Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (101)

Search Parameters:
Keywords = Clostridiaceae

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 5256 KiB  
Article
Impact of Alginate Oligosaccharides on Ovarian Performance and the Gut Microbial Community in Mice with D-Galactose-Induced Premature Ovarian Insufficiency
by Yan Zhang, Hongda Pan, Dao Xiang, Hexuan Qu and Shuang Liang
Antioxidants 2025, 14(8), 962; https://doi.org/10.3390/antiox14080962 (registering DOI) - 5 Aug 2025
Abstract
Premature ovarian insufficiency (POI) is an important factor in female infertility and is often associated with oxidative stress. Alginate oligosaccharides (AOSs), derived from the degradation of alginate, have been demonstrated to have protective effects against various oxidative stress-related diseases. However, the impact of [...] Read more.
Premature ovarian insufficiency (POI) is an important factor in female infertility and is often associated with oxidative stress. Alginate oligosaccharides (AOSs), derived from the degradation of alginate, have been demonstrated to have protective effects against various oxidative stress-related diseases. However, the impact of AOSs on POI has not been previously explored. The current study explored the effects of AOSs on ovarian dysfunction in a mouse model of POI induced by D-galactose (D-gal). Female C57BL/6 mice were randomly divided into five groups: the control (CON), POI model (D-gal), and low-, medium-, and high-dose AOS groups (AOS-L, 100 mg/kg/day; AOS-M, 150 mg/kg/day; AOS-H, 200 mg/kg/day). For 42 consecutive days, mice in the D-gal, AOS-L, AOS-M, and AOS-H groups received daily intraperitoneal injections of D-gal (200 mg/kg/day), whereas those in the CON group received equivalent volumes of sterile saline. Following D-gal injection, AOSs were administered via gavage at the specified doses; mice in the CON and D-gal groups received sterile saline instead. AOS treatment markedly improved estrous cycle irregularities, normalized serum hormone levels, reduced granulosa cell apoptosis, and increased follicle counts in POI mice. Moreover, AOSs significantly reduced ovarian oxidative stress and senescence in POI mice, as indicated by lower levels of malondialdehyde (MDA), higher activities of catalase (CAT) and superoxide dismutase (SOD), and decreased protein expression of 4-hydroxynonenal (4-HNE), nitrotyrosine (NTY), 8-hydroxydeoxyguanosine (8-OHdG), and p16 in ovarian tissue. Analysis of the gut microbiota through 16S rRNA gene sequencing and short-chain fatty acid (SCFA) analysis revealed significant differences in gut microbiota composition and SCFA levels (acetic acid and total SCFAs) between control and D-gal-induced POI mice. These differences were largely alleviated by AOS treatment. AOSs changed the gut microbiota by increasing the abundance of Ligilactobacillus and decreasing the abundance of Clostridiales, Clostridiaceae, Marinifilaceae, and Clostridium_T. Additionally, AOSs mitigated the decline in acetic acid and total SCFA levels observed in POI mice. Notably, the total SCFA level was significantly correlated with the abundance of Ligilactobacillus, Marinifilaceae, and Clostridium_T. In conclusion, AOS intervention effectively mitigates ovarian oxidative stress, restores gut microbiota homeostasis, and regulates the microbiota–SCFA axis, collectively improving D-gal-induced POI. Therefore, AOSs represent a promising therapeutic strategy for POI management. Full article
(This article belongs to the Section Health Outcomes of Antioxidants and Oxidative Stress)
Show Figures

Figure 1

18 pages, 3168 KiB  
Article
Ammonium-Generating Microbial Consortia in Paddy Soil Revealed by DNA-Stable Isotope Probing and Metatranscriptomics
by Chao-Nan Wang, Yoko Masuda and Keishi Senoo
Microorganisms 2025, 13(7), 1448; https://doi.org/10.3390/microorganisms13071448 - 21 Jun 2025
Viewed by 515
Abstract
Rice paddy fields are sustainable agricultural systems as soil microorganisms help maintain nitrogen fertility through generating ammonium. In these soils, dissimilatory nitrate reduction to ammonium (DNRA), nitrogen fixation, and denitrification are closely linked. DNRA and denitrification share the same initial steps and nitrogen [...] Read more.
Rice paddy fields are sustainable agricultural systems as soil microorganisms help maintain nitrogen fertility through generating ammonium. In these soils, dissimilatory nitrate reduction to ammonium (DNRA), nitrogen fixation, and denitrification are closely linked. DNRA and denitrification share the same initial steps and nitrogen gas, the end product of denitrification, can serve as a substrate for nitrogen fixation. However, the microorganisms responsible for these three reductive nitrogen transformations, particularly those focused on ammonium generation, have not been comprehensively characterized. In this study, we used stable isotope probing with 15NO3, 15N2O, and 15N2, combined with 16S rRNA high-throughput sequencing and metatranscriptomics, to identify ammonium-generating microbial consortia in paddy soils. Our results revealed that several bacterial families actively contribute to ammonium generation under different nitrogen substrate conditions. Specifically, Geobacteraceae (N2O and +N2), Bacillaceae (+NO3 and +N2), Rhodocyclaceae (+N2O and +N2), Anaeromyxobacteraceae (+NO3 and +N2O), and Clostridiaceae (+NO3 and +N2) were involved. Many of these bacteria participate in key ecological processes typical of paddy environments, including iron or sulfate reduction and rice straw decomposition. This study revealed the ammonium-generating microbial consortia in paddy soil that contain several key bacterial drivers of multiple reductive nitrogen transformations and suggested their diverse functions in paddy soil metabolism. Full article
Show Figures

