Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,491)

Search Parameters:
Keywords = Co2TiO4

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 3162 KB  
Article
Novel Ultrafast Synthesis of Perovskites via Commercial Laser Engraving
by Pedro Piza-Ruiz, Griselda Mendoza-Gómez, Maria Luisa Camacho-Rios, Guillermo Manuel Herrera-Perez, Luis Carlos Rodriguez Pacheco, Kevin Isaac Contreras-Vargas, Daniel Lardizábal-Gutiérrez, Antonio Ramírez-DelaCruz and Caleb Carreno-Gallardo
Processes 2026, 14(2), 327; https://doi.org/10.3390/pr14020327 - 16 Jan 2026
Abstract
We present a rapid, energy-efficient, and ecofriendly route for the synthesis of alkaline earth titanate perovskites—CaTiO3, SrTiO3, and BaTiO3—using an affordable, commercially available CO2 laser engraver, commonly found in makerspaces and small-scale workshops. The method involves [...] Read more.
We present a rapid, energy-efficient, and ecofriendly route for the synthesis of alkaline earth titanate perovskites—CaTiO3, SrTiO3, and BaTiO3—using an affordable, commercially available CO2 laser engraver, commonly found in makerspaces and small-scale workshops. The method involves direct laser irradiation of compacted pellets composed of low-cost, abundant, and non-toxic precursors: TiO2 and alkaline earth carbonates (CaCO3, SrCO3, BaCO3). CaTiO3 and BaTiO3 were synthesized with phase purities exceeding 97%, eliminating the need for conventional high-temperature furnaces or prolonged thermal treatments. X-ray diffraction (XRD) coupled with Rietveld refinement confirmed the formation of orthorhombic CaTiO3 (Pbnm), cubic SrTiO3 (Pm3m), and tetragonal BaTiO3 (P4mm). Raman spectroscopy independently corroborated the perovskite structures, revealing vibrational fingerprints consistent with the expected crystal symmetries and Ti–O bonding environments. All samples contained only small amounts of unreacted anatase TiO2, while BaTiO3 exhibited a partially amorphous fraction, attributed to the sluggish crystallization kinetics of the Ba–Ti system and the rapid quenching inherent to laser processing. Transmission electron microscopy (TEM) revealed nanoparticles with average sizes of 50–150 nm, indicative of localized melting followed by ultrafast solidification. This solvent-free, low-energy, and highly accessible approach, enabled by widely available desktop laser systems, demonstrates exceptional simplicity, scalability, and sustainability. It offers a compelling alternative to conventional ceramic processing, with broad potential for the fabrication of functional oxides in applications ranging from electronics to photocatalysis. Full article
12 pages, 7517 KB  
Article
Chemiresistive Effect in Ti0.2V1.8C MXene/Metal Oxide Hetero-Structured Composites
by Ilia A. Plugin, Nikolay P. Simonenko, Elizaveta P. Simonenko, Tatiana L. Simonenko, Alexey S. Varezhnikov, Maksim A. Solomatin, Victor V. Sysoev and Nikolay T. Kuznetsov
Sensors 2026, 26(2), 496; https://doi.org/10.3390/s26020496 - 12 Jan 2026
Viewed by 109
Abstract
Two-dimensional carbide crystals (MXenes) are emerging as a promising platform for the development of novel gas sensors, offering advantages in energy efficiency and tunable analyte selectivity. One of the most effective strategies to enhance and tailor their functional performance involves forming hetero-structured composites [...] Read more.
Two-dimensional carbide crystals (MXenes) are emerging as a promising platform for the development of novel gas sensors, offering advantages in energy efficiency and tunable analyte selectivity. One of the most effective strategies to enhance and tailor their functional performance involves forming hetero-structured composites with metal oxides. In this work, we explore a chemiresistive effect in double-metal MXene of Ti0.2V1.8C and its composites with 2 mol. % SnO2 and Co3O4 nanocrystalline oxides toward feasibility tests with alcohol and ammonia vapor probes. The materials were characterized by simultaneous thermal analysis, X-ray diffraction analysis, Raman spectroscopy, and scanning/transmission electron microscopy. Gas-sensing experiments were carried out on composite layers deposited on multi-electrode substrates to be exposed to the test gases, 200–2000 ppm concentrations, at an operating temperature of 370 °C. The developed sensor array demonstrated clear analyte discrimination. The distinct sensor responses enabled a selective identification of vapors through linear discriminant analysis, demonstrating the further potential of MXene-based materials for integrated electronic nose applications. Full article
(This article belongs to the Special Issue Advances of Two-Dimensional Materials for Sensing Devices)
Show Figures

