Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (158)

Search Parameters:
Keywords = Co-Cr-V alloy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 6311 KiB  
Article
Unraveling the Excellent High-Temperature Oxidation Behavior of FeNiCuAl-Based Alloy
by Guangxin Wu, Gaosheng Li, Lijun Wei, Hao Chen, Yujie Wang, Yunze Qiao, Yu Hua, Chenyang Shi, Yingde Huang and Wenjie Yang
Materials 2025, 18(15), 3679; https://doi.org/10.3390/ma18153679 - 5 Aug 2025
Abstract
This study synthesized FeNiCuAlX high-entropy alloys (HEAs) (where X = Cr, Co, Mn) using arc melting and investigated their high-temperature oxidation behavior in air at 900 °C. The oxidation kinetics of all alloys followed a parabolic rate, with the oxidation rate constants (kp) [...] Read more.
This study synthesized FeNiCuAlX high-entropy alloys (HEAs) (where X = Cr, Co, Mn) using arc melting and investigated their high-temperature oxidation behavior in air at 900 °C. The oxidation kinetics of all alloys followed a parabolic rate, with the oxidation rate constants (kp) of FeNiCuAlCr, FeNiCuAlCo, and FeNiCuAlMn being approximately two to three orders of magnitude lower than that of the FeNiCu alloy. Specifically, FeNiCuAlCr exhibited the lowest kp value of 1.72 × 10−6 mg2·cm4/s, which is significantly lower than those of FeNiCuAlCo (3.29 × 10−6 mg2·cm4/s) and FeNiCuAlMn (1.71 × 10−5 mg2·cm4/s). This suggests that the addition of chromium promotes the formation of a dense Al2O3/Cr2O3 oxide layer, significantly enhancing the oxidation resistance. Furthermore, corrosion resistance was assessed through potentiodynamic polarization and electrochemical impedance spectroscopy in a 3.5% NaCl solution. FeNiCuAlCr demonstrated exceptional resistance to localized corrosion, as indicated by its low corrosion current density (45.7 μA/cm2) and high pitting potential (−0.21 V), highlighting its superior corrosion performance. Full article
(This article belongs to the Special Issue Characterization, Properties, and Applications of New Metallic Alloys)
Show Figures

Figure 1

17 pages, 12649 KiB  
Article
Microstructure, Mechanical Properties, and Electrochemical Corrosion Behavior of CoCrFeNiNb and CoCrFeNiV High-Entropy Alloys Prepared via Mechanical Alloying and Spark Plasma Sintering
by Yan Zhu, Yiwen Liu, Zhaocang Meng and Jianke Tian
Metals 2025, 15(7), 814; https://doi.org/10.3390/met15070814 - 21 Jul 2025
Viewed by 271
Abstract
This study investigates the microstructural evolution, mechanical behavior, and electrochemical performance of CoCrFeNiNb and CoCrFeNiV HEAs fabricated via mechanical alloying and spark plasma sintering. Microstructural analyses reveal that the alloys have a face-centered cubic (FCC) matrix with Nb-enriched Laves and V-enriched σ phases. [...] Read more.
This study investigates the microstructural evolution, mechanical behavior, and electrochemical performance of CoCrFeNiNb and CoCrFeNiV HEAs fabricated via mechanical alloying and spark plasma sintering. Microstructural analyses reveal that the alloys have a face-centered cubic (FCC) matrix with Nb-enriched Laves and V-enriched σ phases. The CoCrFeNiNb HEA exhibits superior compressive strength and hardness than CoCrFeNiV due to uniform Laves phases distribution. Fracture surface analysis reveals that at lower sintering temperatures, the fracture is primarily caused by incomplete particle bonding, whereas at higher temperatures, brittle fracture modes dominated via transgranular cracking become predominant. The research results of potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) show that both alloys exhibited superior electrochemical stability in a 3.5 wt.% NaCl solution compared to the CoCrFeNi base alloy. X-ray photoelectron spectroscopy (XPS) analysis confirms the formation of stable oxide layers (Nb2O5 and V2O3) on the precipitated phases, acting as protective barriers against chloride ion penetration. The selective oxidation of Nb and V improves the integrity of the passive film, reducing the corrosion rates and enhancing the long-term durability. These findings highlight the critical role of precipitated phases in enhancing the corrosion resistance of HEAs, and emphasize their potential for use in extreme environments. Full article
(This article belongs to the Special Issue High-Entropy Alloys: Processing and Properties)
Show Figures

