Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (64)

Search Parameters:
Keywords = Clevenger hydrodistillation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 4964 KiB  
Article
Optimization of Tunisian Myrtus communis L. Essential Oil Extraction by Complete Factorial Experimental Design
by Rania Zayani, Eya BenSalem, Mariem Khouja, Amani Bouhjar, Mohamed Boussaid and Chokri Messaoud
Metabolites 2025, 15(6), 369; https://doi.org/10.3390/metabo15060369 - 3 Jun 2025
Viewed by 590
Abstract
Background: Myrtus communis L. is a typical aromatic species of the Mediterranean basin, whose leaves are rich in essential oil known for its biological properties. Methods: The essential oil of Tunisian Myrtus communis L. leaves was extracted via hydrodistillation using a Clevenger-type [...] Read more.
Background: Myrtus communis L. is a typical aromatic species of the Mediterranean basin, whose leaves are rich in essential oil known for its biological properties. Methods: The essential oil of Tunisian Myrtus communis L. leaves was extracted via hydrodistillation using a Clevenger-type apparatus and optimized using a complete factorial design including three factors with two different modalities and one factor with three modalities, hence the total number of experiments Ntotal = 23 × 31. This optimization concerns the yield, the terpene composition by GC-MS and the antioxidant activity by the two radical scavenging assays, DPPH and ABTS. Four factors were retained, namely, the type of leaf used (dry or fresh sample), the leaf granulometry (whole or ground), the extraction time (1 h 30 min, 2 h 30 min and 3 h 30 min) and the water volume/plant material ratio (1/4 and 1/10). Results: The dry and whole leaves, duration 3 h 30 min, and V/M 1/10 modalities gave the best yield of essential oil (0.77%). The optimal contents of the majority of the terpene compounds, 1,8-cineole (37.23%), α-pinene (54.79%), myrtenyl acetate (23.43%) and limonene (17.77%), were recorded using the modalities dry and whole leaves, duration 2 h 30 min, V/M 1/10; dry and ground leaves, duration 1 h 30 min, V/M 1/4; fresh and whole leaves, duration 3 h 30 min, V/M 1/4; and fresh and whole leaves, duration 3 h 30 min, V/M 1/4, respectively. The antioxidant activity of the essential oil of myrtle leaves was optimized for the two DPPH (7.477 mg TE/g EO) with the GDL, duration 3 h 30 min, V/M 1/4 and ABTS assays (14.053 mg TE/g EO) with WDL terms, duration 3 h 30 min, V/M 1/10. Conclusions: Optimizing essential oil extraction is of significant interest to the cosmetic, perfumery, and pharmaceutical industries, which are constantly seeking optimal conditions to enhance essential oil yield and to ensure a high concentration of terpenic compounds, valued for their aromatic qualities and diverse biological activities. Full article
Show Figures

Figure 1

18 pages, 1377 KiB  
Article
One-Year Seasonal Variation in the Content of Volatile Compounds in Bay Laurel Leaves
by Dario Kremer, Valerija Dunkić, Srđan Milovac, Suzana Inić, Lea Juretić, Iva Rechner Dika and Marinko Petrović
Horticulturae 2025, 11(3), 241; https://doi.org/10.3390/horticulturae11030241 - 24 Feb 2025
Cited by 1 | Viewed by 664
Abstract
The composition of an essential oil (EO) depends on both the plant’s genetic constitution and environmental factors. In this study, the leaves of female bay laurel (Laurus nobilis L., family Lauraceae) plants were collected each month in the period from 15 January [...] Read more.
The composition of an essential oil (EO) depends on both the plant’s genetic constitution and environmental factors. In this study, the leaves of female bay laurel (Laurus nobilis L., family Lauraceae) plants were collected each month in the period from 15 January to 15 December 2022. Twelve obtained leaf samples were hydrodistilled in a Clevenger apparatus and analyzed using gas chromatography–mass spectrometry (GC-MS). A total of 44 compounds were detected in EO and 39 compounds were identified based on MS spectra and RIs (retention indices), accounting for 99.44–99.94% of the oil. The EO consisted almost entirely of monoterpenes (95.56–99.28%) and small quantities of phenylpropanoids, sesquiterpenes and other compounds. The major volatile compound was 1,8-cineole (49.79–64.94%), followed by α-terpinyl acetate (7.14–11.96%), sabinene (3.16–9.01%), linalool (1.77–8.03%), α-pinene (1.46–4.49%), β-pinene (1.55–3.69%) and α-terpineol (0.99–4.77%). The ANOVA indicated statistically significant changes in the composition of the EO over one year. The contents of eugenol, methyl eugenol and elemicin, which are responsible for the spicy aroma of the leaves, were highest during flowering (March) and at the time of fruit ripening (October, November). The harvest time of the leaves can be adjusted to obtain leaves rich in the desired compounds according to whether they are to be used as a spice, medicine or repellent. Full article
(This article belongs to the Topic Nutritional and Phytochemical Composition of Plants)
Show Figures