Figure 1

16 pages, 1562 KiB  
Article
Gut Microbiota Variation in Aging Dogs with Osteoarthritis
by Fatemeh Balouei, Christina de Rivera, Andrea Paradis, Bruno Stefanon, Stephanie Kelly, Noelle McCarthy and Paolo Mongillo
Animals 2025, 15(11), 1619; https://doi.org/10.3390/ani15111619 - 30 May 2025
Viewed by 536
Abstract
Gut microbiota composition plays a crucial role in host health and may be influenced by age and disease conditions. This study investigates the gut microbiota diversity of 175 dogs across three age groups (Junior (20–46 months, 43 dogs), Adult (47–92 months, 58 dogs), [...] Read more.
Gut microbiota composition plays a crucial role in host health and may be influenced by age and disease conditions. This study investigates the gut microbiota diversity of 175 dogs across three age groups (Junior (20–46 months, 43 dogs), Adult (47–92 months, 58 dogs), and Senior (93–168 months, 74 dogs), and examined the impact of osteoarthritis on microbial composition. Alpha diversity analysis using the Shannon and Chao1 indices were significant (p < 0.05) in Senior dogs Beta diversity analysis based on Bray–Curtis dissimilarity indices demonstrated substantial overlap in gut microbiota composition across age groups, with no significant clustering observed (p > 0.05). A second analysis compared the microbiota of 69 healthy dogs and 81 dogs affected by osteoarthritis (OA) in the three classes of age. No significant differences were shown for alpha diversity and beta diversity between healthy and OA dogs. This indicates that aging and osteoarthritis do not induce significant shifts in microbial beta diversity, although high inter-individual variability was noted. Linear Discriminant Analysis (LDA) Effect Size (LEfSe) analysis identified distinct bacterial taxa associated with different age groups. Linear Discriminant Analysis (LDA) Effect Size (LEfSe) analysis identified distinct bacterial taxa associated with different age groups. Junior dogs exhibited enrichment in Blautia, Erysipelotrichaceae, and Clostridium, while Adult dogs were characterized by higher abundances of Prevotella, Streptococcus, and Ruminococcaceae. Senior dogs had increased representation of Prevotella and Ruminococcus. In OA dogs, Peptococcus, Peptostreptococcus, Clostridiaceae, and Coprobacillus were significantly enriched in comparison to healthy dogs, suggesting potential microbiota shifts associated with osteoarthritis. Overall, these findings indicate that gut microbiota diversity varies across different life stages, specific bacterial taxa were differentially enriched in relation to age and OA. This study enhances our understanding of gut microbiota dynamics in dogs and provides insights into potential age- and disease-related microbial signatures. Full article
(This article belongs to the Section Companion Animals)
Show Figures

Figure 1

15 pages, 3611 KiB  
Article
Distinct Gut Microbiota Profiles in Unruptured and Ruptured Intracranial Aneurysms: Focus on Butyrate-Producing Bacteria
by Peter Csecsei, Bertalan Takacs, Lídia Pasitka, Reka Varnai, Zoltan Peterfi, Brigitta Orban, Mate Czabajszki, Csaba Olah and Attila Schwarcz
J. Clin. Med. 2025, 14(10), 3488; https://doi.org/10.3390/jcm14103488 - 16 May 2025
Viewed by 467
Abstract
Background: Gut microbiome composition may influence the risk of intracranial aneurysm rupture. Methods: This study analyzed the gut microbiota of 48 patients—24 with ruptured aneurysms (RA) and 24 with unruptured intracranial aneurysms (UIA)—using next-generation sequencing. Results: While alpha diversity was similar [...] Read more.
Background: Gut microbiome composition may influence the risk of intracranial aneurysm rupture. Methods: This study analyzed the gut microbiota of 48 patients—24 with ruptured aneurysms (RA) and 24 with unruptured intracranial aneurysms (UIA)—using next-generation sequencing. Results: While alpha diversity was similar between groups, beta diversity revealed significant taxonomic differences (Bray–Curtis: p = 0.02; unweighted UniFrac: p = 0.0291). Both groups were dominated by the phyla Bacillota, Bacteroidota, and Proteobacteria, but genus- and family-level differences were observed. RA patients showed higher abundances of Anaerotruncus, Coprobacillus, Sellimonas, Hungatella, and Ruthenibacterium, whereas UIA patients exhibited greater levels of Faecalibacterium, Brotolimicola, Clostridiaceae, Roseburia, and Agathobaculum. Linear discriminant analysis identified one class, 10 genera, and 17 species that differed significantly between groups. Notably, Faecalibacterium prausnitzii and Agathobaculum butyriciproducens—bacteria known for their anti-inflammatory and neuroprotective properties—were enriched in UIA patients. Conclusions: These findings suggest that gut microbiota, particularly short-chain fatty acid–producing bacteria, may contribute to vascular protection and aneurysm pathophysiology. Microbiome-based therapeutic strategies could offer new avenues for the prevention of cerebrovascular disease. Full article
(This article belongs to the Section Clinical Neurology)
Show Figures

