Geochemical and Radiometric Assessment of Romanian Black Sea Shelf Waters and Sediments: Implications for Anthropogenic Influence
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling
2.3. Hydrographic Profiling and Water Collection
2.3.1. Nutrients (PO43−, SiO44−, NO2−, NO3−, NH4+)
- Phosphate (PO43−): Formation of phosphomolybdate in an acid medium and reduction with ascorbic acid to a blue complex; absorbance at 880 nm (PerkinElmer Lambda 35 UV-VIS);
- Silicate (SiO44−): Silicomolybdate method with ascorbic acid reduction; absorbance at 810 nm for low to moderate concentrations or 660 nm for high concentrations;
- Nitrite (NO2−): Diazotization with sulfanilamide and coupling with N-(1-naphthyl) ethylenediamine; absorbance at 540 nm; linear range 0–10 µmol L−1;
- Nitrate (NO3−): Homogeneous reduction to nitrite with hydrazine sulfate in the presence of Cu2+, followed by the nitrite procedure above (measurement at 540 nm). Results represent (NO3− + NO2−); nitrite was measured separately and subtracted;
- Ammonium (NH4+): Indophenol blue formation from monochloramine in moderately alkaline medium (pH 8–11.5) with phenol and nitroprusside; absorbance at 630 nm.
2.3.2. Chlorophyll-a
2.3.3. Total Organic Carbon (TOC) and Total Nitrogen (TN)
2.3.4. Dissolved Mercury (Hg)
2.3.5. Dissolved Metals by ICP-MS
2.3.6. Dissolved PAHs by UPLC-FLD
2.4. Surface Sediments: Collection, Preservation, and Analyses
2.4.1. Carbonates and Total Organic Carbon (TOC)
- Calcium carbonate (CaCO3): Determined volumetrically from CO2 released upon acidification with 0.5 N HCl and back-titration of excess acid with 0.5 N NaOH using phenolphthalein, after Black [41];
- Sedimentary oxidizable organic carbon (modified Walkley–Black). A known mass of dried, sieved sediment was subjected to wet oxidation with excess K2Cr2O7 in concentrated H2SO4 (with Ag2SO4 to suppress chloride interference). The exothermic heat of acid dilution (with gentle external heating as needed) sustained the reaction for 30 min. Residual dichromate was back-titrated with 0.5 N Fe(NH4)2(SO4)2 (Mohr’s salt) using an o-phenanthroline/ferroin or diphenylamine(/-sulfonate) redox indicator. Reagent blanks and certified reference material (e.g., SRM 2702) were processed in parallel; organic carbon was calculated from dichromate consumption and corrected using a laboratory recovery factor derived from CRMs to account for incomplete oxidation of refractory carbon in the classical procedure. Results are reported as TOC (%C). Where organic matter (OM) was needed, OM was derived from OC using an accepted conversion factor (e.g., OM = 1.724 × OC). Highly calcareous samples were pre-treated with dilute HCl to remove carbonates prior to oxidation.
2.4.2. Major, Minor, and Trace Elements, Total Hg
2.4.3. Sedimentary PAHs (QuEChERS-Type Extraction; UPLC-FLD)
2.4.4. Gamma Ray Spectrometry of Sediments
- -
- 52Cr(n, 2n)51Cr: 320.08 keV;
- -
- 40Ca(n, p)40K: 1460.82 keV;
- -
- 27Al(n, γ)28Al: 1778.99 keV;
- -
- 28Si(n, p)28Al: 1778.99 keV;
- -
- 48Ti(n, n′γ)48Ti: 1037.54 keV; 48Ti(n, p)48Sc: 983.53 & 1312.12 keV;
- -
- 51V(n, γ)52V: 1434.06 keV; 51V(n, p)51Ti: 320.08 keV; 51V(n, α)48Sc: 983.53 & 1312.12 keV;
- -
- 55Mn(n, γ)56Mn: 375.18, 846.76 keV;
- -
- 56Fe(n, n′γ)56Fe 846.76 keV; 56Fe(n, γ)57Fe: 692.03 keV; 56Fe(n, p)56Mn: 375.18 keV;
- -
- 58Ni(n, p)58Co: 810.76 keV; 60Ni(n, γ)61Ni: 282.96 & 656.01 keV;
- -
- 63Cu(n, γ)64Cu: 1345.77 keV;
- -
- 64Zn(n, 2n)63Zn: 669.64 & 962.07 keV; 64Zn(n, α)61Ni: 282.96 & 656.01 keV;
- -
- 75As(n, γ)76As: 559.09 keV;
- -
- 88Sr(n, n′γ)88Sr 1836.06 keV;
- -
- 202Hg(n, γ)203Hg: 341.5 & 591.4 keV;
- -
- 208Pb(n, p)208Tl: 583.19 & 2614.51 keV;
- -
- 113Cd(n, γ)114Cd: 558.46 & 805.89 keV;
- -
- 139La(n, γ)140La: 1596.21 keV;
- -
- 190Os(n, γ)191Os: 129.43 keV;
- -
- 209Bi(n, γ)210Bi: 265.60 keV.
2.5. Quality Assurance and Quality Control (QA/QC)
2.6. Statistical Analysis
3. Results
3.1. Water Analysis
3.1.1. Nutrients, Chlorophyll-a, Total Organic Carbon (TOC), and Total Nitrogen (TN)
3.1.2. Dissolved Metals in Surface Waters
3.1.3. Dissolved Organic Contaminants (PAHs) in Surface Waters
3.2. Sediment Characterization (Surface Layer)
3.2.1. Carbonates and Total Organic Carbon (TOC)
3.2.2. Major and Trace Elements
- Pb: 13.1–25.66 ppm, maximum at S23 (nearshore);
- As: 4.88–10.9 ppm, maximum at S05 (closest to shore);
- Hg: 0.016–0.090 ppm, maximum at S23 (nearshore).
3.2.3. Polycyclic Aromatic Hydrocarbons (PAHs) in Sediments
- Indeno(1,2,3-cd) pyrene = 10.54 µg kg−1 at S01;
- Dibenzo[a,h]anthracene = 9.10 µg kg−1 at S13;
- elevated benzo(b)fluoranthene at S13–S20.
3.2.4. Gamma Spectrometric Measurements
3.3. Radiometric Results in the Multi-Proxy Context
4. Discussion
4.1. Hydrography, Nutrients, and Organic Matter: Danube Forcing, Coastal Regeneration, and Interannual Context
4.2. Dissolved Metals in Surface Waters: Nearshore Enrichment on a Low-Hg Background
4.3. Surface-Sediment Geochemistry: Terrigenous Control, Carbonate Dilution, and Localized Hotspots
4.3.1. Metal Carriers and Source Context
4.3.2. Concentrations in This Study and Comparison with Romanian Monitoring over Time
4.3.3. Black Sea Regional Context and the Ni “Background” Issue
4.4. PAHs in Water and Sediments: Petrogenic Dominance with Local Pyrogenic Pulses
4.5. Radiometric Constraints: Role and Limits in Coastal Matrices
4.6. Synthesis: A Three-Axis Environmental Signature Supported by Correlations
4.7. Limitations and Outlook
4.8. Mechanistic Interpretation of the Multivariate Structure
5. Conclusions
Implications for Monitoring and Management
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Calvert, S.E. The mineralogy and geochemistry of near-shore sediments. In Chemical Oceanography, 2nd ed.; Riley, J.P., Chester, R., Eds.; Academic Press: London, UK, 1976; Volume 6, pp. 187–280. [Google Scholar]
- Karageorgis, A.P.; Kourafalou, V.H.; Anagnostou, C.; Tsiaras, K.P.; Raitsos, D.E.; Papadopoulos, V.; Papadopoulos, A. River-induced particle distribution in the northwestern Black Sea (September 2002 and 2004). J. Geophys. Res. 2009, 114, C12003. [Google Scholar] [CrossRef]
- European Commission. EU Marine Strategy Framework Directive (MSFD). Available online: https://research-and-innovation.ec.europa.eu/research-area/environment/oceans-and-seas/eu-marine-strategy-framework-directive_en (accessed on 14 December 2025).