Graphical abstract

12 pages, 2346 KB  
Article
DFT Insights into Ru3 Clusters on Pristine and Defective Anatase TiO2 (101) Covering Structural Stability Electronic Modifications and Photocatalytic Implications
by Moteb Alotaibi and Talal F. Qahtan
Catalysts 2026, 16(1), 81; https://doi.org/10.3390/catal16010081 - 10 Jan 2026
Viewed by 227
Abstract
This study investigates the interaction of Ru3 clusters with pristine and defective anatase (101) TiO2 surfaces using density functional theory (DFT) to evaluate their structural stability, electronic modifications, and photocatalytic potential. The results show that Ru3 clusters strongly bind to [...] Read more.
This study investigates the interaction of Ru3 clusters with pristine and defective anatase (101) TiO2 surfaces using density functional theory (DFT) to evaluate their structural stability, electronic modifications, and photocatalytic potential. The results show that Ru3 clusters strongly bind to both pristine and defective surfaces, with oxygen vacancies acting as anchoring sites that further stabilize the clusters. Electronic structure analysis reveals the formation of mid-gap states due to hybridization between Ru and Ti orbitals, extending visible light absorption. On defective surfaces, synergistic effects between Ru3 clusters and vacancy-induced states further enhance charge separation and reduce recombination. Band structure and wavefunction analyses confirm these findings, highlighting Ru3-decorated anatase TiO2 as a promising system for hydrogen evolution and CO2 reduction. The outcomes of this computational investigation provide valuable insights into the rational design of advanced photocatalysts for sustainable energy applications. Full article
(This article belongs to the Section Computational Catalysis)
Show Figures

Graphical abstract

17 pages, 2369 KB  
Article
Deciphering the Promoter Aspects of Potassium for Green Methanol Fuel Synthesis by Catalytic CO2 Conversion
by Israf Ud Din, Abdulrahman I. Alharthi, Mshari A. Alotaibi, Md Afroz Bakht, Gabriele Centi, Tooba Saeed, Abdul Naeem and Ho Soon Min
Catalysts 2026, 16(1), 75; https://doi.org/10.3390/catal16010075 - 8 Jan 2026
Viewed by 183
Abstract
Continuous excessive CO2 emissions have a negative impact on the environment. In order to address the issue of CO2 emission control, its conversion to some valuable commodities is the way forward in dealing with this issue. Additionally, the conversion of CO [...] Read more.
Continuous excessive CO2 emissions have a negative impact on the environment. In order to address the issue of CO2 emission control, its conversion to some valuable commodities is the way forward in dealing with this issue. Additionally, the conversion of CO2 to some valuable product such as methanol fuel will not only tackle the issue but also result in producing energy. Here, the co-precipitation method was used to synthesize Cu-ZnO bimetallic catalysts based on TiO2 support to be applied for CO2 conversion to methanol fuel. To elucidate the role of potassium (K) as a promoter, varied concentrations of K were added to parent Cu-ZnO/TiO2 catalysts. A number of analytical techniques were used to scrutinize the physico-chemical properties of calcined Cu-ZnO/TiO2 catalysts. The crystalline nature of TiO2 catalyst support with high metal oxide dispersion were the major findings disclosed based on X-ray diffraction examinations. The combination of the mesoporous and microporous character of the K-promoted Cu-ZnO/TiO2 catalysts was discovered using the N2 adsorption–desorption technique. Similarly, N2 adsorption–desorption studies also revealed surface defects by K-promotion. The creation of surface defects was also endorsed by X-ray photoelectron spectroscopy (XPS) by showing additional XPS peaks for O1s in higher binding energy (BE) regions. XPS also showed the oxidation states of K-promoted Cu-ZnO/TiO2 catalysts as well as metal–support interactions. Activity results demonstrated the active profile of K-promoted Cu-ZnO/TiO2 catalysts for methanol synthesis via CO2 reduction in a liquid phase slurry reactor. The methanol synthesis rate was accelerated from 35 to 53 g.MeOH/kg.cat.h by incorporating of K to parent Cu-ZnO/TiO2 catalysts at reaction temperature and pressure of 210 °C and 30 bar, respectively. Structure–activity investigations revealed a promoting role of K by facilitating Cu reduction as well metal–support interaction. The comparative study further revealed the importance of K promotion for the title reaction. Full article
(This article belongs to the Special Issue Multifunctional Metal–Organic Framework Materials as Catalysts)
Show Figures

