activity [...] Read more.
This study investigated pre-service teachers’ (PTs) intentions to adopt generative AI (GenAI) tools in future classrooms by applying an extended Technology Acceptance Model (TAM). Participants were enrolled in multiple teacher-preparation programs within a single U.S. higher education institution. Through a structured GenAI-integrated activity using Khanmigo, a domain-specific AI platform for K-12 education, PTs explored AI-supported instructional tasks. Post-activity data were analyzed using PLS-SEM. The results showed that perceived usefulness (PU), perceived ease-of-use (PEU), and self-efficacy (SE) significantly predicted behavioral intention (BI) to adopt GenAI, with SE also influencing both PU and PEU. Conversely, personal innovativeness in IT and perceived cyber risk showed insignificant effects on BI or PU. The findings underscored the evolving dynamics of TAM constructs in GenAI contexts and highlighted the need to reconceptualize ease-of-use and risk within AI-mediated environments. Practically, the study emphasized the importance of preparing PTs not only to operate AI tools but also to critically interpret and co-design them. These insights inform both theoretical models and teacher education strategies, supporting the ethical and pedagogically meaningful integration of GenAI in K-12 education. Theoretical and practical implications are discussed. Full article
(This article belongs to the Special Issue Artificial Intelligence and Educational Psychology)
Show Figures

Figure 1

22 pages, 5009 KiB  
Review
Single-Atom Catalysts for Hydrogen Evolution Reaction: The Role of Supports, Coordination Environments, and Synergistic Effects
by Zhuoying Liang, Yu Zhang, Linli Liu, Miaolun Jiao and Chenliang Ye
Nanomaterials 2025, 15(15), 1175; https://doi.org/10.3390/nano15151175 - 30 Jul 2025
Abstract
Single-atom catalysts (SACs) have emerged as highly promising catalytic materials for the hydrogen evolution reaction (HER), attributed to their maximal atomic utilization efficiency and unique electronic configurations. Many structure parameters can influence the catalytic performance of SACs for HER, and the intrinsic advantages [...] Read more.
Single-atom catalysts (SACs) have emerged as highly promising catalytic materials for the hydrogen evolution reaction (HER), attributed to their maximal atomic utilization efficiency and unique electronic configurations. Many structure parameters can influence the catalytic performance of SACs for HER, and the intrinsic advantages of SACs for HER still need to be summarized. This review systematically summarizes recent advances in SACs for HER. It discusses various types of SACs (including those based on Pt, Co, Ru, Ni, Cu, and other metals) applied in HER, and elaborates the critical factors influencing catalytic performance—specifically, the supports, coordination environments, and synergistic effects of these SACs. Furthermore, current research challenges and future perspectives in this rapidly developing field are also outlined. Full article
Show Figures

Figure 1

19 pages, 4784 KiB  
Article
Investigation of the Adsorption and Reactions of Methyl Radicals on Transition Metal (M = Co, Ni, Pd, Pt) (111) Surfaces in Aqueous Suspensions
by Pankaj Kumar, Dan Meyerstein, Amir Mizrahi and Haya Kornweitz
Molecules 2025, 30(15), 3065; https://doi.org/10.3390/molecules30153065 - 22 Jul 2025
Viewed by 282
Abstract
The DFT method was used to evaluate the adsorption of methyl radicals and the evolution of ethane on the M(111) (M = Co, Ni, Pd, Pt) surfaces, eight metal atoms, in aqueous medium. A maximum of five and four radicals can be adsorbed [...] Read more.
The DFT method was used to evaluate the adsorption of methyl radicals and the evolution of ethane on the M(111) (M = Co, Ni, Pd, Pt) surfaces, eight metal atoms, in aqueous medium. A maximum of five and four radicals can be adsorbed on Co(111) and Ni(111), respectively, and six on Pd(111) and Pt(111) (top site). The ethane evolution occurs via the Langmuir–Hinshelwood (LH) or Eley–Rideal (ER) mechanisms. The production of ethane through the interaction of two adsorbed radicals is thermodynamically feasible for high coverage ratios on the four surfaces; however, kinetically, it is feasible at room temperature only on Co(111) at a coverage of (5/5) and on Pd(111) at a coverage ratio of 4/6, 5/6, and 6/6. Ethane production occurs via the ER mechanism: a collision with solvated methyl radical produces either C2H6 or CH2+CH4(aq). On Pd(111) the product is only C2H6, on Pt(111), both products (C2H6 or CH2) are plausible, and on Co(111) and Ni(111), only CH2+CH4(aq) is produced. Further reactions of CH2 with CH2 or CH3 to give C2H4 or C2H5 are thermodynamically plausible only on Pt(111); however, they are very slow due to high energy barriers, 1.48 and 1.36 eV, respectively. Full article
(This article belongs to the Special Issue Inorganic Chemistry in Asia, 2nd Edition)
Show Figures