Figure 1

14 pages, 622 KiB  
Article
Biological Activity and Chemical Composition of Essential Oil from Leaves and Fruits of Zanthoxylum mantaro (J.F.Macbr.) J.F.Macbr
by Vladimir Morocho, Odalis Eras, Teresa Rojas, Britany Jiménez, María Fernanda Roa and Luis Cartuche
Antibiotics 2025, 14(3), 216; https://doi.org/10.3390/antibiotics14030216 - 21 Feb 2025
Viewed by 1044
Abstract
Objective: In this study, the chemical composition and biological activities of the essential oils extracted from the leaves and fruits of Zanthoxylum mantaro were analyzed. Methods: The essential oils were obtained through hydrodistillation using a Clevenger-type apparatus. Chemical composition was determined by [...] Read more.
Objective: In this study, the chemical composition and biological activities of the essential oils extracted from the leaves and fruits of Zanthoxylum mantaro were analyzed. Methods: The essential oils were obtained through hydrodistillation using a Clevenger-type apparatus. Chemical composition was determined by gas chromatography coupled with mass spectrometry (GC-MS) and gas chromatography with a flame ionization detector (GC-FID). The antimicrobial activity was evaluated against four Gram-positive bacteria, three Gram-negative bacteria, and two fungi using the broth microdilution method. Antioxidant activity was assessed using the ABTS (2,2′-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid) and DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scavenging assays. Additionally, the acetylcholinesterase inhibitory effect of the essential oils was measured by a spectrophotometric method. Results and Conclusions: A total of 23 compounds were identified in the essential oil from the fruits, while 47 compounds were found in the essential oil from the leaves. The major constituents of the fruit essential oil were α-thujone (39.85%), β-thujone (25.04%), sabinene (10.71%), and terpinen-4-ol (4.38%), whereas the main compounds in the leaf essential oil were germacrene D (21.75%), nerolidol (E) (12.39%), and pentadecanal (7.14%). The essential oil from the fruits exhibited antifungal activity against Aspergillus niger (ATCC 6275), with a minimum inhibitory concentration (MIC) of 1000 μg/mL. Both the fruit and leaf essential oils showed moderate antioxidant activity in the ABTS assay, with SC50 values of 274.14 ± 1.06 μg/mL and 2798.85 ± 15.69 μg/mL, respectively. Furthermore, the fruit essential oil demonstrated considerable acetylcholinesterase inhibitory activity with an IC50 value of 65.46 ± 1.01 μg/mL, while the leaf essential oil exhibited an IC50 value of 158.2 ± 1.02 μg/mL. Full article
Show Figures