Figure 1

41 pages, 9730 KB  
Review
In-Vehicle Gas Sensing and Monitoring Using Electronic Noses Based on Metal Oxide Semiconductor MEMS Sensor Arrays: A Critical Review
by Xu Lin, Ruiqin Tan, Wenfeng Shen, Dawu Lv and Weijie Song
Chemosensors 2026, 14(1), 16; https://doi.org/10.3390/chemosensors14010016 - 4 Jan 2026
Viewed by 302
Abstract
Volatile organic compounds (VOCs) released from automotive interior materials and exchanged with external air seriously compromise cabin air quality and pose health risks to occupants. Electronic noses (E-noses) based on metal oxide semiconductor (MOS) micro-electro-mechanical system (MEMS) sensor arrays provide an efficient, real-time [...] Read more.
Volatile organic compounds (VOCs) released from automotive interior materials and exchanged with external air seriously compromise cabin air quality and pose health risks to occupants. Electronic noses (E-noses) based on metal oxide semiconductor (MOS) micro-electro-mechanical system (MEMS) sensor arrays provide an efficient, real-time solution for in-vehicle gas monitoring. This review examines the use of SnO2-, ZnO-, and TiO2-based MEMS sensor arrays for this purpose. The sensing mechanisms, performance characteristics, and current limitations of these core materials are critically analyzed. Key MEMS fabrication techniques, including magnetron sputtering, chemical vapor deposition, and atomic layer deposition, are presented. Commonly employed pattern recognition algorithms—principal component analysis (PCA), support vector machines (SVM), and artificial neural networks (ANN)—are evaluated in terms of principle and effectiveness. Recent advances in low-power, portable E-nose systems for detecting formaldehyde, benzene, toluene, and other target analytes inside vehicles are highlighted. Future directions, including circuit–algorithm co-optimization, enhanced portability, and neuromorphic computing integration, are discussed. MOS MEMS E-noses effectively overcome the drawbacks of conventional analytical methods and are poised for widespread adoption in automotive air-quality management. Full article
(This article belongs to the Special Issue Detection of Volatile Organic Compounds in Complex Mixtures)
Show Figures

Graphical abstract

18 pages, 10634 KB  
Article
Effect of Nano-TiO2 Addition on Some Properties of Pre-Alloyed CoCrMo Fabricated via Powder Technology
by Jawdat Ali Yagoob, Mahmood Shihab Wahhab, Sherwan Mohammed Najm, Mihaela Oleksik, Tomasz Trzepieciński and Salwa O. Mohammed
Materials 2026, 19(1), 186; https://doi.org/10.3390/ma19010186 - 4 Jan 2026
Viewed by 251
Abstract
The CoCrMo alloys are progressively utilized as biomaterials. This research is dedicated to studying the consequence of (1, 3, and 5) wt% nano-TiO2 addition on the porosity, microstructure, microhardness, and wear behavior of pre-alloyed CoCrMo powder produced by powder metallurgy (PM). Microstructural [...] Read more.
The CoCrMo alloys are progressively utilized as biomaterials. This research is dedicated to studying the consequence of (1, 3, and 5) wt% nano-TiO2 addition on the porosity, microstructure, microhardness, and wear behavior of pre-alloyed CoCrMo powder produced by powder metallurgy (PM). Microstructural features were examined using SEM, SEM mapping, and XRD. Wear behavior was assessed through pin-on-disk tests performed under dry sliding conditions at varying loads and durations. Porosity increased with the addition of nano-TiO2, from 15.26 at 0 wt% reaching 25.12% at 5 wt%, while density decreased from 7.16 to 6.33 g/cm3. Microhardness exhibited a slight improvement, attaining 348 HV at 5 wt%. SEM and XRD analyses confirmed partial particle separation after sintering and identified the TiO2 reinforcement as rutile. Wear tests revealed that adding 1 wt% nano-TiO2 enhanced wear resistance, whereas extended sliding durations resulted in increased wear rates. Adhesive wear was the predominant mechanism, accompanied by limited abrasive wear, oxidation, and plastic deformation. Full article
(This article belongs to the Section Biomaterials)
Show Figures