Figure 1

14 pages, 5562 KiB  
Article
Microstructure and Mechanical Properties of AlCoCrFeNi High-Entropy Alloy-Reinforced Ti-6Al-4V Composites
by Abdulaziz Kurdi, Animesh Kumar Basak, Nachimuthu Radhika and Ahmed Degnah
Materials 2025, 18(13), 3179; https://doi.org/10.3390/ma18133179 - 4 Jul 2025
Viewed by 500
Abstract
High-entropy alloy (HEA) particle-reinforced metal matrix composites (MMCs) are a new generation of MMCs with potential applications as orthopedic material in automotive, aerospace, and biomedical fields. In this study, AlCoCrFeNi HEA-reinforced Ti-6Al-4V metal matrix composites (MMCs) were prepared by microwave sintering. The microstructural [...] Read more.
High-entropy alloy (HEA) particle-reinforced metal matrix composites (MMCs) are a new generation of MMCs with potential applications as orthopedic material in automotive, aerospace, and biomedical fields. In this study, AlCoCrFeNi HEA-reinforced Ti-6Al-4V metal matrix composites (MMCs) were prepared by microwave sintering. The microstructural aspects of the MMC were investigated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM), with an emphasis on the interdiffusion (ID) layer. The mechanical properties of the composites were studied by micro-pillar compression at the micro-length scale. The results show that the ID layer exists between the HEA particles and the matrix, is equiaxed in nature, and leads towards metallurgical bonding within the composite. The strength of this ID layer (1573 MPa of yield strength and 1867 MPa of compressive strength) and its Young’s modulus (570 MPa) were about 1.5 times lower than that of the matrix. The HEA particles exhibit the highest strength (2157 MPa of yield strength and 3356 MPa of compressive strength) and Young’s modulus (643 MPa), whereas the matrix falls in between 2372 MPa of yield strength and 2661 MPa of compressive strength, and a Young’s modulus of 721 MPa. Full article
Show Figures

Figure 1

11 pages, 2583 KiB  
Article
Annealing Treatment of Al2CoCrFeNi High-Entropy Alloys: Synergistic Effect of Microstructure Modulation on Mechanical and Thermoelectric Properties
by Jiayi Xu, Lequn Kan, Hao Li, Xiaoke Gao, Wei Zhang, Wei Wei, Xiangkui Liu, Wenfeng Yang, Wenwen Sun and Xulong An
Coatings 2025, 15(6), 731; https://doi.org/10.3390/coatings15060731 - 19 Jun 2025
Viewed by 446
Abstract
This study synthesized Al2CoCrFeNi high-entropy alloy (HEA) using spark plasma sintering (SPS) followed by annealing treatment. The effects of heat treatment on the microstructure, mechanical properties, wear resistance, and thermoelectric properties were systematically investigated. The annealed alloy exhibited a microhardness increase [...] Read more.
This study synthesized Al2CoCrFeNi high-entropy alloy (HEA) using spark plasma sintering (SPS) followed by annealing treatment. The effects of heat treatment on the microstructure, mechanical properties, wear resistance, and thermoelectric properties were systematically investigated. The annealed alloy exhibited a microhardness increase from 538.5 HV to 550.9 HV and a significant improvement in ultimate compressive strength from 1540.74 MPa to 2563.67 MPa, attributed to grain homogenization and reduced dislocation density. Wear resistance tests revealed a decrease in wear rate from 7.15 × 10−5 mm3/(N·m) to 4.74 × 10−5 mm3/(N·m), with wear morphology analysis confirming enhanced resistance to plastic deformation. Thermoelectric characterization demonstrated that thermal diffusivity increased from 2.98 mm2/s to 3.11 mm2/s at room temperature, while the absolute Seebeck coefficient reached 8.0 μV/K at 200 °C, indicating improved electron transport efficiency due to lattice ordering. This combination of high hardness, high thermal conductivity, and excellent wear resistance presents unique application value in extreme tribological fields involving thermal management and simultaneous surface wear resistance and heat dissipation. Full article
Show Figures