Figure 1

15 pages, 5314 KiB  
Article
Dynamic Changes in the Gut Microbiota During Peripartum in Jennies
by Xinyue Wang, Yang Shao, Xiaoling Zhou, Zheng Li, Jingze Liu, Mingyao Tang, Yixin Yang and Liang Deng
Animals 2025, 15(9), 1337; https://doi.org/10.3390/ani15091337 - 6 May 2025
Viewed by 440
Abstract
The peripartum period is critical for breeding female donkeys (i.e., jennies) and ensuring the delivery of healthy neonatal foals. The gut microbiota deeply influences the host metabolism. This study aimed to investigate the dynamic changes in the gut microbiome during the peripartum period [...] Read more.
The peripartum period is critical for breeding female donkeys (i.e., jennies) and ensuring the delivery of healthy neonatal foals. The gut microbiota deeply influences the host metabolism. This study aimed to investigate the dynamic changes in the gut microbiome during the peripartum period in jennies. Fresh fecal samples of eight adult jennies were collected at the following seven sampling time points: 21, 7, and 3 days prepartum (G21, G7, and G3) and 1, 3, 7, and 14 days postpartum (L1, L3, L7, and L14). Sequencing of the V4 hypervariable regions of the 16S rRNA genes was carried out using fecal samples to identify the differences in the microbiome across the peripartum period. Bacteroidota and Firmicutes were the most abundant bacterial phyla in the feces. Treponema and Lachnospiraceae XPB1014 group significantly increased in the L3 group compared to the G7 group (q < 0.05), and a decline trend was observed in L1 group around parturition. The genus Clostridium sensu stricto 1, family Clostridiaceae, and order Clostridiales were considered to be biomarkers of the L3 group. Among the 25 functional pathways detected by Kyoto Encyclopedia of Genes and Genomes pathway analysis, beta lactam resistance, insulin resistance, and peptidases were the top three important pathways observed in the gut microbiota during the peripartum period in jennies. The gut microbial structure changed significantly at different time points during the peripartum period in jennies. These results contribute to a better understanding of the gut microbiota to ensure health care during important phases from late pregnancy to early lactation in jennies. Full article
(This article belongs to the Special Issue Current Research on Donkeys and Mules)
Show Figures

Graphical abstract

14 pages, 3892 KiB  
Article
Effects of Different Stages of Training on the Intestinal Microbes of Yili Horses Analyzed Using Metagenomics
by Yuan-Fang Sun, Zi-Xiang Han, Xin-Kui Yao, Jun Meng, Wan-Lu Ren, Chuan-Kun Wang, Xin-Xin Yuan, Ya-Qi Zeng, Yong-Fa Wang, Zhi-Wen Sun and Jian-Wen Wang
Genes 2025, 16(5), 504; https://doi.org/10.3390/genes16050504 - 27 Apr 2025
Viewed by 555
Abstract
Objectives: The aim of this study was to investigate the effects of different stages of training on the intestinal microbial abundance of Yili horses. Methods: Ten Yili horses, all aged 2 years old and weighing 305 ± 20 kg, were selected [...] Read more.
Objectives: The aim of this study was to investigate the effects of different stages of training on the intestinal microbial abundance of Yili horses. Methods: Ten Yili horses, all aged 2 years old and weighing 305 ± 20 kg, were selected and divided into a training group and an untrained group. The training group performed riding training 6 days a week, and the untrained group moved freely in the activity circle every day. Fecal samples were collected on days 30 and 60, and the intestinal microorganisms were detected and analyzed using metagenomics. Results: Compared with the 30-day untrained group, the relative abundances of Bacteroidetes were significantly increased in the 30-day training group (p < 0.01). Conversely, the abundances of Clostridiaceae, Clostridium, and Ruminococcus were significantly decreased (p < 0.01), whereas those of Prevotella, Bacteroideaceae, and Bacteroidetes were significantly increased (p < 0.05). Additionally, the relative abundances of Firmicutes and Actinomycetes were significantly decreased (p < 0.05). Compared with the 60-day untrained group, no significant differences in the phyla Bacteriaceae and Bacteriae of the 60-day training group (p > 0.05) were observed. In the linear discriminant analysis effect size analysis, seven significantly different bacteria were detected in the fecal flora of horses in the 30-day training group versus the untrained 30-day group, but only one significantly different bacterium was detected after 60 days. The Kyoto Encyclopedia of Genes and Genomes analysis showed that the differentially expressed genes were related to metabolism and the environmental information processing pathway, carbohydrate metabolism, and membrane transport pathways. Conclusions: Therefore, training seems to affect the diversity and composition of the gut microbiota of Yili horses, especially during the first 30 days of training. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