Figure 1

18 pages, 7623 KB  
Review
Natural Fracturing in Marine Shales: From Qualitative to Quantitative Approaches
by Chen Zhang, Yuhan Huang, Huadong Chen and Zongquan Hu
J. Mar. Sci. Eng. 2026, 14(1), 99; https://doi.org/10.3390/jmse14010099 - 4 Jan 2026
Viewed by 324
Abstract
Natural fractures in marine shales are crucial storage spaces and migration pathways for oil and gas, making the study of their formation mechanisms and distribution patterns essential for hydrocarbon exploration and development. This review systematically evaluates the progress in natural fracture studies, transitioning [...] Read more.
Natural fractures in marine shales are crucial storage spaces and migration pathways for oil and gas, making the study of their formation mechanisms and distribution patterns essential for hydrocarbon exploration and development. This review systematically evaluates the progress in natural fracture studies, transitioning from qualitative to quantitative approaches, with a focus on the genetic mechanisms, distribution patterns, and methodological advancements of fracture types. The review finds that: (1) Integrated “geological-geophysical-dynamic” analyses significantly improve the prediction accuracy of tectonic fracture networks compared to traditional stress-field models. Bedding-parallel fracture development is primarily controlled by the interplay between diagenetic evolution and in situ stress, with their critical opening conditions now being quantifiable; (2) Crucially, the application of micro-scale in situ techniques (e.g., Laser Ablation Inductively Coupled PlasmaMass Spectrometer, laser C-O isotope analysis, carbonate U-Pb dating) has successfully decoded the geochemical signatures and absolute timing of fracture fillings, revealing multiple episodes of fluid activity directly tied to hydrocarbon migration. (3) The combined application of multiple techniques holds promise for deepening the understanding of the coupling mechanisms between fractures. The combined application of these techniques provides a robust framework for deciphering the coupling mechanisms between fracture dynamic evolution and hydrocarbon migration, offering critical insights for future exploration. Full article
Show Figures

Figure 1

14 pages, 4712 KB  
Article
Surface Engineering of Non-Equiatomic TiZrNbTaMo HEA by MAO Treatment in a Cu-Rich Electrolyte for Biomedical Applications
by Samuel P. Bonetti, Jhuliene E. M. Torrento, Carlos R. Grandini, Tiago dos S. P. de Sousa, Gerson S. de Almeida, Willian F. Zambuzzi and Diego R. N. Correa
Materials 2026, 19(1), 174; https://doi.org/10.3390/ma19010174 - 3 Jan 2026
Viewed by 205
Abstract
This study evaluated the surface functionalization of a non-equiatomic TiZrNbTaMo high-entropy alloy (HEA) by micro-arc oxidation (MAO) in Cu-rich electrolytes to tailor its performance for biomedical implants. The Cu content was varied, and the resulting coatings were investigated for their morphology, phase constitution, [...] Read more.
This study evaluated the surface functionalization of a non-equiatomic TiZrNbTaMo high-entropy alloy (HEA) by micro-arc oxidation (MAO) in Cu-rich electrolytes to tailor its performance for biomedical implants. The Cu content was varied, and the resulting coatings were investigated for their morphology, phase constitution, chemical structure, wettability, and cytocompatibility. X-ray diffraction (XRD) measurements of the substrate indicated a body-centered cubic (BCC) matrix with minor HCP features, while the MAO-treated samples depicted amorphous halo with sparse reflections assignable to CaCO3, CaO, and CaPO4. Chemical spectroscopic analyses identified the presence of stable oxides (TiO2, ZrO2, Nb2O5, Ta2O5, MoO3) and the successful incorporation of bioactive elements (Ca, P, Mg) together with traces of Cu, mainly as Cu2O. MAO treatment increased surface roughness and rendered a hydrophilic behavior, which are features typically favorable to osseointegration process. In vitro cytotoxic assays with MC3T3-E1 cells (24 h) showed that Cu addition did not induce harmful effects, maintaining or improving cell viability and adhesion compared to the controls. Collectively, MAO in Cu-rich electrolyte yielded porous, bioactive, and Cu-incorporated oxide coatings on TiZrNbTaMo HEA, preserving cytocompatibility and supporting their potential for biomedical applications like orthopedic implants and bone-fixation devices. Full article
(This article belongs to the Special Issue New Advances in High Entropy Alloys)
Show Figures