Graphical abstract

14 pages, 13464 KiB  
Article
The Design and Microstructure Evolution Mechanism of New Cr1.3Ni2TiAl, CoCr1.5NiTi1.5Al0.2, and V0.3CoCr1.2NiTi1.1Al0.2 Eutectic High-Entropy Alloys
by Xin Zhang, Haitao Yan, Yao Xiao, Wenxin Feng and Yangchuan Cai
Metals 2025, 15(6), 613; https://doi.org/10.3390/met15060613 - 29 May 2025
Viewed by 338
Abstract
To expand the fundamental understanding of eutectic high-entropy alloys (EHEAs), three novel alloy systems—Cr1.3Ni2TiAl, CoCr1.5NiTi1.5Al0.2, and V0.3CoCr1.2NiTi1.1Al0.2—were rationally designed through synergistic phase diagram analysis and [...] Read more.
To expand the fundamental understanding of eutectic high-entropy alloys (EHEAs), three novel alloy systems—Cr1.3Ni2TiAl, CoCr1.5NiTi1.5Al0.2, and V0.3CoCr1.2NiTi1.1Al0.2—were rationally designed through synergistic phase diagram analysis and thermodynamic parameter calculations. Comprehensive microstructural characterization coupled with mechanical property evaluation revealed that these alloys possess FCC+BCC dual-phase architectures with atypical irregular eutectic morphologies. Notably, progressive microstructural evolution was observed, including amplified grain boundary density and the emergence of brittle nanoscale precipitates. Mechanical testing demonstrated superior compressive yield strengths in these alloys compared to conventional FCC+BCC EHEAs with ordered eutectic structures, albeit accompanied by reduced fracture strain. The Cr1.3Ni2TiAl alloy exhibited optimal ductility, with a maximum fracture strain of 15.6%, while V0.3CoCr1.2NiTi1.1Al0.2 achieved peak strength, with a compressive yield strength of 1389.5 MPa. Multiscale analysis suggests that the enhanced mechanical performance arises from the synergistic interplay between irregular eutectic configurations, expanded grain boundary area, and precipitation strengthening mechanisms. Full article
Show Figures

Figure 1

13 pages, 4614 KiB  
Article
Corrosion Resistance and Wear Properties of CoCrFeNiMn/TiC High-Entropy Alloy-Based Composite Coatings Prepared by Laser Cladding
by Qiang Zhan, Fangyan Luo, Jiang Huang, Zhanshan Wang, Bin Ma and Chengpu Liu
Lubricants 2025, 13(5), 210; https://doi.org/10.3390/lubricants13050210 - 10 May 2025
Viewed by 594
Abstract
CoCrFeNiMn high-entropy alloy (HEA) composite coatings with 0, 10, and 20 wt% TiC are synthesized through laser cladding technology, and their corrosion and wear resistance are systematically investigated. The X-ray diffraction (XRD) results show that with the addition of TiC, the phases of [...] Read more.
CoCrFeNiMn high-entropy alloy (HEA) composite coatings with 0, 10, and 20 wt% TiC are synthesized through laser cladding technology, and their corrosion and wear resistance are systematically investigated. The X-ray diffraction (XRD) results show that with the addition of TiC, the phases of TiC and M23C6 are introduced, and lattice distortion occurs simultaneously (accompanied by the broadening and leftward shift of the main Face-Centered Cubic (FCC) peak). Scanning electron microscopy (SEM) reveals that the incompletely melted TiC particles in the coating (S2) are uniformly distributed in the matrix with 20 wt% TiC, while in the coating (S1) with 10 wt% TiC, due to gravitational sedimentation and decomposition during laser processing, the distribution of the reinforcing phase is insufficient. When rubbed against Si3N4, with the addition of TiC, S2 exhibits the lowest friction coefficient of 0.699 and wear volume of 0.0398 mm3. The corrosion resistance of S2 is more prominent in the simulated seawater (3.5 wt% NaCl). S2 shows the best corrosion resistance: it has the largest self-corrosion voltage (−0.425 V vs. SCE), the lowest self-corrosion current density (1.119 × 10−7 A/cm2), and exhibits stable passivation behavior with a wide passivation region. Electrochemical impedance spectroscopy (EIS) confirms that its passivation film is denser. This study shows that the addition of 20 wt% TiC optimizes the microstructural homogeneity and synergistically enhances the mechanical strengthening and electrochemical stability of the coating, providing a new strategy for the making of HEA-based layers in harsh wear-corrosion coupling environments. Full article
(This article belongs to the Special Issue Wear-Resistant Coatings and Film Materials)
Show Figures