Figure 1

14 pages, 3849 KiB  
Article
Alkaline Earth Carbonate Engineered Pt Electronic States for High-Efficiency Propylene Oxidation at Low Temperatures
by Xuequan Sun, Yishu Lv, Yuan Shu, Yanglong Guo and Pengfei Zhang
Catalysts 2025, 15(8), 696; https://doi.org/10.3390/catal15080696 - 22 Jul 2025
Viewed by 325
Abstract
Alkaline earth elements have emerged as crucial electronic modifiers for regulating active sites in catalytic systems, yet the influence of metal–support interactions (MSIs) between alkaline earth compounds and active metals remains insufficiently understood. This study systematically investigated Pt nanoparticles supported on alkaline earth [...] Read more.
Alkaline earth elements have emerged as crucial electronic modifiers for regulating active sites in catalytic systems, yet the influence of metal–support interactions (MSIs) between alkaline earth compounds and active metals remains insufficiently understood. This study systematically investigated Pt nanoparticles supported on alkaline earth carbonates (Pt/MCO3, M = Mg, Ca, Ba) for low-temperature propylene combustion. The Pt/BaCO3 catalyst exhibited outstanding performance, achieving complete propylene conversion at 192 °C, significantly lower than Pt/MgCO3 (247 °C) and Pt/CaCO3 (282 °C). The enhanced activity stemmed from distinct MSI effects among the supports, with Pt/BaCO3 showing the poorest electron enrichment and lowest propylene adsorption energy. Through kinetic analyses, 18O2 isotope labeling, and comprehensive characterization, the reaction was confirmed to follow the Mars–van Krevelen (MvK) mechanism. Pt/BaCO3 achieves an optimal balance between propylene and oxygen adsorption, a critical factor underlying its superior activity. Full article
(This article belongs to the Section Catalytic Materials)
Show Figures

Graphical abstract

20 pages, 1471 KiB  
Article
A New Approach for Interferent-Free Amperometric Biosensor Production Based on All-Electrochemically Assisted Procedures
by Rosanna Ciriello, Maria Assunta Acquavia, Giuliana Bianco, Angela Di Capua and Antonio Guerrieri
Biosensors 2025, 15(8), 470; https://doi.org/10.3390/bios15080470 - 22 Jul 2025
Viewed by 262
Abstract
A new approach in amperometric enzyme electrodes production based on all-electrochemically assisted procedures will be described. Enzyme (glucose oxidase) immobilization was performed by in situ co-crosslinking of enzyme molecules through electrophoretic protein deposition, assuring enzyme immobilization exclusively onto the transducer surface (Pt electrode). [...] Read more.
A new approach in amperometric enzyme electrodes production based on all-electrochemically assisted procedures will be described. Enzyme (glucose oxidase) immobilization was performed by in situ co-crosslinking of enzyme molecules through electrophoretic protein deposition, assuring enzyme immobilization exclusively onto the transducer surface (Pt electrode). Analogously, the poor selectivity of the transducer was dramatically improved by the electrosynthesis of non-conducting polymers with built-in permselectivity, permitting the formation of a thin permselective film onto the transducer surface, able to reject common interferents usually found in real samples. Since both approaches required a proper and distinct electrochemical perturbation (a pulsed current sequence for electrophoretic protein deposition and cyclic voltammetry for the electrosynthesis of non-conducting polymers), an appropriate coupling of the two all-electrochemical approaches was assured by a thorough study of the likely combinations of the electrosynthesis of permselective polymers with enzyme immobilization by electrophoretic protein deposition and by the use of several electrosynthesized polymers. For each investigated combination and for each polymer, the analytical performances and the rejection capabilities of the resulting biosensor were acquired so to gain information about their sensing abilities eventually in real sample analysis. This study shows that the proper coupling of the two all-electrochemical approaches and the appropriate choice of the electrosynthesized, permselective polymer permits the easy fabrication of novel glucose oxidase biosensors with good analytical performance and low bias in glucose measurement from typical interferent in serum. This novel approach, resembling classical electroplating procedures, is expected to allow all the advantages expected from such procedures like an easy preparation biosensor, a bi-dimensional control of enzyme immobilization and thickness, interferent- and fouling-free transduction of the electrodic sensor and, last but not the least, possibility of miniaturization of the biosensing device. Full article
(This article belongs to the Special Issue Novel Designs and Applications for Electrochemical Biosensors)
Show Figures