Graphical abstract

28 pages, 29078 KB  
Article
Field Performance and Wear Behavior of Atmospheric Plasma Spraying (APS) Coated Discs Used in Agricultural Disc Harrows
by Vlad Nicolae Arsenoaia, Corneliu Munteanu, Fabian Cezar Lupu, Bogdan Istrate, Marcelin Benchea and Iurie Melnic
Agriculture 2026, 16(1), 114; https://doi.org/10.3390/agriculture16010114 - 1 Jan 2026
Viewed by 230
Abstract
The wear performance of coated and uncoated harrow discs was evaluated under real agricultural field conditions in order to assess the long-term effectiveness of three atmospheric plasma spraying (APS) systems: a Cr2O3–SiO2–TiO2 ceramic coating, a WC/W [...] Read more.
The wear performance of coated and uncoated harrow discs was evaluated under real agricultural field conditions in order to assess the long-term effectiveness of three atmospheric plasma spraying (APS) systems: a Cr2O3–SiO2–TiO2 ceramic coating, a WC/W2C–Co carbide coating, and a Co–Cr–Ni–W–C alloy coating. In contrast to most previous studies focused on laboratory testing or short-term trials, the present work provides a comparative long-term field evaluation over 50 ha per disc (1000 ha total) under identical operating conditions in quartz-rich Argic Luvisol soil. Disc wear was quantified through periodic mass-loss and diameter measurements, complemented by microstructural and SEM analyses. The uncoated disc exhibited the most severe degradation, with a total mass loss of approximately 700 g and rapid acceleration of wear after the first 5–10 ha. The ceramic-coated disc showed the highest durability, limiting mass loss to approximately 390 g, corresponding to a reduction of about 44%, and maintaining the largest residual diameter after field operation. The Co-based alloy provided intermediate performance (~16% mass-loss reduction), while the carbide coating showed limited improvement (~7% reduction) due to microcracking and weak carbide–binder interfaces. The results demonstrate that, under real field conditions, coating microstructural integrity is more critical than nominal hardness, and highlight the superior effectiveness of ceramic APS coatings for extending disc service life in abrasive agricultural soils. Full article
(This article belongs to the Special Issue Soil-Machine Systems and Its Related Digital Technologies Application)
Show Figures

Figure 1

42 pages, 12068 KB  
Article
Geochemical and Radiometric Assessment of Romanian Black Sea Shelf Waters and Sediments: Implications for Anthropogenic Influence
by Irina Catianis, Mihaela Mureșan, Tatiana Begun, Adrian Teacă, Andra Bucșe, Florina Rădulescu, Florina Macau, Naliana Lupașcu, Daniela Florea, Florentina Fediuc, Sorin Ujeniuc, Radu Seremet, Silvia Ise, Iulian Andreicovici and Ana Bianca Pavel
J. Mar. Sci. Eng. 2026, 14(1), 84; https://doi.org/10.3390/jmse14010084 - 31 Dec 2025
Viewed by 347
Abstract
The Northwestern Black Sea shelf, strongly influenced by Danube discharge and coastal activities, provides an effective setting for separating lithogenic controls from localized anthropogenic inputs. We applied a multi-proxy geochemical–radiometric approach to Romanian shelf waters and surface sediments. A CTD–Rosette was used to [...] Read more.
The Northwestern Black Sea shelf, strongly influenced by Danube discharge and coastal activities, provides an effective setting for separating lithogenic controls from localized anthropogenic inputs. We applied a multi-proxy geochemical–radiometric approach to Romanian shelf waters and surface sediments. A CTD–Rosette was used to quantify nutrients, chlorophyll-a, TOC, and TN. Dissolved metals and PAHs were measured in seawater, while surface sediments were analyzed for CaCO3, TOC, trace metals, and γ-emitting radionuclides. Multivariate statistics (PCA/FA) were used to resolve the dominant environmental controls. Summer stratification was characterized by the bottom-layer maxima of PO43−, SiO44−, and NH4+ and a pronounced subsurface chlorophyll-a maximum at 12–16 m. Surface-water Σ16PAH ranged from 134 to 347 ng L−1 and was dominated by low-molecular-weight compounds, with episodic nearshore enrichment in high-molecular-weight species. In sediments, CaCO3 ranged from 7.6 to 29.9% and TOC from 0.11 to 0.96%. Trace metals were generally low. Pb and Hg peaked at nearshore station S23, whereas mean Ni (38.88 ppm) slightly exceeded the 35 ppm guideline, consistent with natural Fe/Mn-oxide association. PCA/FA identified a terrigenous axis (Fe-Al-Ti-V-Ni-Cr), a carbonate axis (CaCO3; Sr where available), and an anthropogenic factor (Pb, Hg, HMW-PAHs). γ-spectrometry provided a compatible radiometric baseline that supports the multi-proxy interpretation. Full article
(This article belongs to the Section Marine Environmental Science)
Show Figures