16 pages, 2736 KiB  
Article
Inclusion of Multi-Strained Probiotics Improves the Fecal Microbiota and Carcass Quality of Pigs
by Ting-Yu Lee, Yi-Chu Liao, Hsiao-Tung Chang, Hsiao-Ching Lin, Hsiu-Ming Weng, I-Ju Chang, San-Land Young, Perng-Chih Shen, Bishnu Prasad Bhattarai, Jin-Seng Lin and Jai-Wei Lee
Animals 2025, 15(7), 993; https://doi.org/10.3390/ani15070993 - 30 Mar 2025
Viewed by 620
Abstract
Limited studies have addressed the effects of multi-strain probiotics on gut microbiota and their influence on meat traits in pigs. Thus, this study investigated the impact of including a commercialized multi-strain probiotic product (SYN) (SYNLAC-LeanAd) into the dietary regimen of crossbred Landrace × [...] Read more.
Limited studies have addressed the effects of multi-strain probiotics on gut microbiota and their influence on meat traits in pigs. Thus, this study investigated the impact of including a commercialized multi-strain probiotic product (SYN) (SYNLAC-LeanAd) into the dietary regimen of crossbred Landrace × Yorkshire × Duroc (LYD) pigs. The study spanned a duration of 22 weeks, from weaning until slaughtering, during which the carcass traits, meat quality, and fecal microbiota profile were compared to those of pigs fed diets with or without an antibiotic growth promoter (AGP). The results demonstrated that the inclusion of SYN significantly improved meat quality parameters, including marbling score, tenderness, and intramuscular fat (p < 0.05) in comparison to pigs fed with AGP. The analysis of fecal microbiota revealed that SYN inclusion increased the populations of Clostridiaceae, Coriobacteriaceae, and Erysipelotrichaceae compared to the control and AGP groups. Additionally, the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis predicted that the amino acid and lipid metabolism pathways were facilitated in pigs from the SYN group. These findings suggest that the inclusion of SYNLAC-LeanAd has the potential to positively impact the fecal microbiota profile, which in turn may lead to improved carcass traits and meat quality in commercial crossbred pigs. Full article
(This article belongs to the Special Issue Feed Additives in Animal Nutrition)
Show Figures

Figure 1

14 pages, 4070 KiB  
Article
Comparative Analysis of Gut Microbiota Diversity Across Different Digestive Tract Sites in Ningxiang Pigs
by Wangchang Li, Xianglin Zeng, Lu Wang, Lanmei Yin, Qiye Wang and Huansheng Yang
Animals 2025, 15(7), 936; https://doi.org/10.3390/ani15070936 - 25 Mar 2025
Cited by 4 | Viewed by 953
Abstract
Background: Microbial communities in the gastrointestinal tract play a critical role in nutrient absorption, metabolism, and overall health of animals. Understanding the structure and function of tissue-specific microbial communities in Ningxiang pigs is essential for optimizing their growth, development, and nutritional efficiency. However, [...] Read more.
Background: Microbial communities in the gastrointestinal tract play a critical role in nutrient absorption, metabolism, and overall health of animals. Understanding the structure and function of tissue-specific microbial communities in Ningxiang pigs is essential for optimizing their growth, development, and nutritional efficiency. However, the diversity and functional roles of microbiota in different nutrient absorption tissues remain underexplored. Methods: We collected samples from four key nutrient absorption tissues (NFC: Cecal Content, NFI: Ileal Content, NFL: Colonic Content, NFG: Gastric Content, N = 6) of Ningxiang pigs and performed 16S rRNA gene sequencing to analyze microbial community composition. Bioinformatics analyses included alpha and beta diversity assessments, linear discriminant analysis effect size (LEfSe) for biomarker identification, and PICRUSt2-based functional prediction. Comparative metabolic abundance analysis was conducted to explore functional differences among tissues. Results: Alpha diversity indices (ACE, Chao1, Simpson, and Shannon) revealed significant differences in microbial richness and evenness among the four tissues. At the phylum level, Firmicutes dominated the microbiota, while Bacteroidota was prominent in NFC and NFL. LEfSe analysis identified tissue-specific dominant microbial groups, such as f_Prevotellaceae in NFC, o_Lactobacillales in NFG, f_Clostridiaceae in NFI, and f_Muribaculaceae in NFL. Functional profiling using PICRUSt2 showed that the microbiota was primarily involved in organismal systems (e.g., aging, digestion), cellular processes (e.g., cell growth, transport), environmental information processing (e.g., signaling), genetic information processing (e.g., transcription, translation), and metabolic regulation (e.g., amino acid and carbohydrate metabolism). Comparative metabolic abundance analysis highlighted distinct functional profiles across tissues, with significant differences observed in pathways related to the immune system, energy metabolism, lipid metabolism, transcriptional and translational regulation, and aging. Conclusions: Our findings demonstrate that tissue-specific microbial communities in Ningxiang pigs exhibit distinct structural and functional characteristics, which are closely associated with nutrient absorption and metabolic regulation. These results provide valuable insights into the roles of microbiota in the growth and health of Ningxiang pigs and pave the way for future studies on microbe-mediated nutritional interventions. Full article
Show Figures