- Krutov, A. (Ed.) BSC State of the Environment of the Black Sea (2009–2014/5); Publications of the Commission on the Protection of the Black Sea Against Pollution (BSC): Istanbul, Turkey, 2019. [Google Scholar]
- Strokal, M.; Strokal, V.; Kroeze, C. The future of the Black Sea: More pollution in over half of the rivers. Ambio 2023, 52, 339–356. [Google Scholar] [CrossRef] [PubMed]
- Cozzi, S.; Ibáñez, C.; Lazar, L.; Raimbault, P.; Giani, M. Flow regime and nutrient-loading trends from the largest South European watersheds: Implications for the productivity of Mediterranean and Black Sea coastal areas. Water 2018, 11, 1. [Google Scholar] [CrossRef]
- Oaie, G.; Secrieru, D. Black Sea Basin: Sediment types and distribution. Sedimentation processes. GeoEcoMarina 2004, 9–10, 31–44. [Google Scholar]
- Wang, H.; Fan, Z.; Kuang, Z.; Yuan, Y.; Liu, H.; Huang, H. Heavy metals in marine surface sediments of Daya Bay, southern China: Spatial distribution, source apportionment, and ecological risk assessment. Front. Environ. Sci. 2021, 9, 755873. [Google Scholar] [CrossRef]
- Robu, B.; Jitar, O.; Teodosiu, C.; Strungaru, S.-A.; Nicoara, M.; Plavan, G. Environmental impact and risk assessment of the main pollution sources from the Romanian Black Sea coast. Environ. Eng. Manag. J. 2015, 14, 331–340. [Google Scholar] [CrossRef]
- Readman, J.W.; Fillmann, G.; Tolosa, I.; Bartocci, J.; Villeneuve, J.-P.; Cattini, C.; Mee, L.D. Petroleum and PAH contamination of the Black Sea. Mar. Pollut. Bull. 2002, 44, 48–62. [Google Scholar] [CrossRef] [PubMed]
- Fillmann, G.; Readman, J.W.; Tolosa, I.; Bartocci, J.; Villeneuve, J.-P.; Cattini, C.; Mee, L.D. Persistent organochlorine residues in sediments from the Black Sea. Mar. Pollut. Bull. 2002, 44, 122–133. [Google Scholar] [CrossRef] [PubMed]
- Țigănuș, D.; Coatu, V.; Lazăr, L.; Oros, A.; Spînu, A.D. Identification of the sources of polycyclic aromatic hydrocarbons in sediments from the Romanian Black Sea sector. Cercet. Mar.—Rech. Mar. 2013, 43, 187–196. [Google Scholar]
- Nemirovskaya, I.; Khramtsova, A.V.; Zavialov, P.O. Hydrocarbons in waters and bottom sediments of the coastal areas of the Caucasian sector of the Black Sea (2021–2023). Mar. Pollut. Bull. 2024, 208, 116949. [Google Scholar] [CrossRef] [PubMed]
- Bucșe, A.; Pârvulescu, O.C.; Vasiliu, D.; Rădulescu, F.; Lupașcu, N.; Ispas, B.A. Spatial distribution of trace elements and potential contamination sources for surface sediments of the North-Western Black Sea, Romania. Front. Mar. Sci. 2024, 10, 1310164. [Google Scholar] [CrossRef]
- Soloveva, O.; Tikhonova, E.; Alyomov, S.; Mirzoeva, N.; Skuratovskaya, E.; Matishov, G.; Egorov, V. Distribution and genesis of aliphatic hydrocarbons in bottom sediments of coastal water areas of the Crimea (the Black and Azov Seas). Water 2024, 16, 2395. [Google Scholar] [CrossRef]
- Ristea, E.; Pârvulescu, O.C.; Lavric, V.; Oros, A. Assessment of heavy metal contamination of seawater and sediments along the Romanian Black Sea coast: Spatial distribution and environmental implications. Sustainability 2025, 17, 2586. [Google Scholar] [CrossRef]
- Asih, A.S.; Zamroni, A.; Alwi, W.; Sagala, S.T.; Putra, A.S. Assessment of heavy metal concentrations in seawater in the coastal areas around Daerah Istimewa Yogyakarta Province, Indonesia. Iraqi Geol. J. 2022, 55, 14–22. [Google Scholar] [CrossRef]
- González-Fernández, D.; Garrido-Pérez, M.C.; Nebot-Sanz, E.; Sales-Márquez, D. Source and fate of heavy metals in marine sediments from a semi-enclosed deep embayment subjected to severe anthropogenic activities. Water Air Soil Pollut. 2011, 221, 191–202. [Google Scholar] [CrossRef]
- Cociasu, A.; Dorogan, L.; Humborg, C.; Popa, L. Long-term ecological changes in Romanian coastal waters of the Black Sea. Mar. Pollut. Bull. 1996, 32, 32–38. [Google Scholar] [CrossRef]
- Ministry of Environment and Water Management (MMGA). Order No. 161/2006 on the Approval of the Norm Regarding the Classification of Surface Water Quality to Establish the Ecological Status of Water Bodies. Official Gazette of Romania, Part I, No. 511 bis. 13 June 2006. Available online: https://legislatie.just.ro/Public/DetaliiDocumentAfis/72574 (accessed on 28 November 2025).
- Kuroki, K.; Goda, Y.; Panin, N.; Stănică, A.; Diaconeasa, D.I.; Babu, G. Beach erosion and coastal protection plan along the southern Romanian Black Sea shore. In Proceedings of the International Conference on Coastal Engineering, San Diego, CA, USA, 3–8 September 2006. [Google Scholar]
- Panin, N. On the geomorphologic and geologic evolution of the River Danube–Black Sea interaction zone. GeoEcoMarina 1997, 2, 31–40. [Google Scholar]
- Panin, N. Global changes, sea level rise and the Danube Delta: Risks and response. GeoEcoMarina 1999, 4, 19–29. [Google Scholar]
- Rusu, E.; Onea, F. Evaluation of the wind and wave energy along the Caspian Sea. Energy 2013, 50, 1–14. [Google Scholar] [CrossRef]
- Levin, L.A.; Boesch, D.F.; Covich, A.; Dahm, C.; Erséus, C.; Ewel, K.C.; Kneib, R.T.; Moldenke, A.; Palmer, M.A.; Snelgrove, P.; et al. The function of marine critical transition zones and the importance of sediment biodiversity. Ecosystems 2001, 4, 430–451. [Google Scholar] [CrossRef]
- Snelgrove, P.V.R.; Thrush, S.F.; Wall, D.H.; Norkko, A. Real-world biodiversity–ecosystem functioning: A seafloor perspective. Trends Ecol. Evol. 2014, 29, 398–405. [Google Scholar] [CrossRef] [PubMed]
- Gomoiu, M.-T. Some remarks concerning the evaluation of ecological diversity at the Romanian Black Sea coast. In Conservation of the Biological Diversity as a Prerequisite for Sustainable Development in the Black Sea Region (NATO ASI Series 2); Springer: Dordrecht, The Netherlands, 1998; pp. 77–93. (accessed on 28 November 2025). [Google Scholar] [CrossRef]
- Airoldi, L.; Bulleri, F. Anthropogenic disturbance can determine the magnitude of opportunistic species responses on marine urban infrastructures. PLoS ONE 2011, 6, e22985. [Google Scholar] [CrossRef]
- López, S.; Miralles, L.; Arias, A.; Turrero, P.; Micu, D.; Borrell, Y.J. Mitochondrial DNA analysis reveals gene drift and structuring in the declining European piddock Pholas dactylus (L., 1758) confirming high vulnerability. Reg. Stud. Mar. Sci. 2021, 43, 101688. [Google Scholar] [CrossRef]
- Surugiu, V.; Teacă, A.; Șvedu, I.; Quijón, P.A. A hotspot in the Romanian Black Sea: Eelgrass beds drive local biodiversity in surrounding bare sediments. Front. Mar. Sci. 2021, 8, 745137. [Google Scholar] [CrossRef]
- Begun, T.; Teacă, A.; Mureșan, M.; Vasiliu, D.; Secrieru, D.; Pavel, B. Environmental assessment of two MPAs from the Romanian Black Sea coast. J. Environ. Prot. Ecol. 2018, 19, 573–582. [Google Scholar]
- Begun, T.; Teacă, A.; Mureșan, M.; Quijón, P.A.; Menabit, S.; Surugiu, V. Habitat and macro-zoobenthic diversity in marine protected areas of the Southern Romanian Black Sea coast. Front. Mar. Sci. 2022, 9, 845507. [Google Scholar] [CrossRef]
- Marin, O.A.; Timofte, F.; Filimon, A.; Croitoru, A.M.; van Broekhoven, W.; Harper, C.; van Zummeren, R. An integrative approach to assess and map Zostera noltei meadows along the Romanian Black Sea coast. J. Mar. Sci. Eng. 2024, 12, 2346. [Google Scholar] [CrossRef]
- Teacă, A.; Mureșan, M.; Menabit, S.; Bucșe, A.; Begun, T. Assessment of Romanian circalittoral soft-bottom benthic habitats under Danube River influence. Reg. Stud. Mar. Sci. 2020, 40, 101523. [Google Scholar] [CrossRef]
- Lazăr, L.; Vlaş, O.; Pantea, E.; Boicenco, L.; Marin, O.; Abaza, V.; Filimon, A.; Bisinicu, E. Black Sea eutrophication: Comparative analysis of intensity between coastal and offshore waters. Sustainability 2024, 16, 5146. [Google Scholar] [CrossRef]
- Grasshoff, K.; Kremling, K.; Ehrhardt, M. Methods of Seawater Analysis, 3rd ed.; Wiley-VCH: Weinheim, Germany, 1999; 632p. [Google Scholar]
- Aminot, A.; Rey, F. Chlorophyll-a: Determination by spectroscopic methods. ICES Tech. Mar. Environ. Sci. 2002, 30, 1–18. [Google Scholar]
- Jeffrey, S.W.; Humphrey, G.F. New spectrophotometric equations for chlorophylls a, b and c in higher plants, algae and natural phytoplankton. Biochem. Physiol. Pflanz. 1975, 167, 191–194. [Google Scholar] [CrossRef]
- Chizhova, T.; Hayakawa, K.; Tishchenko, P.; Nakase, H.; Koudryashova, Y. Distribution of PAHs in the northwestern part of the Japan Sea. Deep-Sea Res. Part II Top. Stud. Oceanogr. 2013, 86–87, 19–24. [Google Scholar] [CrossRef]
- ISO 5667-1:2023; Water Quality—Sampling—Part 1: Guidance on the Design of Sampling Programmes and Sampling Techniques. ISO: Geneva, Switzerland, 2023. Available online: https://www.iso.org/standard/84099.html (accessed on 28 November 2025).