Figure 1

16 pages, 16663 KiB  
Article
Mechanical Response of FeNiCrCoAl High-Entropy Alloys at the Nanoscale: Predictions from Molecular Dynamics
by Ernesto Amaro, Joaly Delgado-Alvarez, Jairo Andrés Martínez-Uribe and Sergio Mejía-Rosales
Nanomaterials 2025, 15(9), 652; https://doi.org/10.3390/nano15090652 - 25 Apr 2025
Viewed by 657
Abstract
The mechanical response of high-entropy alloys (HEAs), specifically the FeNiCrCoAl HEA, was studied at both bulk and nanoparticle scales using molecular dynamics simulations. These simulations were performed using the LAMMPS software with an Embedded Atom Method (EAM) potential. The results show that Bulk [...] Read more.
The mechanical response of high-entropy alloys (HEAs), specifically the FeNiCrCoAl HEA, was studied at both bulk and nanoparticle scales using molecular dynamics simulations. These simulations were performed using the LAMMPS software with an Embedded Atom Method (EAM) potential. The results show that Bulk HEAs exhibited enhanced hardening and plasticity, while in nanoparticles, distinct deformation patterns were observed, including nanotwin formation, V-shaped stacking fault planes, and intermittent dislocation activity due to free surface effects. The crystallographic orientation with respect to the compression significantly affected the deformation mechanisms, with the [100] direction favoring progressive hardening, while the [110] and [111] directions exhibited different stacking fault and dislocation dynamics. A detailed analysis using von Mises stress and dislocation analysis provided insights into the effects of scale on mechanical properties. Full article
(This article belongs to the Special Issue Modeling, Simulation and Optimization of Nanomaterials)
Show Figures

Graphical abstract

18 pages, 4509 KiB  
Article
Impact of Metallic Implants on Dose Distribution in Radiotherapy with Electrons, Photons, Protons, and Very-High-Energy Beams
by Nicole Kmec Bedri, Milan Smetana and Ladislav Janousek
Appl. Sci. 2025, 15(8), 4536; https://doi.org/10.3390/app15084536 - 20 Apr 2025
Viewed by 811
Abstract
Metallic implants in radiotherapy patients alter dose distributions due to their high density and unique composition, potentially compromising treatment precision. This study evaluates the effects of three metallic materials, Co-Cr-Mo alloy, titanium alloy, and stainless steel, on dose distribution across four radiotherapy modalities: [...] Read more.
Metallic implants in radiotherapy patients alter dose distributions due to their high density and unique composition, potentially compromising treatment precision. This study evaluates the effects of three metallic materials, Co-Cr-Mo alloy, titanium alloy, and stainless steel, on dose distribution across four radiotherapy modalities: 6 MV photons, 15 MeV electrons, 170 MeV protons, and very-high-energy electrons (100 and 150 MeV). Monte Carlo simulations in the TOol for PArticle Simulations Monte Carlo (TOPAS MC) generated percentage depth dose curves and dose profiles, with dosage data standardized to a reference point and uncertainties addressed via error propagation. Results revealed that the Co-Cr-Mo alloy produced the most significant alterations. For instance, at 100 MeV Very High Electron Energy (VHEE), the dose at a 15 cm depth was 34.57% lower than in water; 6 MV photons showed a 15.16% reduction, and the proton Bragg peak shifted 9.5 cm closer to the source. These pronounced changes along the central beam axis affected dose distributions anterior and posterior to the metal. A prostate cancer simulation further demonstrated considerable dose reduction with deeply embedded metallic implants. The findings underscore the critical impact of implant properties on radiotherapy dose distributions, emphasizing the need to integrate these factors into clinical protocols to improve dosimetric accuracy and treatment safety. Full article
(This article belongs to the Special Issue Novel Research on Radiotherapy and Oncology)
Show Figures