Figure 1

11 pages, 272 KiB  
Article
Analytical and Clinical Validation of the ConfiSign HIV Self-Test for Blood-Based HIV Screening
by Hyeyoung Lee, Ae-Ran Choi, Hye-Sun Park, JoungOk Kim, Seo-A Park, Seungok Lee, Jaeeun Yoo, Ji Sang Yoon, Sang Il Kim, Yoon Hee Jun, Younjeong Kim, Yeon Jeong Jeong and Eun-Jee Oh
Diagnostics 2025, 15(14), 1833; https://doi.org/10.3390/diagnostics15141833 - 21 Jul 2025
Viewed by 301
Abstract
Background/Objectives: Since the World Health Organization (WHO) recommended HIV self-testing as an alternative to traditional facility-based testing in 2016, it has been increasingly adopted worldwide. This study aimed to evaluate the performance of the ConfiSign HIV Self-Test (GenBody Inc., Republic of Korea), [...] Read more.
Background/Objectives: Since the World Health Organization (WHO) recommended HIV self-testing as an alternative to traditional facility-based testing in 2016, it has been increasingly adopted worldwide. This study aimed to evaluate the performance of the ConfiSign HIV Self-Test (GenBody Inc., Republic of Korea), a newly developed blood-based immunochromatographic assay for the qualitative detection of total antibodies (IgG and IgM) against HIV-1/HIV-2. Methods: The evaluation included four components: (1) retrospective analysis of 1400 archived serum samples (400 HIV-positive and 1000 HIV-negative samples), (2) prospective self-testing by 335 participants (112 HIV-positive participants and 223 individuals with an unknown HIV status, including healthy volunteers), (3) assessment using seroconversion panels and diverse HIV subtypes, and (4) analytical specificity testing for cross-reactivity and interference. The Elecsys HIV combi PT and Alinity I HIV Ag/Ab Combo assays were used as reference assays. Results: In retrospective testing, the ConfiSign HIV Self-Test achieved a positive percent agreement (PPA) of 100%, a negative percent agreement (NPA) of 99.2%, and a Cohen’s kappa value of 0.986, showing excellent agreement with the reference assays. In the prospective study, the test showed 100% sensitivity and specificity, with a low invalid result rate of 1.8%. All HIV-positive samples, including those with low signal-to-cutoff (S/Co) values in the Alinity I assay, were correctly identified. The test also reliably detected early seroconversion samples and accurately identified a broad range of HIV-1 subtypes (A, B, C, D, F, G, CRF01_AE, CRF02_AG, and group O) as well as HIV-2. No cross-reactivity or interference was observed with samples that were positive for hepatitis viruses, cytomegalovirus, Epstein–Barr virus, varicella zoster virus, influenza, HTLV-1, HTLV-2, or malaria. Conclusions: The ConfiSign HIV Self-Test demonstrated excellent sensitivity, specificity, and robustness across diverse clinical samples, supporting its reliability and practicality as a self-testing option for HIV-1/2 antibody detection. Full article
(This article belongs to the Section Diagnostic Microbiology and Infectious Disease)
Show Figures

Figure 1

16 pages, 2200 KiB  
Article
Effect of Partial Noble Metal (M = Pd, Rh, Ru, Pt) Substitution in La1−xSrxCo1−yMyO3 Perovskite-Derived Catalysts for Dry Reforming of Methane
by Pradeep Kumar Yadav, Ganesh Jabotra and Sudhanshu Sharma
Hydrogen 2025, 6(3), 49; https://doi.org/10.3390/hydrogen6030049 - 16 Jul 2025
Viewed by 451
Abstract
This study examines the surface chemistry of platinum, palladium, rhodium, and ruthenium-substituted lanthanum strontium cobaltate perovskite catalysts in the context of the dry reforming of methane (DRM). The catalysts were synthesized by the solution combustion method and characterized by using a series of [...] Read more.
This study examines the surface chemistry of platinum, palladium, rhodium, and ruthenium-substituted lanthanum strontium cobaltate perovskite catalysts in the context of the dry reforming of methane (DRM). The catalysts were synthesized by the solution combustion method and characterized by using a series of techniques. To explore the effect of noble metal ion substitution on the DRM, surface reaction was probed by CH4/CO2 TPSR using mass spectroscopy. It was recognized that La1−xSrxCo1−yPdyO3 show the best activities for the reaction in terms of the temperature but became deactivated over time. CH4/CO2 temperature-programmed surface reactions (TPSRs) were set up to unravel the details of the surface phenomena responsible for the deactivation of the DRM activity on the LSPdCO. The CH4/CO2 TPSR analysis conclusively demonstrated the importance of lattice oxygen in the removal of carbon, which is responsible for the stability of the catalysts on the synthesized perovskites upon noble metal ion substitution. Full article
Show Figures