Figure 1

23 pages, 3766 KiB  
Article
Dynamic Spread of Antibiotic Resistance Determinants by Conjugation to a Human-Derived Gut Microbiota in a Transplanted Mouse Model
by Azam A. Sher, Charles E. Whitehead-Tillery, Ashley M. Peer, Julia A. Bell, Daniel B. Vocelle, Joshua T. Dippel, Lixin Zhang and Linda S. Mansfield
Antibiotics 2025, 14(2), 152; https://doi.org/10.3390/antibiotics14020152 - 4 Feb 2025
Cited by 1 | Viewed by 1955
Abstract
Background. Antibiotic-resistant (AR) bacteria pose an increasing threat to public health, but the dynamics of antibiotic resistance gene (ARG) spread in complex microbial communities are poorly understood. Conjugation is a predominant direct cell-to-cell mechanism for the horizontal gene transfer (HGT) of ARGs. We [...] Read more.
Background. Antibiotic-resistant (AR) bacteria pose an increasing threat to public health, but the dynamics of antibiotic resistance gene (ARG) spread in complex microbial communities are poorly understood. Conjugation is a predominant direct cell-to-cell mechanism for the horizontal gene transfer (HGT) of ARGs. We hypothesized that commensal Escherichia coli donor strains would mediate the conjugative transfer of ARGs to phylogenetically distinct bacteria without antibiotic selection pressure in gastrointestinal tracts of mice carrying a human-derived microbiota with undetectable levels of E. coli. Our objective was to identify a mouse model to study the factors regulating AR transfer by conjugation in the gut. Methods. Two donor E. coli strains were engineered to carry chromosomally encoded red fluorescent protein, and an ARG- and green fluorescent protein (GFP)-encoding broad host range RP4 conjugative plasmid. Mice were orally gavaged with two donor strains (1) E. coli MG1655 or (2) human-derived mouse-adapted E. coli LM715-1 and their colonization assessed by culture over time. Fluorescence-activated cell sorting (FACS) and 16S rDNA sequencing were performed to trace plasmid spread to the microbiota. Results. E. coli LM715-1 colonized mice for ten days, while E. coli MG1655 was not recovered after 72 h. Bacterial cells from fecal samples on days 1 and 3 post inoculation were sorted by FACS. Samples from mice given donor E. coli LM715-1 showed an increase in cells expressing green but not red fluorescence compared to pre-inoculation samples. 16S rRNA gene sequencing analysis of FACS GFP positive cells showed that bacterial families Lachnospiraceae, Clostridiaceae, Pseudomonadaceae, Rhodanobacteraceae, Erysipelotrichaceae, Oscillospiraceae, and Butyricicoccaceae were the primary recipients of the RP4 plasmid. Conclusions. Results show this ARG-bearing conjugative RP4 plasmid spread to diverse human gut bacterial taxa within a live animal where they persisted. These fluorescent marker strategies and human-derived microbiota transplanted mice provided a tractable model for investigating the dynamic spread of ARGs within gut microbiota and could be applied rigorously to varied microbiotas to understand conditions facilitating their spread. Full article
(This article belongs to the Special Issue Epidemiology and Mechanism of Bacterial Resistance to Antibiotics)
Show Figures