- Black, C.A. (Ed.) Methods of Soil Analysis. Part 2: Chemical and Microbiological Properties; American Society of Agronomy: Madison, WI, USA, 1965. [Google Scholar]
- Wu, L.; He, Q.; Zhang, J.; Li, Y.; Yang, W.; Sun, C. QuEChERS with ultrasound-assisted extraction combined with high-performance liquid chromatography for the determination of 16 polycyclic aromatic hydrocarbons in sediment. J. AOAC Int. 2021, 104, 1255–1263. [Google Scholar] [CrossRef] [PubMed]
- Suvăilă, R.; Ujeniuc, S.; Scrieciu, A.; Pojar, I.; Alexandrescu, B. Methodology for regularity studies by precision environmental gamma ray spectrometry. Int. J. Environ. Sci. Technol. 2025, 22, 6265–6276. [Google Scholar] [CrossRef]
- Suvăilă, R.; Stancu, E.; Sima, O. On within-sample homogeneity testing using gamma-ray spectrometry. Appl. Radiat. Isot. 2012, 70, 2144–2148. [Google Scholar] [CrossRef]
- Suvăilă, R.; Osvath, I.; Sima, O. Improving the assessment of activity in samples with non-uniform distribution using the sum peak count rate. Appl. Radiat. Isot. 2013, 81, 76–80. [Google Scholar] [CrossRef] [PubMed]
- Clisu, C.; Gheorghe, I.; Filipescu, D.; Renstrøm, T.; Açıksöz, E.; Boromiza, M.; Florea, N.; Gosta, G.; Ionescu, A.; Krzysiek, M.; et al. Cross section measurements of low-energy charged particle induced reactions using moderated neutron counter arrays. EPJ Web Conf. 2023, 284, 01015. [Google Scholar] [CrossRef]
- Söderström, P.-A.; Matei, C.; Capponi, L.; Açıksöz, E.; Balabanski, D.L.; Mitu, I.-O. Characterization of a plutonium–beryllium neutron source. Appl. Radiat. Isot. 2021, 167, 109441. [Google Scholar] [CrossRef]
- Sandia National Laboratories. Interspec. Available online: https://github.com/sandialabs/Interspec (accessed on 27 November 2025).
- Andreicovici, I.; Seremet, R.; Ise, S.; Ujeniuc, S.; Pojar, I.; Suvăilă, R. Development of an automated method for analysis of environmental gamma spectra collected with HPGe detectors. HNPS Adv. Nucl. Phys. 2025, 1, 26–29. [Google Scholar] [CrossRef]
- Suvăilă, R.; Sima, O. Complex gamma-ray spectra analysis. Rom. Rep. Phys. 2011, 63, 975–987. [Google Scholar]
- Gurău, D.; Stângă, D.; Done, L.; Sima, O.; Ilie, G. Calibrating GESPECOR model of computing the full-energy peak efficiency of coaxial high-purity germanium detectors by Monte Carlo simulation. Appl. Radiat. Isot. 2024, 204, 111135. [Google Scholar] [CrossRef]
- Sima, O.; Gurău, D. Pb-210 in volume samples: Self-attenuation and scattering problems. Appl. Radiat. Isot. 2025, 226, 112165. [Google Scholar] [CrossRef]
- Batur, J.; Sudac, D.; Meric, I.; Valković, V.; Nađ, K.; Obhođaš, J. Determining the minimum detection limit of methane hydrate using associated alpha particle technique. J. Mar. Sci. Eng. 2025, 13, 1050. [Google Scholar] [CrossRef]
- Pavel, B.; Ujeniuc, S.; Iordache, G.; Catianis, I.; Gavrilă, C.; Scrieciu, A.; Seremet, R.; Andreicovici, I.; Ise, S.; Suvăilă, R. Gamma-ray analysis of reed samples from the Danube Delta. Sensors 2025, 25, 3257. [Google Scholar] [CrossRef] [PubMed]
- Pojar, I.; Ujeniuc, S.; Catianis, I.; Alexandrescu, B.; Scrieciu, A.M.; Vasilca, S.; Suvăilă, R. Gamma spectrometric analysis of lower Danube samples from Romania. Nucl. Technol. Radiat. Protect. 2024, 39, 226–233. [Google Scholar] [CrossRef]
- Olacel, A.; Ujeniuc, S.; Suvăilă, R.; Alexandrescu, B.; Pojar, I. Isotopic patterns via neutron irradiation and gamma spectrometry of environmental samples. Chem. Phys. Impact 2022, 4, 100065. [Google Scholar] [CrossRef]
- Seremet, R.; Andreicovici, I.; Ise, S.; Suvăilă, R. Project Black: From the Black Forest to the Black Sea—Harmonized gamma-ray analysis for dating and tracking radionuclides and pollutants in sediments from the Danube River. Appl. Radiat. Isot. 2025, 225, 111997. [Google Scholar] [CrossRef]
- Chiroșcă, A.; Suvăilă, R.; Sima, O. Monte Carlo simulation by GEANT4 and GESPECOR of in situ gamma-ray spectrometry measurements. Appl. Radiat. Isot. 2013, 81, 87–91. [Google Scholar] [CrossRef]
- Suvăilă, R. Threshchronic: Concept proposal for a fuzzy Bayesian tool for health support. Nucl. Technol. Radiat. Protect. 2025, 40, 73–78. [Google Scholar] [CrossRef]
- Boromiza, M.; Borcea, C.; Dessagne, P.; Ghita, D.; Glodariu, T.; Henning, G.; Kerveno, M.; Mărginean, N.; Mihai, C.; Mihai, R.; et al. Nucleon inelastic scattering cross sections on 16O and 28Si. Phys. Rev. C 2020, 101, 024604. [Google Scholar] [CrossRef]
- Lica, R.; Rotaru, F.; Borge, M.J.G.; Grévy, S.; Negoita, F.; Poves, A.; Sorlin, O.; Andreyev, A.N.; Borcea, R.; Costache, C.; et al. Normal and intruder configurations in 34Si populated in the β− decay of 34Mg and 34Al. Phys. Rev. C 2019, 100, 034306. [Google Scholar] [CrossRef]
- Daniel, T.; Kisyov, S.; Regan, P.H.; Mărginean, N.; Podolyak, Z.; Mărginean, R.; Nomura, K.; Rudigier, M.; Mihai, R.; Werner, V.; et al. γ-ray spectroscopy of low-lying excited states and shape competition in 194Os. Phys. Rev. C 2017, 95, 024328. [Google Scholar] [CrossRef]
- Sharma, M.; Papanastassiou, D.A.; Wasserburg, G.J. The concentration and isotopic composition of osmium in the oceans. Geochim. Cosmochim. Acta 1997, 61, 3287–3299. [Google Scholar] [CrossRef]
- Casten, R.F.; von Brentano, P. An extensive region of O(6)-like nuclei near A = 130. Phys. Lett. B 1985, 152, 22–28. [Google Scholar] [CrossRef]
- Herrmann, H.; Nolde, J.; Berger, S.; Heise, S. Aquatic ecotoxicity of lanthanum—A review and an attempt to derive water and sediment quality criteria. Ecotoxicol. Environ. Saf. 2016, 124, 213–228. [Google Scholar] [CrossRef]
- Roberts, O.J.; Niţă, C.R.; Bruce, A.M.; Mărginean, N.; Bucurescu, D.; Deleanu, D.; Filipescu, D.; Florea, N.M.; Gheorghe, I.; Ghiţă, D.; et al. E3 and M2 transition strengths in 209Bi. Phys. Rev. C 2016, 93, 014309. [Google Scholar] [CrossRef]
- National Nuclear Data Center (NNDC). Available online: https://www.nndc.bnl.gov (accessed on 27 November 2025).
- Anderson, M.J.; Gorley, R.N.; Clarke, K.R. PERMANOVA+ for PRIMER: Guide to Software and Statistical Methods; PRIMER-E: Plymouth, UK, 2008. [Google Scholar]
- Ocean Data View (ODV). Available online: https://odv.awi.de/software/download/ (accessed on 27 November 2025).
- PAST—Paleontological Statistics Software. Available online: https://past.en.lo4d.com/download (accessed on 21 August 2025).