Figure 1

12 pages, 3782 KiB  
Article
Structural, Magnetic and THz Emission Properties of Ultrathin Fe/L10-FePt/Pt Heterostructures
by Claudiu Locovei, Garik Torosyan, Evangelos Th. Papaioannou, Alina D. Crisan, Rene Beigang and Ovidiu Crisan
Nanomaterials 2025, 15(14), 1099; https://doi.org/10.3390/nano15141099 - 16 Jul 2025
Viewed by 272
Abstract
Recent achievements in ultrafast spin physics have enabled the use of heterostructures composed of ferromagnetic (FM)/non-magnetic (NM) thin layers for terahertz (THz) generation. The mechanism of THz emission from FM/NM multilayers has been typically ascribed to the inverse spin Hall effect (ISHE). In [...] Read more.
Recent achievements in ultrafast spin physics have enabled the use of heterostructures composed of ferromagnetic (FM)/non-magnetic (NM) thin layers for terahertz (THz) generation. The mechanism of THz emission from FM/NM multilayers has been typically ascribed to the inverse spin Hall effect (ISHE). In this work, we probe the mechanism of the ISHE by inserting a second ferromagnetic layer in the form of an alloy between the FM/NM system. In particular, by utilizing the co-sputtering technique, we fabricate Fe/L10-FePt/Pt ultra-thin heterostructures. We successfully grow the tetragonal phase of FePt (L10-phase) as revealed by X-ray diffraction and reflection techniques. We show the strong magnetic coupling between Fe and L10-FePt using magneto-optical and Superconducting Quantum Interference Device (SQUID) magnetometry. Subsequently, by utilizing THz time domain spectroscopy technique, we record the THz emission and thus we the reveal the efficiency of spin-to-charge conversion in Fe/L10-FePt/Pt. We establish that Fe/L10-FePt/Pt configuration is significantly superior to the Fe/Pt bilayer structure, regarding THz emission amplitude. The unique trilayer structure opens new perspectives in terms of material choices for the future spintronic THz sources. Full article
Show Figures

Figure 1

12 pages, 2721 KiB  
Article
Conjugated Polyaniline–Phytic Acid Polymer Derived 3D N, P-Doped Porous Carbon as a Metal-Free Electrocatalyst for Zn–Air Batteries
by Wanting Xiong, Yifan Kong, Jiangrong Xiao, Tingting Wang and Xiaoli Chen
Catalysts 2025, 15(7), 683; https://doi.org/10.3390/catal15070683 - 14 Jul 2025
Viewed by 379
Abstract
The development of cost-effective and scalable air/oxygen electrode materials is crucial for the advancement of Zn–air batteries (ZABs). Porous carbon materials doped with heteroatoms have attracted considerable attention in energy and environmental fields because of their tunable nanoporosity and high electrical conductivity. In [...] Read more.
The development of cost-effective and scalable air/oxygen electrode materials is crucial for the advancement of Zn–air batteries (ZABs). Porous carbon materials doped with heteroatoms have attracted considerable attention in energy and environmental fields because of their tunable nanoporosity and high electrical conductivity. In this work, we report the synthesis of a three-dimensional (3D) N and P co-doped porous carbon (PA@pDC-1000), derived from a conjugated polyaniline–phytic acid polymer. The cross-linked, rigid conjugated polymeric framework plays a crucial role in maintaining the integrity of micro- and mesoporous structures and promoting graphitization during carbonization. As a result, the material exhibits a hierarchical pore structure, a high specific surface area (1045 m2 g−1), and a large pore volume (1.02 cm3 g−1). The 3D N, P co-doped PA@pDC-1000 catalyst delivers a half-wave potential of 0.80 V (vs. RHE) and demonstrates a higher current density compared to commercial Pt/C. A primary ZAB utilizing this material achieves an open-circuit voltage of 1.51 V and a peak power density of 217 mW cm−2. This metal-free, self-templating presents a scalable route for the generating and producing of high-performance oxygen reduction reaction catalysts for ZABs. Full article
(This article belongs to the Special Issue Electrocatalysis and Photocatalysis in Redox Flow Batteries)
Show Figures