Figure 1

15 pages, 7518 KiB  
Article
Microstructure, Mechanical Properties, and Corrosion Resistance of NiAl-CoCrFeMo High-Entropy Alloys by Controlling Mo Co-Doping
by Zhixin Xu, Ao Li, Xiaohong Wang, Yunting Su and Tengfei Ma
Coatings 2025, 15(4), 469; https://doi.org/10.3390/coatings15040469 - 15 Apr 2025
Viewed by 547
Abstract
In this work, two alloys of Ni35Al30(FeCo)25Cr10-xMox (x = 0, 5) were prepared via the vacuum arc melting method, and the effects of Mo on the microstructure, mechanical properties, and friction and [...] Read more.
In this work, two alloys of Ni35Al30(FeCo)25Cr10-xMox (x = 0, 5) were prepared via the vacuum arc melting method, and the effects of Mo on the microstructure, mechanical properties, and friction and wear properties of the alloys were investigated. The addition of Mo improved the mechanical properties, wear resistance, and corrosion resistance of the alloy system. With the addition of trace amounts of Mo, the precipitate phase of the alloys transformed from spherical to acicular and plate-like. The precipitated phases in a co-lattice relationship with the matrix allow for a substantial increase in the strength of the alloy at both room and elevated temperatures without a significant loss of plasticity. Ni35Al30(FeCo)25Cr5Mo5 has excellent mechanical properties, with a hardness of 558.2 HV; a yield strength of 1320 MPa at 600 °C; and a yield strength of 537 MPa at 850 °C. As the temperature increased, the wear mechanism changed from abrasive wear to adhesive wear. At 600 °C, Ni35Al30(FeCo)25Cr5Mo5 had the lowest wear rate of 1.78 × 10−5 (mm3/Nm). The precipitated phases, which have high hardness and maintain a conformal interface with the matrix, play an important role in slowing delamination wear, keeping the wear rate of this alloy low at both room and high temperatures. Electrochemical experiments on the two alloys at room temperature revealed that Ni35Al30(FeCo)25Cr5Mo5 exhibited excellent resistance to pitting, with a pitting potential of 0.016 V. Full article
Show Figures

Graphical abstract

17 pages, 9240 KiB  
Article
Investigation on the Impurity Removal Behavior During the Electron Beam Melting of V-Al Alloy
by Zixin Yang, Shuaishuai Wu, Shengli Guo, Baohong Zhu, Haochen Qiu, Wei Jiang and Xuehui Yan
Materials 2025, 18(8), 1710; https://doi.org/10.3390/ma18081710 - 9 Apr 2025
Viewed by 408
Abstract
This study systematically investigated the behavior of impurity removal during the electron beam melting (EBM) process of V-Al alloy. Characterization techniques such as ICP, GDMS, SEM, EPMA, and TEM were used to analyze the composition content and microscopic element distribution of V-Al alloy [...] Read more.
This study systematically investigated the behavior of impurity removal during the electron beam melting (EBM) process of V-Al alloy. Characterization techniques such as ICP, GDMS, SEM, EPMA, and TEM were used to analyze the composition content and microscopic element distribution of V-Al alloy and purified metal samples. Additionally, based on thermodynamic principles, the saturation vapor pressure and evaporation coefficients of impurity elements were calculated. The results indicate that the evaporation coefficients of Al, Fe, Co, Ni, Cr, and Ti exceed 1, enabling their effective removal during the melting process, thereby reducing their concentrations. In contrast, Si, Mo, Nb, and W exhibit evaporation coefficients significantly lower than 1, making their removal difficult. Instead, their concentrations increase due to the enrichment effect. Microstructural analysis reveals that Al migrates toward high-temperature regions, forming enrichment zones at the surface layer in contact with the electron beam. In contrast, Si, C, and O exhibit bidirectional migration characteristics, accumulating at both the upper and lower surfaces of the plate-shaped ingot. TEM observations indicate that some C reacts with V to form V2C, which has a higher melting point than vanadium, making further removal difficult. Full article
Show Figures