Figure 1

19 pages, 2453 KiB  
Article
Isolated White Lupin Proteins Beneficially Modulate the Intestinal Microbiota Composition in Rats
by Luis A. Rubio and Giulia Chiesa
Nutrients 2025, 17(3), 551; https://doi.org/10.3390/nu17030551 - 31 Jan 2025
Viewed by 1028
Abstract
Background: Previous work has shown that the mostly beneficial modulation of intestinal microbiota generally found with legume-based diets is likely to be due, at least in part, to their constituent protein components. Objectives: The faecal microbiota composition was studied in rats fed diets [...] Read more.
Background: Previous work has shown that the mostly beneficial modulation of intestinal microbiota generally found with legume-based diets is likely to be due, at least in part, to their constituent protein components. Objectives: The faecal microbiota composition was studied in rats fed diets differing only in their constituent proteins. Methods: Rats (n = 10/group) were fed for 28 days diets based in milk [(lactalbumin (LA), casein (CAS)], or white lupin (Lupinus albus) protein isolate (LPI). Results: Significant differences among the three groups in bacteria composition and functionality were found by both qPCR and Illumina sequencing analysis. Significant (p < 0.01) differences were found by ANOSIM and Discriminant Analysis among groups at the family, genus and species levels in both microbiota composition and functionality. A number of groups able to explain the differences between animal (casein, lactalbumin) and lupin proteins were revealed by LEfSe and PCA analysis. Specifically, feeding the CAS diet resulted in lower Bifidobacteria and Lactobacilli compared to the other diets, and the LPI diet gave place to lower Enterobacteria than CAS, and lower Escherichia/Shigella than LA and CAS. Differences in the LA group were attributable to Bifidobacterium spp., Collinsella spp. (in particular C. stercoris), Bacteroides spp., Eubacterium spp. (in particular E. dolichum), Roseburia spp. (in particular R. faecis), and Oscillospira spp. In the case of the CAS group, the organisms were Parabacteroides spp., Blautia spp., Enterobacteriaceae spp., Turicibacter spp., species from Christenellaceae, species from Alphaproteobacteria and Mogibacteriaceae, Coprobacillus spp. and Dorea spp. In the case of the LPI group, the organisms were Lactobacillus spp. (Lactobacillus spp. and L. reuteri), species from Clostridiaceae, species from Peptostreptococcaceae, species from Erysipelotrichaceae, and Adlercreutzia spp. Conclusions: Based on the results obtained, LPI is likely to beneficially modulate the intestinal microbiota composition in rats. Additionally, LA-based diet was associated to a healthier microbiota composition than CAS, although the CAS diet also modulated the intestinal microbiota to a composition compatible with improved bowel movement frequency and lipid metabolism. Full article
(This article belongs to the Special Issue Protein Intake and Metabolism in Sports Performance)
Show Figures

Graphical abstract

23 pages, 1102 KiB  
Review
Botulinum Toxin: A Comprehensive Review of Its Molecular Architecture and Mechanistic Action
by Raj Kumar and Bal Ram Singh
Int. J. Mol. Sci. 2025, 26(2), 777; https://doi.org/10.3390/ijms26020777 - 17 Jan 2025
Cited by 5 | Viewed by 5931
Abstract
Botulinum toxin (BoNT), the most potent substance known to humans, likely evolved not to kill but to serve other biological purposes. While its use in cosmetic applications is well known, its medical utility has become increasingly significant due to the intricacies of its [...] Read more.
Botulinum toxin (BoNT), the most potent substance known to humans, likely evolved not to kill but to serve other biological purposes. While its use in cosmetic applications is well known, its medical utility has become increasingly significant due to the intricacies of its structure and function. The toxin’s structural complexity enables it to target specific cellular processes with remarkable precision, making it an invaluable tool in both basic and applied biomedical research. BoNT’s potency stems from its unique structural features, which include domains responsible for receptor recognition, membrane binding, internalization, and enzymatic cleavage. This division of labor within the toxin’s structure allows it to specifically recognize and interact with synaptic proteins, leading to precise cleavage at targeted sites within neurons. The toxin’s mechanism of action involves a multi-step process: recognition, binding, and catalysis, ultimately blocking neurotransmitter release by cleaving proteins like SNAP-25, VAMP, and syntaxin. This disruption in synaptic vesicle fusion causes paralysis, typically in peripheral neurons. However, emerging evidence suggests that BoNT also affects the central nervous system (CNS), influencing presynaptic functions and distant neuronal systems. The evolutionary history of BoNT reveals that its neurotoxic properties likely provided a selective advantage in certain ecological contexts. Interestingly, the very features that make BoNT a potent toxin also enable its therapeutic applications, offering precision in treating neurological disorders like dystonia, spasticity, and chronic pain. In this review, we highlight the toxin’s structural, functional, and evolutionary aspects, explore its clinical uses, and identify key research gaps, such as BoNT’s central effects and its long-term cellular impact. A clear understanding of these aspects could facilitate the representation of BoNT as a unique scientific paradigm for studying neuronal processes and developing targeted therapeutic strategies. Full article
(This article belongs to the Collection Feature Papers in Molecular Toxicology)
Show Figures