Figure 1

14 pages, 3940 KiB  
Article
DOC Study on the Effects of Catalyst Active Component Loading and Carrier Properties on the Catalytic Conversion Efficiency of Key Gaseous Pollutants
by Yantao Zou and Liguang Xiao
Sustainability 2025, 17(14), 6354; https://doi.org/10.3390/su17146354 - 11 Jul 2025
Viewed by 348
Abstract
Based on engine bench testing, this study investigated the effect of diesel oxidation catalytic converter (DOC) formulations on the gaseous emissions performance of diesel engines equipped with a DOC+ catalyzed diesel particulate filter (CDPF)+selective catalytic reduction (SCR) system after the treatment system. The [...] Read more.
Based on engine bench testing, this study investigated the effect of diesel oxidation catalytic converter (DOC) formulations on the gaseous emissions performance of diesel engines equipped with a DOC+ catalyzed diesel particulate filter (CDPF)+selective catalytic reduction (SCR) system after the treatment system. The experimental results indicate that changes in DOC formulations have no significant effect on engine fuel economy. As the precious metal loading increases and the Pt/Pd ratio decreases, the T50 for CO and HC decreases, and the low-temperature conversion rates (<300 °C) for CO and HC increase. However, as the temperature continues to rise, the beneficial effect of increased precious metal loading or Pd on CO and HC conversion rates gradually weakens. The average conversion rates in the high-temperature range (≥300 °C) show little difference. The NO conversion rate increases with increasing precious metal loading. The NO conversion rate is more sensitive to Pt content, with higher Pt content formulations promoting NO oxidation, contrary to the trends observed for CO and HC conversion rates. When the SCR inlet temperature is low, high NO2 concentrations are beneficial for improving the SCR’s NOx conversion efficiency. When the SCR inlet temperature is high, the SCR’s NOx conversion efficiency exceeds 90% with no significant differences. No significant impact of DOC formulation changes on CDPF pressure drop under external conditions was observed. Full article
(This article belongs to the Special Issue Technology Applications in Sustainable Energy and Power Engineering)
Show Figures

Figure 1

19 pages, 2035 KiB  
Article
Single Mutation in iolT1 in ptsG-Deficient Corynebacterium glutamicum Enables Growth Boost in Xylose-Containing Media
by Katharina Hofer, Lynn S. Schwardmann, Jung-Won Youn, Volker F. Wendisch and Ralf Takors
Microorganisms 2025, 13(7), 1606; https://doi.org/10.3390/microorganisms13071606 - 8 Jul 2025
Viewed by 420
Abstract
Efficient co-utilization of glucose and xylose from lignocellulosic biomass remains a critical bottleneck limiting the viability of sustainable biorefineries. While Corynebacterium glutamicum has emerged as a promising industrial host due to its robustness, further improvements in mixed-sugar co-utilization are needed. Here, we demonstrate [...] Read more.
Efficient co-utilization of glucose and xylose from lignocellulosic biomass remains a critical bottleneck limiting the viability of sustainable biorefineries. While Corynebacterium glutamicum has emerged as a promising industrial host due to its robustness, further improvements in mixed-sugar co-utilization are needed. Here, we demonstrate how a single amino acid substitution can dramatically transform cellular sugar transport capacity. By combining rational strain engineering with continuous adaptive laboratory evolution, we evolved a ptsG-deficient C. glutamicum strain in glucose–xylose mixtures for 600 h under consistent selection pressure. Whole-genome sequencing revealed a remarkable finding: a single point mutation; exchanging proline for alanine in the myo-inositol/proton symporter IolT1 was sufficient to boost glucose uptake by 83% and xylose uptake by 20%, while increasing the overall growth rate by 35%. This mutation, located in a highly conserved domain, likely disrupts an alpha helical structure, thus enhancing transport function. Reverse engineering confirmed that this single change alone reproduces the evolved phenotype, representing the first report of an engineered IolT1 variant in PTS-independent C. glutamicum that features significantly enhanced substrate uptake. These results both provide an immediately applicable engineering target for biorefinery applications and demonstrate the power of evolutionary approaches to identify non-intuitive solutions to complex metabolic engineering challenges. Full article
(This article belongs to the Special Issue Genetics and Physiology of Corynebacteria II)
Show Figures