Figure 1

20 pages, 5227 KB  
Article
Hydrazine-Induced Sulfur Vacancies Promote Interfacial Charge Redistribution in ZnS/Gel-Derived TiO2 for Enhanced CO2 Activation and Methanation
by Zhongwei Zhang, Shuai Liu, Jiefeng Yan, Yang Meng, Dongming Hu and Fuyan Gao
Gels 2026, 12(1), 39; https://doi.org/10.3390/gels12010039 - 31 Dec 2025
Viewed by 230
Abstract
Defect engineering in semiconductor heterojunctions offers a promising route for enhancing the selectivity of photocatalytic CO2 conversion. In this work, a ZnS/gel-derived TiO2 photocatalyst featuring sulfur vacancies introduced via hydrazine hydrate (N2H4) treatment is developed. XRD, HRTEM, [...] Read more.
Defect engineering in semiconductor heterojunctions offers a promising route for enhancing the selectivity of photocatalytic CO2 conversion. In this work, a ZnS/gel-derived TiO2 photocatalyst featuring sulfur vacancies introduced via hydrazine hydrate (N2H4) treatment is developed. XRD, HRTEM, and XPS analyses confirm the formation of a crystalline heterointerface and a defect-rich ZnS surface, enabling effective interfacial electronic modulation. The optimized ZnS/gel-derived TiO2-0.48 composite achieves CH4 and CO yields of 6.76 and 14.47 μmol·g−1·h−1, respectively, with a CH4 selectivity of 31.8% and an electron selectivity of 65.1%, clearly outperforming pristine TiO2 and the corresponding single-component catalysts under identical conditions. Photoluminescence quenching, enhanced photocurrent response, and reduced charge-transfer resistance indicate significantly improved interfacial charge separation. Mott–Schottky analysis combined with optical bandgap measurements reveals pronounced interfacial charge redistribution in the composite system. Considering the intrinsic band structure of ZnS and gel-derived TiO2, a Z-scheme-compatible interfacial charge migration model is proposed, in which photogenerated electrons with strong reductive power are preferentially retained on ZnS, while holes with strong oxidative capability remain on gel-derived TiO2. This charge migration pathway preserves high redox potentials, facilitating multi-electron CO2 methanation and water oxidation. Density functional theory calculations further demonstrate that sulfur vacancies stabilize *COOH and *CO intermediates and reduce the energy barrier for *COOH formation from +0.51 eV to +0.21 eV, thereby promoting CO2 activation and CH4 formation. These results reveal that sulfur vacancies not only activate CO2 molecules but also regulate interfacial charge migration behavior. This work provides a synergistic strategy combining defect engineering and interfacial electronic modulation to enhance selectivity and mechanistic understanding in CO2-to-CH4 photoconversion. Full article
(This article belongs to the Special Issue Gels for Removal and Adsorption (3rd Edition))
Show Figures