Figure 1

19 pages, 15732 KiB  
Article
Effect of Processing Parameters on the Microstructure and Corrosion Properties of AlCrFeCoNi High-Entropy Alloy Coatings Fabricated by Laser Cladding
by Jingfu Liu, Minghan Bai, Wenjing Xu and Tongjiao Chu
Metals 2025, 15(3), 231; https://doi.org/10.3390/met15030231 - 21 Feb 2025
Viewed by 731
Abstract
AlCrCoFeNi high-entropy alloys (HEAs) have been successfully synthesized by laser cladding. The AlCrFeCoNi HEA coatings were composed of planar crystal, columnar grain, and equiaxed grain from bottom to top. Face-centered cubic (FCC) was the major phase in coatings, and its content decreased when [...] Read more.
AlCrCoFeNi high-entropy alloys (HEAs) have been successfully synthesized by laser cladding. The AlCrFeCoNi HEA coatings were composed of planar crystal, columnar grain, and equiaxed grain from bottom to top. Face-centered cubic (FCC) was the major phase in coatings, and its content decreased when increasing laser power or reducing scanning speed. The precipitation in the HEA coatings were Al-Ni enriched B2 phase and FeAl3 intermetallic compounds. The interface zone had higher microhardness than the cladding zone due to the addition of Fe from the dilution role. The C2 (3 kW, 4 mm/s) and C9 (3.5 kW, 6 mm/s) coatings displayed the best corrosion resistance when taking the Ecorr (−0.327 V, −0.335 V), Icorr (0.236 μA·cm−2, 0.475 μA·cm−2), and Rct (224.2 kΩ/cm2, 121.1 kΩ/cm2) into consideration. Pitting dominated the corrosion process of the AlCrFeCoNi HEA coatings. Large grain boundary areas generated by the fine grain in the C2 and C9 coatings enhanced difficulty of ion transport along the grain boundary. Then, multiple corrosion sites on the surface promoted uniform corrosion and formed a protective oxide film, inhibiting serious pitting. This work provided an approach of laser cladding AlCrCoFeNi HEAs with different laser powers and scanning speeds, and insights into the correlation of anti-corrosion properties with the microstructure of AlCrCoFeNi coatings. Full article
Show Figures

Graphical abstract

17 pages, 4268 KiB  
Article
Intermetallic Compound and Solid Solutions of Co75Me25 (Me: Si, Fe, Cr) as Catalysts for the Electrochemical Reaction of Nitrate Conversion to Ammonia
by Irina Kuznetsova, Dmitry Kultin, Olga Lebedeva, Sergey Nesterenko, Elena Murashova and Leonid Kustov
Int. J. Mol. Sci. 2025, 26(4), 1650; https://doi.org/10.3390/ijms26041650 - 14 Feb 2025
Cited by 1 | Viewed by 935
Abstract
A sustainable reaction of electrocatalytic nitrate conversion in ammonia production (NO3RR) occurring under ambient conditions is currently of prime interest, as well as urgent research due to the real potential replacement of the environmentally unfavorable Haber–Bosch process. Herein, a series of [...] Read more.
A sustainable reaction of electrocatalytic nitrate conversion in ammonia production (NO3RR) occurring under ambient conditions is currently of prime interest, as well as urgent research due to the real potential replacement of the environmentally unfavorable Haber–Bosch process. Herein, a series of electrocatalysts based on two-component cobalt alloys was synthesized using low-cost non-noble metals Co, Fe, Cr, and also Si. The samples of electrocatalysts were characterized and studied by the following methods: SEM, EDX, XRD (both transmission and reflection), UV–VIS spectroscopy, optical microscopy, linear (and cyclic) voltammetry, chronoamperometry, and electrochemical impedance spectroscopy. Beyond that, the determination of electrochemically active surface area was also carried out for all samples of electrocatalysts. Unexpectedly, the sample having an intermetallic compound (IMC) of the composition Co2Si turned out to be the most highly effective. The highest Faradaic efficiency (FE) of 80.8% at E = −0.585 V (RHE) and an ammonia yield rate of 22.3 µmol h−1 cm−2 at E = −0.685 V (RHE) indicate the progressive role of IMC as the main active component of the electrocatalyst. Thus, this study demonstrates the promise and enormous potential of IMC as the main component of highly efficient electrocatalysts for NO3RR. This work can serve primarily as a starting point for future studies of electrocatalytic conversion reactions in the production of ammonia using IMC catalysts containing non-noble metals. Full article
(This article belongs to the Special Issue Feature Papers in 'Physical Chemistry and Chemical Physics' 2024)
Show Figures