- Dinu, I.; Bajo, M.; Lorenzetti, G.; Umgiesser, G.; Zaggia, L.; Maximov, G.; Stănică, A. Discussion concerning the current circulation along the Romanian Black Sea coast. Geo-Eco-Marina 2013, 19, 17–38. [Google Scholar]
- Emelyanov, E.M.; Shimkus, K.M. Main features of the geochemistry and sedimentology of the Mediterranean Sea. In Geochemistry and Sedimentology of the Mediterranean Sea; Springer: Dordrecht, The Netherlands, 1986. [Google Scholar] [CrossRef]
- Humborg, C.; Ittekkot, V.; Cociasu, A.; Bodungen, B. Effect of Danube River dam on Black Sea biogeochemistry and ecosystem structure. Nature 1997, 386, 385–388. [Google Scholar] [CrossRef]
- Cociasu, A.; Popa, L. Significant changes in Danube nutrient loads and their impact on the Romanian Black Sea coastal waters. Cercet. Mar. 2004, 35, 43–68. [Google Scholar]
- Ragueneau, O.; Lancelot, C.; Egorov, V.; Roubeix, V.; Schrimm, M.; Dandois, J.-M. Biogeochemical transformations of inorganic nutrients in the mixing zone between the Danube River and the north-western Black Sea. Mar. Ecol. Prog. Ser. 2002, 238, 17–30. [Google Scholar] [CrossRef]
- Lazar, L.; Spanu, A.; Boicenco, L.; Oros, A.; Damir, N.; Bisinicu, E.; Abaza, V.; Filimon, A.; Harcota, G.; Marin, O.; et al. Methodology for prioritizing marine environmental pressures under various management scenarios in the Black Sea. Front. Mar. Sci. 2024, 11, 1388877. [Google Scholar] [CrossRef]
- Dragomir, A.; Vuta, L.; Petrescu, M.; Stoian, V. Water quality in the coastal zone of the Black Sea and the phenomenon of massive algae development. Sci. Bull. Politeh. Univ. Timis. 2014, 59, 2. [Google Scholar]
- Trapp-Müller, G.; Aller, R.C.; Sluijs, A.; Middelburg, J.J. Silicate weathering and diagenetic reaction balances in deltaic muds. Am. J. Sci. 2025, 325, 10. [Google Scholar] [CrossRef]
- Cociasu, A.; Lazar, L.; Varga, E.; Vasiliu, D. Recent data concerning evolution of the eutrophication level indicators in Romanian seawater. J. Environ. Prot. Ecol. 2009, 10, 701–731. [Google Scholar]
- Yunev, O.A.; Carstensen, J.; Moncheva, S.; Khaliulin, A.; Aeligrtebjerg, G.; Nixon, S. Nutrient and phytoplankton trends on the western Black Sea shelf in response to cultural eutrophication and climate changes. Estuar. Coast. Shelf Sci. 2007, 74, 63–76. [Google Scholar] [CrossRef]
- Lazăr, L.; Boicenco, L.; Coatu, V.; Oros, A.; Tigănus, D.; Mihailov, M.E. Nutrient levels and eutrophication of the Romanian Black Sea waters (2006–2011)—Assessment related to the Marine Strategy Framework Directive implementation. Cercet. Mar. 2013, 43, 162–173. [Google Scholar]
- Tan, I.; Atabay, H.; Aslan, E.; Mantıkcı, M.; Ergün Taşkın, E.; Kurt, G.; Polat Beken, C. Comparative assessment of eutrophication in the southern Black Sea using TRIX, BEAST, and NEAT. Reg. Stud. Mar. Sci. 2025, 91, 104538. [Google Scholar] [CrossRef]
- Lazar, L. ANEMONE Deliverable 2.1 “Impact of the Rivers on the Black Sea Ecosystem”; CD Press: Bucharest, Romania, 2021; p. 225. [Google Scholar]
- Ristea, E.; Bisinicu, E.; Lavric, V.; Parvulescu, O.C.; Lazar, L. A long-term perspective of seasonal shifts in nutrient dynamics and eutrophication in the Romanian Black Sea coast. Sustainability 2025, 17, 1090. [Google Scholar] [CrossRef]
- Varenik, A.V.; Myslina, M.A.; Tarasevich, D.V. Atmospheric input of silica in Crimea and factors affecting it. Ecol. Saf. Coast. Shelf Zones Sea 2023, 1, 77–90. [Google Scholar]
- Pakhomova, S.; Vinogradova, E.; Yakusheva, E.; Zatsepin, A.; Shtereva, G.; Chasovnikov, V.; Podymov, O. Interannual variability of the Black Sea proper oxygen and nutrients regime: The role of climatic and anthropogenic forcing. Estuar. Coast. Shelf Sci. 2014, 140, 134–145. [Google Scholar] [CrossRef]
- Alkan, A.; Serdar, S.; Fidan, D.; Akbas, U.; Zegin, B.; Kilic, M.B. Spatial, temporal, and vertical variability of nutrients in the southeastern Black Sea. Chemosphere 2022, 302, 134809. [Google Scholar] [CrossRef]
- Yakushev, E.V.; Chasovnikov, V.K.; Debolskaya, E.I.; Egorov, A.V.; Makkaveev, P.N.; Pakhomova, S.V.; Podymov, O.I.; Yakubenko, V.G. The northeastern Black Sea redox zone: Hydrochemical structure and its temporal variability. Deep Sea Res. Part II Top. Stud. Oceanogr. 2006, 53, 1769–1786. [Google Scholar] [CrossRef]
- Lee, J.; An, S. High ammonium recycling in an anthropogenically altered Yeongsan River Estuary, South Korea. Front. Mar. Sci. 2022, 9, 1017434. [Google Scholar] [CrossRef]
- Vasiliu, D.; Bucse, A.; Rădulescu, F.; Fediuc, F.; Balan, S. Surface and Vertical Nutrient Profiles in the Northwestern Black Sea: Trends, Comparisons, and Sample Preservation Assessment. J. Mar. Sci. Eng. 2025, 13, 2178. [Google Scholar] [CrossRef]
- Yunker, M.B.; Macdonald, R.W.; Vingarzan, R.; Mitchell, R.H.; Goyette, D.; Sylvestre, S. PAHs in the Fraser River Basin: A Critical Appraisal of PAH Ratios as Indicators of PAH Source and Composition. Org. Geochem. 2002, 33, 489–515. [Google Scholar] [CrossRef]
- Bucse, A.; Pârvulescu, O.C.; Vasiliu, D.; Lupașcu, N.; Voica, C. Levels of Heavy Metal Concentration in Mytilus galloprovincialis from the NW Black Sea (Romania). U.P.B. Sci. Bull. Ser. B 2021, 83, 51–60. [Google Scholar]
- Vajargah, M.F.; Azar, H. Investigating the Effects of Accumulation of Lead and Cadmium Metals in Fish and Its Impact on Human Health. J. Aquac. Mar. Biol. 2023, 12, 209–213. [Google Scholar] [CrossRef]
- Oros, A.; Coatu, V.; Lazăr, L.; Damir, N.; Danilov, D.; Ristea, E. Marine Sediment Pollution in the Black Sea: Spatial Distribution, Sources, and Contamination Assessment on the Romanian Shelf. Cercet. Mar.–Rech. Mar. 2025, 55, 5. [Google Scholar] [CrossRef]
- Oros, A. Monitoring and Assessment of Heavy Metals in the Romanian Black Sea Ecosystem during 2006–2018, in the Context of Marine Strategy Framework Directive (MSFD) 2008/56/EC Implementation. Rech. Mar. 2019, 49, 8–33. [Google Scholar] [CrossRef]
- Coatu, V.; Țigănuș, D.; Oros, A.; Lazăr, L. Analysis of Hazardous Substance Contamination of the Marine Ecosystem in the Romanian Black Sea Coast, Part of the Marine Strategy Framework Directive (2008/56/EC) Implementation. Mar. Res. J. 2013, 43, 174–186. [Google Scholar]
- Oros, A.; Lazăr, L.; Coatu, V.; Țigănuș, D. Recent Data from Pollution Monitoring and Assessment of the Romanian Black Sea Ecosystem, within Implementation of the European Marine Strategy Framework Directive. In Proceedings of the SGEM International Multidisciplinary Scientific Conferences on Earth and Geosciences, SGEM, Albena, Bulgaria, 30 June–6 July 2016; Volume 2016, pp. 821–828. [Google Scholar]
- Cox, M.E.; Preda, M. Trace Metal Distribution within Marine and Estuarine Sediments of Western Moreton Bay, Queensland, Australia: Relation to Land Use and Setting. Geogr. Res. 2005, 43, 173–193. [Google Scholar] [CrossRef]
- Selvam, A.P.; Priya, S.L.; Banerjee, K.; Hariharan, G.; Purvaja, R.; Ramesh, R. Heavy Metal Assessment Using Geochemical and Statistical Tools in the Surface Sediments of Vembanad Lake, Southwest Coast of India. Environ. Monit. Assess. 2012, 184, 5899–5915. [Google Scholar] [CrossRef]
- Remeikaitė-Nikienė, N.; Garnaga-Budrė, G.; Lujanienė, G.; Jokšas, K.; Stankevičius, A.; Malejevas, V.; Barisevičiūtė, R. Distribution of Metals and Extent of Contamination in Sediments from the South-Eastern Baltic Sea (Lithuanian Zone). Oceanologia 2018, 60, 193–206. [Google Scholar] [CrossRef]
- Vasiliu, D.; Bucse, A.; Lupașcu, N.; Ispas, B.; Gheablău, C.; Stănescu, I. Assessment of the Metal Pollution in Surface Sediments of Coastal Tasaul Lake (Romania). Environ. Monit. Assess. 2020, 192, 749. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Lan, W.; Feng, Q.; Zhu, X.; Li, T.; Zhang, R.; Song, H.; Zhu, Y.; Zhao, B. Pollution and Ecological Risk Assessment, and Source Identification of Heavy Metals in Sediment from the Beibu Gulf, South China Sea. Mar. Pollut. Bull. 2021, 168, 112403. [Google Scholar] [CrossRef]
- Tang, D.; Luo, S.; Deng, S.; Huang, R.; Chen, B.; Deng, Z. Heavy Metal Pollution Status and Deposition History of Mangrove Sediments in Zhanjiang Bay, China. Front. Mar. Sci. 2022, 9, 989584. [Google Scholar] [CrossRef]