Figure 1

21 pages, 21722 KB  
Article
V2O5-Assisted Low-Temperature Sintering and Microwave Dielectric Properties of (1 − x)Li2.08TiO3–xLi2ZnTi3O8 (x = 0.3−0.7) Ceramics for LTCC Applications
by Yu-Seon Lee and Kyoung-Ho Lee
Materials 2026, 19(1), 94; https://doi.org/10.3390/ma19010094 - 26 Dec 2025
Viewed by 436
Abstract
A new composite microwave–dielectric system, (1 − x)Li2.08TiO3-xLi2ZnTi3O8 (x = 0.3–0.7), was systematically investigated to identify the optimal composition for low-temperature co-fired ceramic (LTCC) applications by correlating sintering behavior, microstructural evolution, and microwave–dielectric properties. [...] Read more.
A new composite microwave–dielectric system, (1 − x)Li2.08TiO3-xLi2ZnTi3O8 (x = 0.3–0.7), was systematically investigated to identify the optimal composition for low-temperature co-fired ceramic (LTCC) applications by correlating sintering behavior, microstructural evolution, and microwave–dielectric properties. Although the undoped compositions exhibited excellent intrinsic dielectric performance, they required sintering at 1100 °C, making them incompatible with Ag-based LTCC processing. Among the investigated formulations, 0.6Li2.08TiO3–0.4Li2ZnTi3O8 was identified as the most suitable base composition. To reduce the sintering temperature, 0.3–1.0 wt.% V2O5 was introduced as a sintering aid, enabling densification at 900 °C for 30 min (97.0% relative density) while preserving the coexistence of Li2.08TiO3 and Li2ZnTi3O8 without XRD-detectable secondary phases. Microstructural observations indicated that V2O5 promoted liquid-phase sintering, leading to enhanced densification and Li2.08TiO3-selective abnormal grain coarsening without altering the intrinsic permittivity. Complementary dilatometry provided process-level evidence for this liquid-phase sintering mechanism: large total shrinkage at 900 °C (L/Lo≈ −17–19%), earlier Tonset/Tpeak with Tpeak lowered by ~250 °C, and an increased Rpeak, collectively supporting 900 °C/30 min as the practical firing window. The optimized 0.6Li2.08TiO3–0.4Li2ZnTi3O8 composition containing 0.3 wt.% V2O5 exhibits excellent microwave–dielectric properties (εr = 23.32, Q × f = 68,400 GHz, and τf = −1.55 ppm/°C). Higher V2O5 contents (>0.3 wt.%) caused a gradual reduction in Q × f due to increasing microstructural non-uniformity. Ag co-firing tests confirmed electrode stability with no interfacial reactions at 900 °C for 30 min. Overall, 0.3 wt.% V2O5-assisted 0.6Li2.08TiO3–0.4Li2ZnTi3O8 provides a practical sub-950 °C processing window that satisfies key LTCC requirements, including moderate permittivity, high Q × f, near-zero τf, and compatibility with Ag electrodes. Full article
(This article belongs to the Section Electronic Materials)
Show Figures

Figure 1

15 pages, 3374 KB  
Article
Photocatalytic CO2 Reduction over Cotton-like Blue C/TiO2 Nanotubes: Enhanced Performance via Structural Engineering
by Wenjing Wu, Zichao Yang, Min Zhang, Zhongjie Guan and Jianjun Yang
Nanomaterials 2026, 16(1), 35; https://doi.org/10.3390/nano16010035 - 25 Dec 2025
Viewed by 361
Abstract
Photocatalytic reduction of carbon dioxide is a very effective strategy to address the energy crisis and greenhouse effect. TiO2 is a widely used semiconductor photocatalyst, which has excellent catalytic activity, excellent chemical stability and low toxicity. Nevertheless, TiO2 still has some [...] Read more.
Photocatalytic reduction of carbon dioxide is a very effective strategy to address the energy crisis and greenhouse effect. TiO2 is a widely used semiconductor photocatalyst, which has excellent catalytic activity, excellent chemical stability and low toxicity. Nevertheless, TiO2 still has some inherent limitations, such as: wide band gap, high carrier recombination rate, and low adsorption activation ability for carbon dioxide. These drawbacks severely restrict its further application in the photocatalytic reduction of CO2. In this study, cotton-like blue C/TiO2 NTs are successfully synthesized through the in situ growth of TiO2 nanotubes on the MIL-125(Ti)-derived C/TiO2 precursor. The experimental results revealed that the CO production rate of the cotton-like blue C/TiO2 NTs was 1.84 times that of C/TiO2 and 3.78 times that of TiO2 nanotubes. These results clearly demonstrate that the cotton-like blue C/TiO2 NTs exhibit a broad spectral response, a large specific surface area, and an abundance of oxygen vacancies. This research provides new insights into the design of titanium dioxide-based photocatalytic materials and opens up a promising avenue for enhancing the performance of titanium dioxide in the photocatalytic reduction of carbon dioxide. Full article
(This article belongs to the Special Issue Heterogeneous Photocatalysts Based on Nanocomposites (Second Edition))
Show Figures