Figure 1

19 pages, 18931 KiB  
Article
Effects of Dietary Tea Polyphenols on the Growth, Antioxidant Status, Immune Function, and Intestinal Microbiota of Largemouth Bass (Micropterus salmoides)
by Zixin Yang, Qiuwen Su, Jiafa Yang, Zhijun Li, Shanren Lan, Xu Jia, Paihuai Ouyang and Huijuan Tang
Animals 2025, 15(2), 222; https://doi.org/10.3390/ani15020222 - 15 Jan 2025
Cited by 2 | Viewed by 1312
Abstract
This research aimed to explore the impact of tea polyphenol (TP) supplementation on the development, antioxidant properties, immune responses, and gut wellness in largemouth bass (Micropterus salmoides, LMB). Four diets with varying levels of TPs (0.00%, 0.02%, 0.04%, and 0.08%) were [...] Read more.
This research aimed to explore the impact of tea polyphenol (TP) supplementation on the development, antioxidant properties, immune responses, and gut wellness in largemouth bass (Micropterus salmoides, LMB). Four diets with varying levels of TPs (0.00%, 0.02%, 0.04%, and 0.08%) were devised to feed LMB with an initial weight of 4.3 ± 0.02 g for 56 days, among which the intermittent feeding (IF) group was fed a diet supplemented with TP8 for 7 days, followed by a basal diet for another 7 days, and this was repeated until the end (56th day). The results demonstrated that supplementation with 0.04% or 0.08% TPs in the diet could reduce the crude lipid content and increase the crude protein content of LMB (p < 0.05). The levels of total cholesterol (CHO) and low-density lipoprotein (LDL) in the serum significantly decreased with the addition of 0.08% dietary TPs to the diet (p < 0.05). Dietary TPs can stimulate the activities of antioxidant enzymes such as superoxide dismutase (SOD) and catalase (CAT) and enhance the antioxidant capacity of LMB (p < 0.05). The activities of immune enzymes such as acid phosphatase (ACP) were increased to improve the immune response via the addition of TPs (p < 0.05). Supplementation with 0.02% and 0.04% TPs reduced liver fatty infiltration and alleviated hepatocyte damage. Compared with the control diet, dietary TPs significantly increased villus height (VH), villus width (VW), and lipase (LPS) activity in the intestine (p < 0.05), and supplementation with 0.04% TPs significantly increased muscular layer thickness (MT) (p < 0.05). With the increase in dietary TPs, distinct differences were observed in the intestinal microbial composition and the relative abundance of potential pathogens, especially Clostridiaceae, which decreased, along with the enrichment of pathways related to metabolism, including amino acid metabolism, carbohydrate metabolism, and lipid metabolism. Additionally, intermittent feeding could alleviate the adverse effects caused by a high dosage. In conclusion, dietary TPs of LMB could enhance antioxidant capacity and immunity and improve intestinal health, and intermittent feeding could mitigate the adverse effects caused by a high dosage. Full article
(This article belongs to the Section Aquatic Animals)
Show Figures

Figure 1

19 pages, 6825 KiB  
Article
Influence of Effective Microbial Additives Inoculation on Indigenous Bacterial Community Dynamics and Co-Occurrence Patterns During the Composting of Mixed Food Waste and Livestock Manure
by Donggyu Bang, Woojin Chung and Soonwoong Chang
Agronomy 2024, 14(12), 2973; https://doi.org/10.3390/agronomy14122973 - 13 Dec 2024
Cited by 3 | Viewed by 2159
Abstract
Sustainable management of organic waste, such as food waste (FW) and livestock manure (LS), is essential for reducing pollution and promoting resource recycling. This study investigated the effects of Bacillus sp. inoculation and biochar addition on composting efficiency, microbial dynamics, and physicochemical properties. [...] Read more.
Sustainable management of organic waste, such as food waste (FW) and livestock manure (LS), is essential for reducing pollution and promoting resource recycling. This study investigated the effects of Bacillus sp. inoculation and biochar addition on composting efficiency, microbial dynamics, and physicochemical properties. Bacillus sp. accelerated the breakdown of cellulose and lignin, reduced moisture content, stabilized pH, and mitigated ammonia volatilization. Biochar reduced ammonia emissions by 17.04%, increasing to 28.89% with Bacillus sp. Next-generation sequencing revealed Bacillus sp. enhanced microbial diversity, suppressed pathogens, and promoted beneficial microbial interactions. LS treatments retained Firmicutes dominance (up to 95.17%), improving nitrogen retention, while FW treatments transitioned to Proteobacteria and Bacteroidota, driving plant material decomposition. By day 35, Bacillus sp. increased late-stage microbial taxa (Deinococcota, Myxococcota), linked to cellulose degradation and pathogen suppression. In FW biochar compost (FWBC), Planococcaceae and Bacillaceae synergistically decomposed complex organic matter. LS biochar compost (LSBC) reduced anaerobic families like Clostridiaceae and Peptostreptococcaceae, lowering methane and hydrogen sulfide emissions. Microbial network analysis highlighted improved cooperation under Bacillus sp., with LSBC sustaining positive interactions at higher dosages. These results demonstrate that microbial inoculants and biochar enhance composting efficiency, nutrient cycling, and environmental sustainability. Full article
Show Figures