Figure 1

22 pages, 2022 KiB  
Article
Impact of Slow-Forming Terraces on Erosion Control and Landscape Restoration in Central Africa’s Steep Slopes
by Jean Marie Vianney Nsabiyumva, Ciro Apollonio, Giulio Castelli, Elena Bresci, Andrea Petroselli, Mohamed Sabir, Cyrille Hicintuka and Federico Preti
Land 2025, 14(7), 1419; https://doi.org/10.3390/land14071419 - 6 Jul 2025
Viewed by 577
Abstract
Large-scale land restoration projects require on-the-ground monitoring and evidence-based evaluation. This study, part of the World Bank Burundi Landscape Restoration and Resilience Project (in French: Projet de Restauration et de Résilience du Paysage du Burundi-PRRPB), examines the impact of slow-forming terraces on surface [...] Read more.
Large-scale land restoration projects require on-the-ground monitoring and evidence-based evaluation. This study, part of the World Bank Burundi Landscape Restoration and Resilience Project (in French: Projet de Restauration et de Résilience du Paysage du Burundi-PRRPB), examines the impact of slow-forming terraces on surface conditions and erosion in Isare (Mumirwa) and Buhinyuza (Eastern Depressions), Burundi. Slow-forming, or progressive, terraces were installed on 16 December 2022 (Isare) and 30 December 2022 (Buhinyuza), featuring ditches and soil bunds to enhance soil and water conservation. Twelve plots were established, with 132 measurement pins, of which 72 were in non-terraced plots (n_PT) and 60 were in terraced plots (PT). Monthly measurements, conducted until May 2023, assessed erosion reduction, surface conditions, roughness, and soil thickness. Terracing reduced soil loss by 54% in Isare and 9% in Buhinyuza, though sediment accumulation in ditches was excessive, especially in n_PT. Anti-erosion ditches improved surface stability by reducing slope length, lowering erosion and runoff. Covered Surface (CoS%) exceeded 95%, while Opened Surface (OS%) and Bare Surface (BS%) declined significantly. At Isare, OS% dropped from 97% to 80%, and BS% from 96% to 3% in PT. Similar trends appeared in Buhinyuza. Findings highlight PRRPB effectiveness in this short-term timeframe, and provide insights for soil conservation in steep-slope regions of Central Africa. Full article
Show Figures

Figure 1

13 pages, 3803 KiB  
Article
Direct 2400 h Seawater Electrolysis Catalyzed by Pt-Loaded Nanoarray Sheets
by Huijun Xin, Zudong Shen, Xiaojie Li, Jinjie Fang, Haoran Sun, Chen Deng, Linlin Zhou and Yun Kuang
Catalysts 2025, 15(7), 634; https://doi.org/10.3390/catal15070634 - 29 Jun 2025
Viewed by 437
Abstract
Seawater electrolysis offers a sustainable route for large-scale, carbon-neutral hydrogen production, but its industrial application is limited by the poor efficiency and durability of current electrocatalysts under high current densities. Herein, we synthesized ultrasmall Pt nanoclusters uniformly anchored on FeCoNi phosphide nanosheet arrays, [...] Read more.
Seawater electrolysis offers a sustainable route for large-scale, carbon-neutral hydrogen production, but its industrial application is limited by the poor efficiency and durability of current electrocatalysts under high current densities. Herein, we synthesized ultrasmall Pt nanoclusters uniformly anchored on FeCoNi phosphide nanosheet arrays, forming a composite catalyst with outstanding hydrogen evolution reaction (HER) performance in alkaline seawater. The catalyst achieves an ultralow overpotential of 17 mV at −10 mA cm−2, far surpassing commercial Pt/C, and stably delivers industrial-level current densities up to 2000 A m−2 for over 2400 h with minimal voltage degradation and low energy consumption (4.16 kWh/Nm3 H2). X-ray photoelectron spectroscopy revealed strong interfacial electronic interactions between Pt and Fe/Co species, involving electron transfer from Pt that modulates its electronic structure, weakens hydrogen adsorption, and enhances both HER kinetics and Pt dispersion. This work presents a scalable and robust catalyst platform, bridging the gap between laboratory research and industrial seawater electrolysis for green hydrogen production. Full article
(This article belongs to the Special Issue Powering the Future: Advances of Catalysis in Batteries)
Show Figures

Graphical abstract

Back to TopTop