Figure 1

14 pages, 3206 KB  
Article
Microstructured Coatings and Surface Functionalization of Poly(caprolactone-co-lactide) Using Gas-Permeable Mold
by Mano Ando, Naoto Sugino, Yoshiyuki Yokoyama, Nur Aliana Hidayah Mohamed and Satoshi Takei
Coatings 2026, 16(1), 10; https://doi.org/10.3390/coatings16010010 - 20 Dec 2025
Viewed by 308
Abstract
Low-melting bioabsorbable polymers, such as poly(caprolactone-co-lactide) (PCLA), hold significant promise for biomedical applications. However, achieving high-precision micro- and nanotopographical functionalization remains a formidable challenge due to the material’s susceptibility to thermal deformation during conventional thermal molding processes. In this study, functional microstructured PCLA [...] Read more.
Low-melting bioabsorbable polymers, such as poly(caprolactone-co-lactide) (PCLA), hold significant promise for biomedical applications. However, achieving high-precision micro- and nanotopographical functionalization remains a formidable challenge due to the material’s susceptibility to thermal deformation during conventional thermal molding processes. In this study, functional microstructured PCLA coatings were engineered via low-temperature nanoimprint lithography utilizing a TiO2–SiO2 gas-permeable mold. These molds were synthesized via a sol–gel method utilizing titanium dioxide and silicon precursors. The gas-permeable nature of the mold facilitated the efficient evacuation of trapped air and volatiles during the imprinting process, enabling the high-fidelity replication of microstructures (1.3 μm height, 3 μm pitch) and nanostructured PCLA coatings featuring linewidths as narrow as 600 nm. The resultant microstructured PCLA coatings demonstrated modulated surface wettability, evidenced by an increase in water contact angles from 70.1° to 91.4°, and exhibited enhanced FD4 elution kinetics. These results confirm morphology-driven functionalities, specifically hydrophobicity and controlled release capabilities. Collectively, these findings underscore the efficacy of this microfabrication approach for polycaprolactone-based materials and highlight its potential to catalyze the development of high-value-added biomaterials for advanced medical and life science applications. This study establishes a foundational framework for the practical deployment of next-generation bioabsorbable materials and is anticipated to drive innovation in precision medical manufacturing. Full article
(This article belongs to the Section Functional Polymer Coatings and Films)
Show Figures

Figure 1

35 pages, 9651 KB  
Article
Thermal, Mechanical, and Barrier Properties of PHBV Nanocomposites via TiO2 Incorporation for Sustainable Food Packaging
by Karlo Grgurević, Martina Miloloža Nikolić, Dajana Kučić Grgić and Vesna Ocelić Bulatović
Polymers 2026, 18(1), 11; https://doi.org/10.3390/polym18010011 - 19 Dec 2025
Viewed by 502
Abstract
Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) is a biodegradable polyester considered for food packaging, though its mechanical and barrier limitations pose challenges. This study assessed PHBV/TiO2 nanocomposites for packaging applications. Differential scanning calorimetry revealed reduced crystallinity and lower melting points with an increase in TiO2 [...] Read more.
Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) is a biodegradable polyester considered for food packaging, though its mechanical and barrier limitations pose challenges. This study assessed PHBV/TiO2 nanocomposites for packaging applications. Differential scanning calorimetry revealed reduced crystallinity and lower melting points with an increase in TiO2 content. Thermal stability improved at 1% and 3% TiO2, raising onset temperatures to 283 °C and 284 °C, respectively. Scanning electron microscopy and FTIR confirmed uniform nanoparticle dispersion without agglomeration. Tensile tests showed decreasing strength and modulus from 1% to 7% TiO2, with peak elongation at 3%, whereas viscosity behavior declined with higher nanoparticle loading. Low portions of nanoparticles (1% and 3%) induced the improvement in barrier properties against oxygen and water vapor. The highest biodegradation rate occurred at 7% TiO2. Overall, the nanocomposites’ properties tend to deteriorate with the addition of higher portions of TiO2. Thus, despite some improvements, the nanocomposites did not deliver consistent, multi-property enhancements to justify use in food packaging. Key metrics like sealability and appearance were not evaluated. Future research should explore surface-treated TiO2, alternative fillers, compatibilizers, and optimized processing, alongside standardized safety assessments for food-contact applications. Full article
(This article belongs to the Special Issue Applications of Biopolymer-Based Composites in Food Technology)
Show Figures

Figure 1

Back to TopTop