Figure 1

18 pages, 1496 KiB  
Review
Association of Gut Microbiome and Dipeptidyl Peptidase 4 in Immune-Mediated Inflammatory Bowel Disease: A Rapid Literature Review
by Sandra F. Gomes, André Valois, Maria Manuela Estevinho, Mafalda Santiago and Fernando Magro
Int. J. Mol. Sci. 2024, 25(23), 12852; https://doi.org/10.3390/ijms252312852 - 29 Nov 2024
Cited by 2 | Viewed by 1555
Abstract
Immune-mediated inflammatory diseases (IMIDs) are characterized by dysregulated immune responses and chronic tissue inflammation. In the setting of inflammatory bowel disease (IBD), dipeptidyl peptidase 4 (DPP4) and gut microorganisms have been proved to interplay, potentially influenced by dietary factors. This rapid review aimed [...] Read more.
Immune-mediated inflammatory diseases (IMIDs) are characterized by dysregulated immune responses and chronic tissue inflammation. In the setting of inflammatory bowel disease (IBD), dipeptidyl peptidase 4 (DPP4) and gut microorganisms have been proved to interplay, potentially influenced by dietary factors. This rapid review aimed to study the DPP4-gut microbiome link in IBD. A search across five databases and two gray literature sources identified seven relevant studies reporting data on DPP4 and gut microbiome in patients with IBD-related IMIDs or in vitro or in vivo models: one cross-sectional, one in vitro, and five in vivo studies. The findings revealed a significant impact of DPP4 and its substrates, i.e., glucagon-like peptide-1/2 (GLP-1/2), on the composition of gut microbiome and on the development of dysbiosis. Increased DPP4 activity is associated with decreased GLP-1/2; increased pathogenic bacterial phyla such as Actinobacteria, Bacteroidetes, Deferribacteres, Firmicutes, Fusobacteriota, Proteobacteria, and Verrucomicrobia; and decreased alpha diversity of beneficial gut microbes, including Clostridiaceae, Lachnospiraceae, and Ruminococcaceae families and short-chain fatty acid-producing bacteria like Odoribacter and Butryvibrio spp., with exacerbation of intestinal inflammation. This overview revealed that understanding the DPP4-gut microbiome association is critical for the development of DPP4-targeted therapeutic strategies to guarantee gut microbiome balance and modulation of immune response in IBD. Full article
(This article belongs to the Special Issue New Insights into Diet, Gut Microbiota and Human Health)
Show Figures

Figure 1

20 pages, 5394 KiB  
Article
Metagenomic Analysis of Sediment Bacterial Diversity and Composition in Natural Lakes and Artificial Waterpoints of Tabuk Region in King Salman Bin Abdulaziz Royal Natural Reserve, Saudi Arabia
by Yahya S. Al-Awthan, Rashid Mir, Basmah M. Alharbi, Abdulaziz S. Alatawi, Fahad M. Almutairi, Tamer Khafaga, Wael M. Shohdi, Amal M. Fakhry and Mashari M. Alatawi
Life 2024, 14(11), 1411; https://doi.org/10.3390/life14111411 - 1 Nov 2024
Cited by 1 | Viewed by 2146
Abstract
The Tabuk region is located in the northern part of Saudi Arabia, and it has an area of 117,000 km2 between longitudes 26° N and 29° N and latitudes 34° E and 38° E. King Salman Bin Abdulaziz Royal Natural Reserve (KSRNR) [...] Read more.
The Tabuk region is located in the northern part of Saudi Arabia, and it has an area of 117,000 km2 between longitudes 26° N and 29° N and latitudes 34° E and 38° E. King Salman Bin Abdulaziz Royal Natural Reserve (KSRNR) is the largest natural reserve in Saudi Arabia and covers about 130,700 km2. It represents a new tourist attraction area in the Tabuk region. Human activities around the lake may lead to changes in water quality, with subsequent changes in microenvironment components, including microbial diversity. The current study was designed to assess possible changes in bacterial communities of the water sediment at some natural lakes and artificial waterpoints of KSRNR. Water samples were collected from ten different locations within KSRNR: W1, W2, W3 (at the border of the royal reserve); W4, W5, W6, W7 (at the middle); and W8, W9, and W10 (artificial waterpoints). The total DNA of the samples was extracted and subjected to 16S rRNA sequencing and metagenomic analysis; also, the environmental parameters (temperature and humidity) were recorded for all locations. Metagenomic sequencing yielded a total of 24,696 operational taxonomic units (OTUs), which were subsequently annotated to 193 phyla, 215 classes, 445 orders, 947 families, and 3960 genera. At the phylum level, Pseudomonadota dominated the microbial communities across all samples. At the class level, Gammaproteobacteria, Clostridia, Alphaproteobacteria, Bacilli, and Betaproteobacteria were the most prevalent. The dominant families included Enterobacteriaceae, Pseudomonadaceae, Clostridiaceae, Comamonadaceae, and Moraxellaceae. At the genus level, Pseudomonas, Clostridium, Acinetobacter, Paenibacillus, and Acidovorax exhibited the highest relative abundances. The most abundant species were Hungatella xylanolytica, Pseudescherichia vulneris, Pseudorhizobium tarimense, Paenibacillus sp. Yn15, and Enterobacter sp. Sa187. The observed species richness revealed substantial heterogeneity across samples using species richness estimators, Chao1 and ACE, indicating particularly high diversity in samples W3, W5, and W6. Current study results help in recognizing the structure of bacterial communities at the Tubaiq area in relation to their surroundings for planning for environmental protection and future restoration of affected ecosystems. The findings highlight the dominance of various bacterial phyla, classes, families, and genera, with remarkable species richness in some areas. These results underscore the influence of human activities on microbial diversity, as well as the significance of monitoring and conserving the reserve’s natural ecosystems. Full article
(This article belongs to the Section Microbiology)
Show Figures

Figure 1

Back to TopTop