- Adamo, P.; Arienzo, M.; Imperato, M.; Naimo, D.; Nardi, G.; Stanzione, D. Distribution and Partition of Heavy Metals in Surface and Sub-Surface Sediments of Naples City Port. Chemosphere 2005, 61, 800–809. [Google Scholar] [CrossRef]
- Turekian, K.K.; Wedepohl, K.H. Distribution of the Elements in Some Major Units of the Earth’s Crust. Geol. Soc. Am. Bull. 1961, 72, 175–192. [Google Scholar] [CrossRef]
- Özkan, E.Y. A New Assessment of Heavy Metal Contaminations in an Eutrophicated Bay (Inner Izmir Bay, Turkey). Turk. J. Fish. Aquat. Sci. 2012, 12, 135–147. [Google Scholar] [CrossRef]
- Alkan, A.; Özşeker, K.; Yildiz, I.; Dinçer, C. Determination of Metal Concentrations in Değirmendere Stream Drainage Area of Southeastern Black Sea Coast of Turkey. Hacet. J. Biol. Chem. 2021, 49, 117–124. [Google Scholar] [CrossRef]
- Rubio, B.; Nombela, M.A.; Vilas, F. Geochemistry of Major and Trace Elements in Sediments of the Ria de Vigo (NW Spain): An Assessment of Metal Pollution. Mar. Pollut. Bull. 2000, 40, 968–980. [Google Scholar] [CrossRef]
- Vaalgamaa, S.; Korhola, A. Searching for Order in Chaos: A Sediment Stratigraphical Study of a Multiple-Impacted Bay of the Baltic Sea. Estuar. Coast. Shelf Sci. 2004, 59, 319–332. [Google Scholar] [CrossRef]
- Dou, Y.; Li, J.; Zhao, J.; Hu, B.; Yang, S. Distribution, Enrichment and Source of Heavy Metals in Surface Sediments of the Eastern Beibu Bay, South China Sea. Mar. Pollut. Bull. 2013, 67, 137–145. [Google Scholar] [CrossRef] [PubMed]
- Hu, B.; Cui, R.; Li, J.; Wei, H.; Zhao, J.; Bai, F.; Song, W.; Ding, X. Occurrence and Distribution of Heavy Metals in Surface Sediments of the Changhua River Estuary and Adjacent Shelf (Hainan Island). Mar. Pollut. Bull. 2013, 76, 400–405. [Google Scholar] [CrossRef]
- Xu, X.; Cao, Z.; Zhang, Z.; Li, R.; Hu, B. Spatial Distribution and Pollution Assessment of Heavy Metals in the Surface Sediments of the Bohai and Yellow Seas. Mar. Pollut. Bull. 2016, 110, 596–602. [Google Scholar] [CrossRef]
- Zhao, G.; Ye, S.; Yuan, H.; Ding, X.; Wang, J. Surface Sediment Properties and Heavy Metal Pollution Assessment in the Pearl River Estuary, China. Environ. Sci. Pollut. Res. 2017, 24, 2966–2979. [Google Scholar] [CrossRef]
- Perina, F.C.; Torres, R.J.; Mozeto, A.A.; Nascimento, M.R.L.; Abessa, D.M.S. Sediment Quality Assessment of the Tributaries of the Santos–São Vicente Estuarine System, Brazil. Ecotoxicol. Environ. Contam. 2018, 13, 25–38. [Google Scholar] [CrossRef]
- Mülayim, A.; Balkıs, H. Toxic Metal (Pb, Cd, Cr, and Hg) Levels in Rapana venosa (Valenciennes 1846), Eriphia verrucosa (Forskal 1775), and Sediment Samples from the Black Sea Littoral (Thrace, Turkey). Mar. Pollut. Bull. 2015, 95, 215–222. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Fan, D.; Liu, M.; Liao, H.; Zheng, S.; Tian, Y. Budget and Fate of Sedimentary Trace Metals in the Eastern China Marginal Seas. Water Res. 2020, 187, 116439. [Google Scholar] [CrossRef]
- Zhou, F.; Xiong, M.; Wang, S.; Tian, S.; Jin, G.; Chen, F.; Lu, X.; Zhu, Q.; Meng, Y. Impacts of Human Activities and Environmental Changes on Spatial-Seasonal Variations of Metals in Surface Sediments of Zhanjiang Bay, China. Front. Mar. Sci. 2022, 9, 925567. [Google Scholar] [CrossRef]
- Ip, C.C.M.; Li, X.D.; Zhang, G.; Wai, O.W.H.; Li, Y.S. Trace Metal Distribution in Sediments of the Pearl River Estuary and the Surrounding Coastal Area, South China. Environ. Pollut. 2007, 147, 311–323. [Google Scholar] [CrossRef]
- Omar, M.B.; Mendiguchía, C.; Er-Raioui, H.; Marhraoui, M.; Lafraoui, G.; Oulad-Abdellah, M.K.; García-Vargas, M.; Moreno, C. Distribution of Heavy Metals in Marine Sediments of Tetouan Coast (North of Morocco): Natural and Anthropogenic Sources. Environ. Earth Sci. 2015, 74, 4171–4185. [Google Scholar] [CrossRef]
- Belhadj, H.; Aubert, D.; Youcef, N.D. Geochemistry of Major and Trace Elements in Sediments of Ghazaouet Bay (Western Algeria): An Assessment of Metal Pollution. Comptes Rendus Geosci. 2017, 349, 412–421. [Google Scholar] [CrossRef]
- El-Sorogy, A.S.; Youssef, M.; Al-Kahtany, K.; Saleh, M.M. Distribution, Source, Contamination, and Ecological Risk Status of Heavy Metals in the Red Sea–Gulf of Aqaba Coastal Sediments, Saudi Arabia. Mar. Pollut. Bull. 2020, 158, 111411. [Google Scholar] [CrossRef] [PubMed]
- Karavoltsos, S.; Sakellari, A.; Plavšić, M.; Bekiaris, G.; Tagkouli, D.; Triantafyllidis, A.; Giannakourou, A.; Zervoudaki, S.; Gkikopoulos, I.; Kalogeropoulos, N. Metal Complexation, FT-IR Characterization, and Plankton Abundance in the Marine Surface Microlayer of Coastal Areas in the Eastern Mediterranean. Front. Mar. Sci. 2022, 9, 932446. [Google Scholar] [CrossRef]
- Perumal, K.; Antony, J.; Muthuramalingam, S. Heavy Metal Pollutants and Their Spatial Distribution in Surface Sediments from Thondi Coast, Palk Bay, South India. Environ. Sci. Eur. 2021, 33, 63. [Google Scholar] [CrossRef]
- Lancelot, C.; Staneva, J.; Van Eeckhout, D.; Beckers, J.-M.; Stanev, E. Modelling the Danube-Influenced North-Western Continental Shelf of the Black Sea. II: Ecosystem Response to Changes in Nutrient Delivery by the Danube River after Its Damming in 1972. Estuar. Coast. Shelf Sci. 2002, 54, 473–499. [Google Scholar] [CrossRef]
- Sun, X.; Li, B.-S.; Liu, X.-L.; Li, C.-X. Spatial Variations and Potential Risks of Heavy Metals in Seawater, Sediments, and Living Organisms in Jiuzhen Bay, China. J. Chem. 2020, 2020, 7971294. [Google Scholar] [CrossRef]
- Secrieru, D.; Secrieru, A. Heavy Metal Enrichment of Man-Made Origin of Superficial Sediment on the Continental Shelf of the North-Western Black Sea. Estuar. Coast. Shelf Sci. 2002, 54, 513–526. [Google Scholar] [CrossRef]
- Simeonov, V.; Massart, D.L.; Andreev, G.; Tsakovski, S. Assessment of Metal Pollution Based on Multivariate Statistical Modeling of “Hot Spot” Sediments from the Black Sea. Chemosphere 2000, 41, 1411–1417. [Google Scholar] [CrossRef]
- Bakan, G.; Özkoç, H.B. An Ecological Risk Assessment of the Impact of Heavy Metals in Surface Sediments on Biota from the Mid-Black Sea Coast of Turkey. Int. J. Environ. Stud. 2007, 64, 45–57. [Google Scholar] [CrossRef]
- Gedik, K.; Boran, M. Assessment of Metal Accumulation and Ecological Risk around Rize Harbor, Turkey (Southeast Black Sea) Affected by Copper Ore Loading Operations by Using Different Sediment Indexes. Bull. Environ. Contam. Toxicol. 2013, 90, 176–181. [Google Scholar] [CrossRef] [PubMed]
- Özşeker, K.; Erüz, C.; Terzi, Y. Spatial Distribution and Ecological Risk Evaluation of Toxic Metals in the Southern Black Sea Coastal Sediments. Mar. Pollut. Bull. 2022, 182, 114020. [Google Scholar] [CrossRef]
- Berlinskyi, N.; Safranov, T. Spatial and Temporal Variability of Pollutants in the Bottom Sediments in the Northwest Part of the Black Sea. Environ. Probl. 2016, 1, 73–76. [Google Scholar]
- Montano, L.; Baldini, G.M.; Piscopo, M.; Liguori, G.; Lombardi, R.; Ricciardi, M.; Esposito, G.; Pinto, G.; Fontanarosa, C.; Spinelli, M.; et al. Polycyclic Aromatic Hydrocarbons (PAHs) in the Environment: Occupational Exposure, Health Risks and Fertility Implications. Toxics 2025, 13, 151. [Google Scholar] [CrossRef]
- Patel, A.B.; Shaikh, S.; Jain, K.R.; Desai, C.; Madamwar, D. Polycyclic Aromatic Hydrocarbons: Sources, Toxicity, and Remediation Approaches. Front. Microbiol. 2020, 11, 562813. [Google Scholar] [CrossRef] [PubMed]
- Nicolaev, S.; Zaharia, T.; Oros, A. (Eds.) The Current State of the Marine and Coastal Environment; CD Press: Bucharest, Romania, 2019; 214p, ISBN 978-606-528-447-0. (In Romanian) [Google Scholar]
- Denga, Y.; Orlova, I.; Komorin, V.; Oleynik, Y.; Korshenko, A.; Hushchyna, K.; Lukyanova, N.; Kochetkov, S.; Arabidze, M.; Machitadze, N.; et al. Metals, Polycyclic Aromatic Hydrocarbons, Total Petroleum Hydrocarbons, Chlorinated Pesticides and PCBs in Sea Water and Sediments. In National Pilot Monitoring Studies and Joint Open Sea Surveys in Georgia, Russian Federation and Ukraine, 2016: Joint Black Sea Surveys 2016; Slobodnik, J., Alexandrov, B., Komorin, V., Mikaelyan, A., Guchmanidze, A., Arabidze, M., Korshenko, A., Moncheva, S., Eds.; European Union: Brussels, Belgium, 2017; pp. 305–420. Available online: https://emblasproject.org/wp-content/uploads/2022/03/EMBLAS-II_NPMS_JOSS_2016_ScReport_ISBN-978-617-7953-60-8-2.pdf (accessed on 21 December 2025).