Figure 1

18 pages, 6546 KiB  
Article
Microstructure and Properties of AlxCr1−xCoFeNi High-Entropy Alloys Prepared by Spark Plasma Sintering
by Gang Li, Xiangran Meng, Chunpin Geng, Chongshuo Wang, Haifang Ren, Xiaoying Guo, Sinan Li and Ying Tao
Materials 2025, 18(4), 755; https://doi.org/10.3390/ma18040755 - 8 Feb 2025
Cited by 2 | Viewed by 1044
Abstract
CoCrFeNi high-entropy alloys represent a novel structural material with considerable application potential in a variety of fields, including aerospace, automobiles, ships, machining, energy, soft magnetic materials, and hydrogen storage materials. The present study investigates the impact of the Al element on the structure [...] Read more.
CoCrFeNi high-entropy alloys represent a novel structural material with considerable application potential in a variety of fields, including aerospace, automobiles, ships, machining, energy, soft magnetic materials, and hydrogen storage materials. The present study investigates the impact of the Al element on the structure and properties of the alloy. The preparation of the AlxCr1−xCoFeNi (x = 0.1, 0.2, 0.3, 0.4, 0.5) powders involved the use of a variety of elemental metal powders as raw materials and a mechanical alloying process at 350 rpm for 40 h. The sintering of the alloy powders was subsequently conducted using spark plasma sintering at 1000 °C. The microstructure of the alloys was analyzed using XRD, SEM, and EDS, and the properties were analyzed using a universal testing machine, a hardness measurement, friction and wear measurement, and an electrochemical workstation. The study shows that when x = 0.1, the crystal structure of Al0.1Cr0.9CoFeNi consists of a double FCC phase and a trace amount of σ phase. As the aluminum content increases, part of the FCC phase begins to transform to BCC. When x = 0.2~0.5, the alloy consists of a double FCC phase and a BCC phase and a trace amount of a sigma phase. As the BCC phase in the alloy increases, the tensile strength of the alloy increases, the ability to deform plastically decreases, and the hardness increases. The highest ultimate tensile strength of 1163.14 MPa is exhibited by Al0.5Cr0.5CoFeNi, while the minimum elongation is 26.98% and the maximum hardness value is 412.6 HV. In the initial stage of friction measurement, the wear mechanism of AlxCr1−xCoFeNi is adhesive wear. However, as the test time progresses, an oxide layer begins to form on the alloy’s surface, leading to a gradual increase in the friction coefficient. At this stage, the wear mechanism becomes a combination of both adhesive and abrasive wear. Once the oxidation process and the wear process have reached a dynamic equilibrium, the friction coefficient stabilizes, and the wear mechanism transitions to a state of abrasive wear. The Al0.1Cr0.9CoFeNi alloy demonstrates the lowest friction coefficient and wear rate, exhibiting values of 0.513 and 0.020 × 10−3 mm3/Nm, respectively, while the Al0.5Cr0.5CoFeNi alloy demonstrates the highest performance, with a self-corrosion voltage of 0.202 V in a 3.5 wt.% NaCl solution. The experimental findings demonstrate that, in the presence of a decline in the Cr element within a high-entropy alloy, an augmentation in the Al element can facilitate the transition of the FCC phase to the BCC phase within the alloy, thereby enhancing its mechanical properties. However, in the AlxCr1−xCoFeNi HEAs, the presence of the Cr-rich and Cr-poor phases invariably results in selective corrosion in a neutral NaCl solution. The corrosion resistance of this alloy is weaker than that of a single-phase solid solution alloy with a similar chemical composition that only undergoes pitting corrosion. Full article
(This article belongs to the Special Issue Fabrication, Characterization, and Application of High Entropy Alloy)
Show Figures