- Chiroșca, G.; Mihailov, M.-E.; Țugulan, C.L.; Chiroșca, A.V. Radionuclides Assessment for the Romanian Black Sea Shelf. In Diversity in Coastal Marine Sciences; Finkl, C.W., Makowski, C., Eds.; Coastal Research Library; Chapter 13; Springer: Cham, Switzerland, 2018; Volume 23. [Google Scholar] [CrossRef]
- IAEA. Guidelines for Radioelement Mapping Using Gamma Ray Spectrometry Techniques; IAEA-TECDOC-1363; International Atomic Energy Agency: Vienna, Austria, 2003. [Google Scholar]
- IAEA. Determination of Radionuclides in Seawater, Sediment and Fish: Interlaboratory Comparison 2017–2020 (Preliminary Report); International Atomic Energy Agency: Vienna, Austria, 2021. [Google Scholar]
- IAEA. Determination of Naturally Occurring Radionuclides in Sediment—Worldwide Proficiency Test IAEA-CU-2008-03 (Summary Report AQ-18); International Atomic Energy Agency: Vienna, Austria, 2010. [Google Scholar]
- Ionescu-Bujor, M.; Aydın, S.; Mărginean, N.; Costache, C.; Bucurescu, D.; Florea, N.; Glodariu, T.; Ionescu, A.; Iordăchescu, A.; Mărginean, R.; et al. Lifetime measurements in the chiral-candidate doublet bands of 130La. Phys. Rev. C 2018, 98, 054305. [Google Scholar] [CrossRef]











| Measuring Station | Depth m | PO4 [μMol] | SiO4 [μMol] | NO2 [μMol] | NO3 [μMol] | NH4 [μMol] | Chl a [μg/L] | TOC [mg/L] | TN [mg/L] |
|---|---|---|---|---|---|---|---|---|---|
| S01 | 0 | 0.19 | 5.98 | 0.09 | 0.03 | 2.97 | 0.623 | 4.85 | 0.43 |
| 16 | 0.07 | 2.51 | 0.07 | 0.44 | 1.20 | 1.164 | 3.35 | 0.26 | |
| 25 | 0.31 | 11.23 | 0.06 | 0.46 | 9.51 | 0.554 | 3.49 | 0.26 | |
| S07 | 0 | 0.02 | 24.53 | 0.03 | 0.27 | 8.56 | 0.663 | 3.03 | 0.24 |
| 15 | 0.10 | 6.49 | 0.06 | 0.39 | 1.93 | 1.196 | 3.32 | 0.32 | |
| 18 | 0.04 | 6.90 | 0.01 | 0.39 | 0.89 | 0.628 | 3.09 | 0.26 | |
| S06 | 0 | 0.02 | 8.81 | 0.05 | 0.47 | 0.41 | 0.816 | 2.83 | 0.25 |
| 16 | 0.09 | 6.54 | 0.08 | 0.47 | 0.56 | 1.035 | 2.2 | 0.22 | |
| 23 | 0.45 | 13.42 | 0.09 | 0.82 | 0.66 | 0.748 | 7.35 | 0.32 | |
| S13 | 0 | 0.03 | 5.57 | 0.05 | 0.34 | 1.30 | 0.982 | 1.79 | 0.16 |
| 15 | 0.52 | 14.95 | 0.18 | 1.08 | 0.50 | 1.283 | 2.59 | 0.32 | |
| 25 | 0.59 | 15.88 | 0.29 | 0.29 | 1.35 | 0.841 | 1.82 | 0.18 | |
| S20 | 0 | 0.18 | 3.45 | 0.02 | 0.33 | 0.78 | 0.512 | 2.82 | 0.29 |
| 12 | 0.11 | 4.29 | 0.03 | 0.63 | 1.68 | 1.563 | 2.52 | 0.31 | |
| 30 | 0.24 | 7.13 | 0.07 | 0.56 | 2.94 | 0.909 | 2 | 0.24 | |
| S23 | 0 | 0.24 | 5.64 | 0.03 | 0.34 | 2.52 | 0.447 | 4.09 | 0.25 |
| 16 | 0.18 | 2.91 | 0.05 | 0.64 | 19.33 | 1.336 | 1.65 | 0.22 | |
| 30 | 0.19 | 5.75 | 0.11 | 0.57 | 7.83 | 1.009 | 1.45 | 0.25 |
| Station | Cr52, ppb | Mn55, ppb | Co59, ppb | Ni60, ppb | Cu63, ppb | Zn66, ppb | As, ppb | Cd117, ppb | Pb207, ppb | Hg, ppb | Fe56, ppb |
|---|---|---|---|---|---|---|---|---|---|---|---|
| SO01 | 1.81 | 10.56 | 0.39 | 0.99 | <0.45 | 10.77 | 3.85 | <0.54 | 27.41 | 0.042 | 1.53 |
| SO06 | 3.94 | 8.82 | 1.64 | 0.96 | 38.37 | 4.26 | 0.65 | <0.54 | 12.52 | 0.045 | 5.91 |
| SO07 | 3.52 | 4.10 | 1.48 | <0.85 | <0.45 | 4.82 | 1.27 | 1.24 | 8.43 | 0.038 | 2.73 |
| S13 | 3.10 | 5.98 | 0.23 | <0.85 | <0.45 | <1.07 | 1.51 | 1.28 | 5.49 | 0.029 | 2.51 |
| S20 | 4.04 | 4.09 | 0.22 | <0.85 | <0.45 | <1.07 | 0.54 | 1.23 | 4.38 | 0.032 | 1.12 |
| S25 | 3.36 | 4.11 | 0.57 | <0.85 | <0.45 | 8.94 | 1.23 | 1.32 | 1.80 | 0.037 | 3.58 |
| Nr.crt. | Component (ng/L) | Station | |||||
|---|---|---|---|---|---|---|---|
| S01 | S06 | S07 | S13 | S20 | S25 | ||
| 1 | Naphthalene | 109.20 | 107.60 | 109.20 | 56.20 | 16.20 | 28.60 |
| 2 | Acenaphthene | 63.60 | 70.40 | 68.80 | 38.00 | 11.00 | 19.60 |
| 3 | Fluorene | 14.80 | 25.00 | 24.80 | 17.40 | 8.20 | 11.60 |
| 4 | Phenanthrene | 76.40 | 87.20 | 85.00 | 96.60 | 64.20 | 86.40 |
| 5 | Anthracene | 5.00 | 6.60 | 6.80 | 6.00 | 3.60 | 5.00 |
| 6 | Fluoranthene | 12.00 | 15.40 | 12.60 | 18.80 | 13.20 | 18.40 |
| 7 | Pyrene | 16.40 | 15.20 | 9.60 | 17.80 | 12.00 | 11.20 |
| 8 | Benzo (a) anthracene | 0.20 | 2.40 | 0.20 | 2.80 | 3.20 | 0.60 |
| 9 | Chrysene | 1.80 | 0.80 | 0.60 | 1.40 | 1.00 | 1.40 |
| 10 | Benzo (b) fluoranthene | 0.60 | 0.40 | 1.40 | 0.60 | 0.40 | 0.60 |
| 11 | Benzo (k) fluoranthene | ND | 1.40 | 1.00 | 0.20 | 0.20 | 0.20 |
| 12 | Benzo (a) pyrene | 10.60 | 7.00 | 7.80 | 8.20 | 0.80 | 1.60 |
| 13 | Dibenzo(a,h)anthracene | 7.80 | 7.60 | 5.60 | 4.20 | ND | 29.00 |
| 14 | Benzo(g,h,l)perylene | 25.80 | ND | ND | ND | ND | ND |
| 15 | Indenol(1,2,3-cd) pyrene | ND | ND | ND | 0.00 | ND | 0.00 |
| Sum of PAH components (ng/L) | 344.20 | 347.00 | 333.40 | 268.20 | 134.00 | 214.20 | |
| Station | Depth [m] | TOC, % | CaCO3, % | Ti, ppm | V, ppm | Cr, ppm | Mn, % | Fe, % | Ni, ppm | Cu, ppm | Zn, ppm | As, ppm | Hg, ppm | Pb, ppm |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| S01 | 27 | 0.552 | 28.74 | 2790 | 57.9 | 75.6 | 0.05 | 2.28 | 33.59 | 18.45 | 55.7 | 7.89 | 0.06 | 17.98 |
| S02 | 20.5 | 0.219 | 19.25 | 3223 | 46.82 | 86.1 | 0.05 | 2.18 | 30.35 | 9.14 | 41.77 | 6.48 | 0.02 | 13.82 |
| S03 | 15 | 0.109 | 9.81 | 4884 | 45.51 | 91.3 | 0.06 | 2.44 | 26.65 | 7.35 | 43.63 | 4.88 | 0.02 | 13.09 |
| S04 | 17.5 | 0.163 | 14.11 | 3515 | 52.1 | 90.8 | 0.05 | 2.29 | 31.61 | 11.41 | 47.17 | 5.98 | 0.02 | 14.75 |
| S05 | 22 | 0.428 | 28.04 | 2555 | 52.3 | 76.2 | 0.06 | 2.3 | 30.57 | 15.05 | 48.81 | 10.9 | 0.04 | 14.95 |
| S06 | 26.5 | 0.485 | 29.87 | 2462 | 50.6 | 63.3 | 0.04 | 2.04 | 29.01 | 15.79 | 51 | 5.62 | 0.06 | 15.82 |
| S07 | 20.5 | 0.287 | 9.28 | 3525 | 49.92 | 89.5 | 0.05 | 2.28 | 31.45 | 13.15 | 51.5 | 5.36 | 0.04 | 16.33 |
| S08 | 22 | 0.391 | 10.87 | 4411 | 62.1 | 121 | 0.06 | 2.77 | 40.94 | 17.14 | 64.7 | 6.91 | 0.05 | 18.36 |
| S09 | 24.5 | 0.359 | 9.51 | 4427 | 57.4 | 102 | 0.06 | 2.54 | 35.81 | 17.8 | 60.1 | 7.12 | 0.06 | 19.08 |
| S10 | 27.5 | 0.779 | 10.15 | 3569 | 64.7 | 101 | 0.05 | 2.67 | 39.89 | 24.5 | 69.6 | 7.14 | 0.08 | 21.32 |
| S11 | 26 | 0.610 | 8.99 | 3617 | 69.2 | 97.7 | 0.05 | 2.83 | 43.06 | 25.56 | 73 | 7.94 | 0.08 | 22.51 |
| S12 | 23.4 | 0.785 | 10.94 | 3671 | 74.9 | 99.1 | 0.05 | 3.03 | 45.29 | 28.01 | 78.6 | 8.69 | 0.08 | 24.2 |
| S13 | 20.8 | 0.342 | 9.35 | 3479 | 70.5 | 89.7 | 0.05 | 2.88 | 43.4 | 24.14 | 74.3 | 8.24 | 0.07 | 23.31 |
| S14 | 30 | 0.249 | 10.37 | 4887 | 58 | 90.3 | 0.06 | 2.65 | 36.33 | 15.45 | 59.5 | 6.42 | 0.04 | 17.65 |
| S15 | 25 | 0.367 | 8.00 | 4813 | 57.4 | 102 | 0.05 | 2.47 | 33.78 | 13.91 | 54.1 | 6.29 | 0.04 | 16.23 |
| S16 | 23 | 0.371 | 10.71 | 4303 | 61.3 | 116 | 0.06 | 2.63 | 37.43 | 19.62 | 64 | 7.5 | 0.06 | 19.16 |
| S17 | 22.4 | 0.525 | 9.35 | 3731 | 79.4 | 96 | 0.05 | 3.3 | 52.1 | 38.53 | 89 | 8.65 | 0.09 | 25.47 |
| S18 | 25.7 | 0.501 | 10.09 | 4236 | 69.8 | 91.5 | 0.05 | 2.8 | 42.9 | 23.72 | 71.8 | 6.42 | 0.07 | 21.77 |
| S19 | 30.2 | 0.484 | 7.60 | 3837 | 72.2 | 90 | 0.05 | 2.83 | 44.45 | 23.03 | 72.8 | 6.64 | 0.07 | 22.55 |
| S20 | 33 | 0.302 | 7.96 | 3353 | 65.4 | 87.3 | 0.04 | 2.6 | 40.1 | 22.5 | 68.8 | 6.5 | 0.08 | 21.3 |
| S21 | 33.3 | 0.167 | 22.43 | 2974 | 61.7 | 85.4 | 0.05 | 2.41 | 36.74 | 19.62 | 61.1 | 8.31 | 0.06 | 19.96 |
| S22 | 26 | 0.416 | 11.35 | 3728 | 68.3 | 96.6 | 0.05 | 2.85 | 44.32 | 21.01 | 65.8 | 8.34 | 0.05 | 18.75 |
| S23 | 34.6 | 0.637 | 11.01 | 3583 | 81.4 | 99.9 | 0.05 | 3.28 | 51.1 | 30.04 | 86.4 | 8.81 | 0.09 | 25.66 |
| S24 | 38 | 0.964 | 12.97 | 3446 | 67.9 | 93.7 | 0.05 | 2.77 | 43.7 | 24.28 | 73.6 | 7.79 | 0.07 | 22.54 |
| S25 | 36 | 0.675 | 8.89 | 4042 | 76.1 | 120 | 0.06 | 3.25 | 47.52 | 23.36 | 77.8 | 8.32 | 0.06 | 24.22 |
| Variables | TOC | CaCO3 | Mg | Al | Ti | V | Cr | Mn | Fe | Ni | Cu | Zn | As | Sr | Hg |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| TOC | 1 | ||||||||||||||
| CaCO3 | −0.066 | 1 | |||||||||||||
| Mg | 0.127 | −0.801 | 1 | ||||||||||||
| Al | 0.354 | −0.785 | 0.919 | 1 | |||||||||||
| Ti | −0.188 | −0.739 | 0.657 | 0.479 | 1 | ||||||||||
| V | 0.618 | −0.441 | 0.491 | 0.752 | 0.060 | 1 | |||||||||
| Cr | 0.197 | −0.686 | 0.611 | 0.617 | 0.651 | 0.414 | 1 | ||||||||
| Mn | −0.237 | −0.236 | 0.289 | 0.207 | 0.571 | 0.072 | 0.530 | 1 | |||||||
| Fe | 0.516 | −0.608 | 0.615 | 0.812 | 0.318 | 0.927 | 0.598 | 0.301 | 1 | ||||||
| Ni | 0.593 | −0.497 | 0.551 | 0.801 | 0.105 | 0.982 | 0.474 | 0.091 | 0.945 | 1 | |||||
| Cu | 0.650 | −0.300 | 0.456 | 0.709 | −0.106 | 0.925 | 0.239 | −0.069 | 0.819 | 0.911 | 1 | ||||
| Zn | 0.642 | −0.472 | 0.528 | 0.789 | 0.079 | 0.979 | 0.419 | 0.039 | 0.921 | 0.972 | 0.955 | 1 | |||
| As | 0.432 | 0.226 | −0.012 | 0.154 | −0.381 | 0.522 | 0.088 | 0.272 | 0.447 | 0.492 | 0.545 | 0.472 | 1 | ||
| Sr | −0.228 | 0.938 | −0.875 | −0.885 | −0.651 | −0.564 | −0.693 | −0.206 | −0.697 | −0.619 | −0.462 | −0.611 | 0.026 | 1 | |
| Hg | 0.674 | −0.228 | 0.324 | 0.595 | −0.185 | 0.836 | 0.170 | −0.199 | 0.658 | 0.796 | 0.918 | 0.890 | 0.438 | −0.400 | 1 |
| Pb | 0.652 | −0.428 | 0.448 | 0.728 | −0.001 | 0.965 | 0.363 | −0.028 | 0.872 | 0.942 | 0.939 | 0.982 | 0.475 | −0.568 | 0.910 |
| No. | Component (µg/kg) | Station | |||||
|---|---|---|---|---|---|---|---|
| S01 | S06 | S07 | S13 | S20 | S25 | ||
| 1 | Naphthalene | 17.91 | 25.65 | 17.67 | 11.24 | 18.29 | 19.35 |
| 2 | Acenaphthene | 8.36 | 14.04 | 8.08 | 8.69 | 9.96 | 8.41 |
| 3 | Fluorene | 1.39 | 5.55 | 1.80 | 1.53 | 1.52 | 1.42 |
| 4 | Phenanthrene | 2.19 | 13.33 | 4.29 | 0.20 | 0.41 | 0.71 |
| 5 | Anthracene | 0.30 | 0.61 | 0.60 | 0.82 | 0.71 | 0.51 |
| 6 | Fluoranthene | 1.69 | 3.13 | 3.19 | 1.53 | 3.25 | 1.42 |
| 7 | Pyrene | 2.59 | 5.66 | 5.09 | 0.41 | 0.41 | 0.41 |
| 8 | Benzo (a) anthracene | 1.29 | 1.51 | 2.69 | 1.53 | 3.76 | 2.43 |
| 9 | Chrysene | 0.70 | 6.06 | 1.30 | 1.43 | 2.24 | 1.11 |
| 10 | Benzo (b) fluoranthene | 0.50 | 0.50 | 0.50 | 4.09 | 5.39 | 2.84 |
| 11 | Benzo (k) fluoranthene | ND | 0.50 | 0.20 | 1.02 | 1.12 | 3.34 |
| 12 | Benzo (a) pyrene | 0.99 | 0.91 | 0.10 | 0.10 | 0.00 | 0.10 |
| 13 | Dibenzo (a,h) anthracene | 0.00 | 0.20 | 1.10 | 9.10 | ND | 0.20 |
| 14 | Benzo (g,h,l) perylene | 0.40 | 2.42 | 0.80 | 0.00 | 0.20 | ND |
| 15 | Indenol (1,2,3-cd) pyrene | 10.54 | 8.08 | 8.78 | 0.20 | 0.41 | 0.71 |
| PAH Sum of components (µg/kg) ppb | 48.84 | 88.16 | 56.19 | 41.91 | 47.66 | 42.96 | |
| Component | Eigenvalue | Variance_% | Cumulative_% |
|---|---|---|---|
| PC1 | 7.884 | 58.218 | 58.218 |
| PC2 | 2.983 | 22.025 | 80.244 |
| PC3 | 1.304 | 9.629 | 89.873 |
| PC4 | 0.552 | 4.076 | 93.949 |
| PC5 | 0.271 | 2.005 | 95.954 |
| PC6 | 0.203 | 1.502 | 97.456 |
| PC7 | 0.148 | 1.089 | 98.545 |
| PC8 | 0.093 | 0.687 | 99.233 |
| PC9 | 0.054 | 0.400 | 99.632 |
| PC10 | 0.022 | 0.166 | 99.798 |
| PC1 | PC2 | PC3 | PC4 | PC5 | PC6 | PC7 | PC8 | PC9 | PC10 | |
|---|---|---|---|---|---|---|---|---|---|---|
| TOC_% | 0.248 | 0.168 | 0.106 | 0.890 | 0.047 | −0.303 | 0.111 | 0.006 | 0.016 | −0.027 |
| CaCO3_% | −0.174 | 0.430 | 0.344 | 0.056 | 0.168 | 0.142 | −0.704 | 0.302 | −0.057 | 0.037 |
| Ti_ppm | 0.031 | −0.555 | −0.116 | 0.049 | 0.463 | −0.099 | 0.003 | 0.613 | −0.165 | −0.107 |
| V_ppm | 0.357 | 0.018 | −0.016 | −0.137 | −0.043 | −0.169 | −0.209 | 0.101 | −0.384 | −0.093 |
| Cr_ppm | 0.170 | −0.444 | 0.164 | 0.227 | −0.644 | 0.446 | −0.198 | 0.165 | 0.057 | 0.037 |
| Mn_% | −0.030 | −0.395 | 0.619 | 0.037 | 0.405 | 0.135 | −0.058 | −0.458 | 0.071 | −0.102 |
| Fe_% | 0.339 | −0.156 | 0.060 | −0.150 | 0.024 | −0.361 | −0.204 | −0.088 | 0.172 | 0.755 |
| Ni_ppm | 0.355 | −0.023 | −0.016 | −0.144 | −0.143 | −0.228 | −0.242 | −0.001 | 0.071 | −0.401 |
| Cu_ppm | 0.344 | 0.133 | −0.038 | −0.106 | 0.176 | 0.143 | 0.033 | 0.137 | 0.741 | −0.271 |
| Zn_ppm | 0.361 | 0.012 | −0.056 | −0.064 | 0.097 | 0.049 | −0.109 | −0.079 | 0.020 | −0.008 |
| As_ppm | 0.189 | 0.207 | 0.643 | −0.254 | −0.156 | −0.097 | 0.503 | 0.342 | −0.140 | 0.004 |
| Hg_ppm | 0.316 | 0.192 | −0.143 | 0.079 | 0.289 | 0.633 | 0.192 | 0.090 | −0.139 | 0.330 |
| Pb_ppm | 0.355 | 0.054 | −0.068 | −0.047 | 0.071 | 0.132 | −0.046 | −0.358 | −0.435 | −0.230 |
| Station | PC1 | PC2 |
|---|---|---|
| S01 | −1.781 | 2.895 |
| S02 | −4.540 | 0.454 |
| S03 | −4.644 | −2.948 |
| S04 | −3.740 | −0.399 |
| S05 | −2.846 | 2.392 |