Figure 1

19 pages, 56055 KiB  
Article
Excellent Strength–Impact Toughness Combination of Heterostructured Metastable Fe-Rich Medium-Entropy Alloy
by Dmitrii Panov, Ruslan Chernichenko, Stanislav Naumov, Egor Kudryavtsev, Alexey Pertcev, Nikita Stepanov, Sergey Zherebtsov and Gennady Salishchev
Materials 2025, 18(3), 476; https://doi.org/10.3390/ma18030476 - 21 Jan 2025
Viewed by 916
Abstract
The effect of a heterogeneous structure obtained via cold rotary swaging (CRS) and post-deformation annealing (PDA) on the dynamic mechanical properties of a non-equiatomic 49.5Fe-30Mn-10Co-10Cr-0.5C (at.%) medium-entropy alloy at room and cryogenic temperatures was studied. CRS to a reduction of 92% and subsequent [...] Read more.
The effect of a heterogeneous structure obtained via cold rotary swaging (CRS) and post-deformation annealing (PDA) on the dynamic mechanical properties of a non-equiatomic 49.5Fe-30Mn-10Co-10Cr-0.5C (at.%) medium-entropy alloy at room and cryogenic temperatures was studied. CRS to a reduction of 92% and subsequent PDA at 500–600 °C developed a heterogeneous structure consisting of a twinned γ-matrix and dislocation-free γ-grains in the rod core and an ultrafine-grained microstructure of γ-phase at the rod edge. Therefore, the maximum stress (σm) value increased. Charpy V-notch impact toughness (KCV) decreased after CRS to a reduction of 18% and stabilized after further straining. However, the contribution of the crack initiation energy consumption (KCVi) increased, while the crack propagation energy consumption (KCVP) decreased. PDA resulted in increases in KCVi and KCVP. A ductile-to-brittle transition occurred from −90 °C to −190 °C. Cryogenic Charpy impact testing of the heterostructured material revealed inflections on impact load–deflection curves. The phenomenon contributed to an increase in KCVP, providing a longer crack propagation path. The heterostructured material possessed an excellent σm-KCV combination in the temperature range between −90 °C and +20 °C. Full article
(This article belongs to the Section Advanced Materials Characterization)
Show Figures

Figure 1

18 pages, 23143 KiB  
Article
Effect of Al/Cu Ratio on Microstructure and High-Temperature Oxidation Resistance of AlxCoCrCuyFeNi High-Entropy Alloy Coatings
by Ling Zhou, Hongxi Liu, Qinghua Zhang, Jiazhu Liang, Yuanrun Peng, Xuanhong Hao, Chen Yang, Yaxia Liu and Yueyi Wang
J. Manuf. Mater. Process. 2025, 9(1), 13; https://doi.org/10.3390/jmmp9010013 - 5 Jan 2025
Cited by 3 | Viewed by 1510
Abstract
To improve high-temperature oxidation resistance for Ti6Al4V alloy, AlxCoCrCuyFeNi (x = 0, 0.3, 0.5, 0.7, 1.0; y = 1.0, 0.7, 0.5, 0.3, 0, x + y = 1.0) high-entropy alloy (HEA) coatings were prepared on the Ti6Al4V alloy substrate [...] Read more.
To improve high-temperature oxidation resistance for Ti6Al4V alloy, AlxCoCrCuyFeNi (x = 0, 0.3, 0.5, 0.7, 1.0; y = 1.0, 0.7, 0.5, 0.3, 0, x + y = 1.0) high-entropy alloy (HEA) coatings were prepared on the Ti6Al4V alloy substrate by a laser cladding technique. The results show that the coatings were mainly composed of FCC, BCC, and Ti-rich phases. Severe segregation of the Cu element occurred in the CoCrCuFeNi HEA coatings as a Cu-rich phase (FCC2). The Cu-rich phases decreased with a decreasing Cu content and completely disappeared until the Al content reached 1.0. The microhardnesses of the Cu1.0, Cu0.7Al0.3, Cu0.5Al0.5, Cu0.3Al0.7, and Al1.0 HEA coatings were 2.01, 2.06, 2.08, 2.09, and 2.11 times that of the substrate, and compared with those of a Ti6Al4V alloy substrate, the oxidation rates of the HEA coatings decreased by 55%, 51%, 47%, 42%, and 35%, respectively. The surface oxides of the five coatings were mainly composed of CuO, TiO2, Fe3O4, Cr2O3, and Al2O3. The increase in the Al content promoted the generation of Al2O3 film and Cr2O3 on the surfaces of the coatings, which significantly improved the high-temperature antioxidant performance of the high-entropy alloy coatings for 50 h at 800 °C. When x = 1.0, the coating showed the best high-temperature antioxidant performance. Full article
(This article belongs to the Topic Advanced Manufacturing and Surface Technology)
Show Figures

Figure 1

Back to TopTop