| S06 | −3.571 | 3.986 |
| S07 | −2.991 | −0.421 |
| S08 | 0.090 | −2.566 |
| S09 | −0.678 | −1.765 |
| S10 | 1.556 | 0.383 |
| S11 | 2.215 | 0.338 |
| S12 | 3.476 | 0.618 |
| S13 | 1.818 | 0.459 |
| S14 | −1.494 | −2.199 |
| S15 | −1.812 | −1.892 |
| S16 | 0.069 | −2.002 |
| S17 | 5.063 | 0.545 |
| S18 | 1.411 | −0.356 |
| S19 | 1.715 | −0.120 |
| S20 | 0.649 | 1.109 |
| S21 | −1.035 | 1.735 |
| S22 | 0.753 | −0.108 |
| S23 | 4.735 | 0.608 |
| S24 | 2.176 | 1.049 |
| S25 | 3.405 | −1.796 |
| Component | Eigenvalue | Variance_% | Cumulative_% |
|---|---|---|---|
| PC1 | 11.308 | 67.312 | 67.312 |
| PC2 | 2.533 | 15.079 | 82.391 |
| PC3 | 2.161 | 12.861 | 95.253 |
| PC4 | 0.646 | 3.847 | 99.100 |
| PC5 | 0.151 | 0.900 | 100.000 |
| PC6 | 0.000 | 0.000 | 100.000 |
| PC1 | PC2 | PC3 | PC4 | PC5 | PC6 | |
|---|---|---|---|---|---|---|
| TOC_% | 0.090 | 0.096 | 0.676 | −0.324 | −0.435 | −0.039 |
| CaCO3_% | −0.221 | −0.169 | 0.513 | 0.103 | 0.002 | −0.145 |
| Ti_ppm | 0.269 | 0.319 | −0.226 | −0.121 | −0.123 | −0.567 |
| V_ppm | 0.318 | −0.129 | 0.073 | −0.089 | 0.043 | −0.389 |
| Cr_ppm | 0.282 | 0.309 | −0.035 | −0.235 | −0.350 | 0.124 |
| Mn_% | 0.212 | 0.443 | 0.276 | 0.193 | 0.236 | 0.487 |
| Fe_% | 0.321 | 0.058 | 0.015 | −0.172 | 0.169 | 0.018 |
| Ni_ppm | 0.324 | −0.054 | −0.010 | −0.110 | 0.057 | 0.209 |
| Cu_ppm | 0.284 | −0.335 | 0.034 | 0.007 | 0.109 | −0.098 |
| Zn_ppm | 0.316 | −0.139 | −0.035 | −0.150 | 0.197 | 0.052 |
| As_ppm | 0.258 | −0.117 | 0.349 | 0.463 | 0.273 | −0.269 |
| Hg_ppm | 0.133 | −0.616 | −0.072 | −0.075 | −0.390 | 0.268 |
| Pb_ppm | 0.319 | −0.127 | −0.016 | −0.062 | 0.193 | 0.224 |
| SigmaPAH_µg/kg | −0.266 | −0.071 | 0.126 | −0.694 | 0.519 | −0.040 |
| Station | PC1 | PC2 |
|---|---|---|
| S01 | −1.366 | −0.236 |
| S06 | −4.433 | −0.864 |
| S07 | −2.366 | 2.529 |
| S13 | 2.642 | −0.941 |
| S20 | 0.867 | −1.738 |
| S25 | 4.657 | 1.250 |
| Sample | Live (s) | Mass (g) | Pb210 | SA1_Bq/kg | Th234 | SA2_Bq/kg | U5+Ra3 | SA3_Bq/kg | Ra6+U5 | SA4_Bq/kg | Pb214 | SA5_Bq/kg | Bi214 | SA6_Bq/kg | Cs137 | SA7_Bq/kg | Ac228 | SA8_Bq/kg | K40 | SA9_Bq/kg | Ti208 | SA10_Bq/kg |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| peak [keV] | 46 | 93 | 144 | 186 | 352 | 609 | 662 | 969 | 1461 | 2614 | ||||||||||||
| Yield (%) | 4.25 | 4.24 | Norm | Norm | 35.72 | 45.44 | 85.1 | 15.9 | 10.66 | 99.75 | ||||||||||||
| efficiency (%) | 7.843 | 9.9103 | 9.586 | 8.2826 | 4.9508 | 3.1562 | 2.9624 | 2.2305 | 1.6381 | 0.9878 | ||||||||||||
| MN 270 01 | 36,076 | 77.88 | 504 | 18.61 | 840 | 16.78 | Ld | Ld | 571 | 4.47 | 822 | 14.3 | 645 | 7.09 | 590 | 8.34 | 313 | 24.95 | 2570 | 259.57 | 519 | 2.64 |
| MN 270 06 | 33,802 | 78.37 | 478 | 19.12 | 898 | 27.48 | Ld | Ld | 474 | 3.29 | 696 | 12.64 | 732 | 8.84 | 767 | 11.5 | 318 | 27.41 | 2677 | 315.8 | 546 | 4.91 |
| MN 270 07 | 36,751 | 112.3 | 734 | 28.89 | 1034 | 22.9 | 185 | 3.08 | 798 | 5.74 | 1795 | 22.05 | 1269 | 10.44 | 519 | 4.99 | 391 | 23.11 | 3733 | 333.95 | 732 | 6.83 |
| MN 270 20 | 49,770 | 74.18 | 973 | 42.05 | 1490 | 40.87 | Ld | Ld | 890 | 6.1 | 1546 | 21.33 | 1161 | 10.18 | 1304 | 14.02 | 526 | 33.16 | 5206 | 528.8 | 945 | 9.06 |
| Blank | 138,708 | n/a | 1269 | n/a | 2531 | n/a | 318 | n/a | 1237 | n/a | 439 | n/a | 422 | n/a | Ld | n/a | 217 | n/a | 4961 | n/a | 1714 | n/a |
| Sample | Live (s) | Mass (g) | Cd114 | Bq/kg | Mn56 | Bq/kg | Zn63 | Bq/kg | Na24 | Bq/kg | K42 | Bq/kg | Al28 | Bq/kg | Mn56 | Bq/kg | Na24 | Bq/kg |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| peak [keV] | 558.5 | 846.76 | 962.07 | 1368.5 | 1524.8 | 1779 | 1810.3 | 2754 | ||||||||||
| Yield (%) | 100 | 98.85 | 6.53 | 99.99 | 18.08 | 100 | 26.9 | 99.87 | ||||||||||
| efficiency (%) | 3.3547 | 2.5381 | 2.2702 | 1.7219 | 1.5122 | 1.3516 | 1.3444 | 0.9783 | ||||||||||
| MN 270 01 N | 37,300 | 77.88 | 0 | 27,538 | 377.375 | 397 | 92.1982 | 54713 | 1093.78 | 1040 | 130.993 | Ld | Ld | 4109 | 391.251 | 31,268 | 1101.71 | |
| MN 270 06 N | 45,705 | 78.37 | 0 | 28,882 | 320.982 | 257 | 48.4035 | 56787 | 920.659 | 1002 | 102.352 | Ld | Ld | 4281 | 330.58 | 32,321 | 923.556 | |
| MN 270 07 N | 33,024 | 112.3 | 178 | 1.43 | 41,891 | 449.663 | 501 | 91.1371 | 82742 | 1295.65 | 1501 | 148.089 | 147 | 2.93616 | 6084 | 453.788 | 46,810 | 1291.91 |
| MN 270 20 N | 52,273 | 74.18 | 0 | 38,051 | 390.638 | 266 | 46.2787 | 67785 | 1015.17 | 1688 | 159.278 | 412 | 7.87049 | 5516 | 393.47 | 38,960 | 1028.38 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Catianis, I.; Mureșan, M.; Begun, T.; Teacă, A.; Bucșe, A.; Rădulescu, F.; Macau, F.; Lupașcu, N.; Florea, D.; Fediuc, F.; et al. Geochemical and Radiometric Assessment of Romanian Black Sea Shelf Waters and Sediments: Implications for Anthropogenic Influence. J. Mar. Sci. Eng. 2026, 14, 84. https://doi.org/10.3390/jmse14010084
Catianis I, Mureșan M, Begun T, Teacă A, Bucșe A, Rădulescu F, Macau F, Lupașcu N, Florea D, Fediuc F, et al. Geochemical and Radiometric Assessment of Romanian Black Sea Shelf Waters and Sediments: Implications for Anthropogenic Influence. Journal of Marine Science and Engineering. 2026; 14(1):84. https://doi.org/10.3390/jmse14010084
Chicago/Turabian StyleCatianis, Irina, Mihaela Mureșan, Tatiana Begun, Adrian Teacă, Andra Bucșe, Florina Rădulescu, Florina Macau, Naliana Lupașcu, Daniela Florea, Florentina Fediuc, and et al. 2026. "Geochemical and Radiometric Assessment of Romanian Black Sea Shelf Waters and Sediments: Implications for Anthropogenic Influence" Journal of Marine Science and Engineering 14, no. 1: 84. https://doi.org/10.3390/jmse14010084
APA StyleCatianis, I., Mureșan, M., Begun, T., Teacă, A., Bucșe, A., Rădulescu, F., Macau, F., Lupașcu, N., Florea, D., Fediuc, F., Ujeniuc, S., Seremet, R., Ise, S., Andreicovici, I., & Pavel, A. B. (2026). Geochemical and Radiometric Assessment of Romanian Black Sea Shelf Waters and Sediments: Implications for Anthropogenic Influence. Journal of Marine Science and Engineering, 14(1), 84. https://doi.org/10.3390/jmse14010084