Figure 1

15 pages, 2062 KiB  
Article
Chemical Profile of Kumquat (Citrus japonica var. margarita) Essential Oil, In Vitro Digestion, and Biological Activity
by Ivana Vrca, Željana Fredotović, Blaž Jug, Marija Nazlić, Valerija Dunkić, Dina Jug, Josip Radić, Sonja Smole Možina and Ivana Restović
Foods 2024, 13(22), 3545; https://doi.org/10.3390/foods13223545 - 6 Nov 2024
Cited by 2 | Viewed by 2092
Abstract
Kumquat is one of the smallest citrus fruits (from the Rutaceae family), and its essential oil’s biological effects have not yet been sufficiently researched, in contrast to the essential oils of its relatives. Therefore, the aim of this large-scale study was to investigate [...] Read more.
Kumquat is one of the smallest citrus fruits (from the Rutaceae family), and its essential oil’s biological effects have not yet been sufficiently researched, in contrast to the essential oils of its relatives. Therefore, the aim of this large-scale study was to investigate the chemical profile of kumquat essential oils (KEOs) isolated by microwave-assisted distillation (MAD) and Clevenger hydrodistillation using GC-MS analysis. To test the bioaccessibility of their bioactive components, in vitro digestion with commercially available enzymes was performed. The final step of this research was to test their cytotoxic activity against a cervical cancer cell line (HeLa), a human colon cancer cell line (HCT116), a human osteosarcoma cell line (U2OS), and a healthy cell line (RPE1). Two methods were used to test the antioxidant activity: DPPH (2,2-diphenyl-1-picrylhydrazyl) and ORAC (oxygen radical absorbance capacity). The antibacterial activity was tested in relation to the growth and adhesion of Escherichia coli and Staphylococcus aureus on a polystyrene surface. The GC-MS analysis showed that the major compound in both kumquat essential oils was limonene, which was stable before and after in vitro digestion (>90%). The results showed that the cytotoxic activity of the KEOs in all three cancer cell lines tested was IC50 1–2 mg/mL, and in the healthy cell line (RPE1), the IC50 value was above 4 mg/mL. The antibacterial activity of the KEOs obtained after MAD and Clevenger hydrodistillation was 4 mg/mL against E. coli and 1 mg/mL against S. aureus. The KEOs after MAD and Clevenger hydrodistillation reduced the adhesion of E. coli by more than 1 log, while there was no statistically significant effect on the adhesion of S. aureus to the polystyrene surface. Both KEOs exhibited comparable levels of antioxidant activity using both methods tested, with IC50 values of 855.25 ± 26.02 μg/mL (after MAD) and 929.41 ± 101.57 μg/mL (after Clevenger hydrodistillation) for DPPH activity and 4839.09 ± 91.99 μmol TE/g of EO (after MAD) and 4928.78 ± 275.67 μmol TE/g of EO (after Clevenger hydrodistillation) for ORAC. The results obtained show possible future applications in various fields (e.g., in the food, pharmaceutical, cosmetic, and agricultural industries). Full article
Show Figures

Figure 1

15 pages, 1364 KiB  
Article
Impact of Microencapsulation on Ocimum gratissimum L. Essential Oil: Antimicrobial, Antioxidant Activities, and Chemical Composition
by Angela Del Pilar Flores Granados, Marta Cristina Teixeira Duarte, Nathan Hargreaves Noguera, Dyana Carla Lima and Rodney Alexandre Ferreira Rodrigues
Foods 2024, 13(19), 3122; https://doi.org/10.3390/foods13193122 - 30 Sep 2024
Cited by 2 | Viewed by 2302
Abstract
Ocimum gratissimum (OG) is a species rich in essential oils (EO), which is known for its antimicrobial and antioxidant properties. This study aimed to encapsulate the essential oil of Ocimum gratissimum (OGE), determine its chemical composition, and evaluate its antioxidant and antimicrobial activities [...] Read more.
Ocimum gratissimum (OG) is a species rich in essential oils (EO), which is known for its antimicrobial and antioxidant properties. This study aimed to encapsulate the essential oil of Ocimum gratissimum (OGE), determine its chemical composition, and evaluate its antioxidant and antimicrobial activities against six pathogenic bacteria, comparing it with the free essential oil (OGF). The EO was extracted by hydrodistillation using a Clevenger-type apparatus, and an oil-in-water emulsion was prepared using a combination of biopolymers: maltodextrin (MA), cashew gum (CG), and inulin (IN). The chemical profile was identified using gas chromatography–mass spectrometry (GC–MS). Antioxidant activity was assessed using the Oxygen Radical Absorbance Capacity with fluorescein (ORAC-FL) method, while the Minimum Inhibitory Concentrations (MIC) and Minimum Bactericidal Concentrations (MBC) were determined by the microdilution method. Microparticles were formed using the spray-drying method, achieving an encapsulation efficiency of 45.2%. The analysis identified eugenol as the main compound both before and after microencapsulation. The OGE microparticles demonstrated high inhibitory and bactericidal effects against S. aureus, S. choleraesuis, and E. coli, with MIC values of 500 µg·mL−1 and MBC values of 1000 µg·mL−1, as well as antioxidant activity of 1914.0 µmol-TE·g−1. Therefore, it can be inferred that the EO of OG maintained its antimicrobial and antioxidant effects even after microencapsulation by spray-drying, making it a promising natural ingredient. Full article
Show Figures

Graphical abstract

2 pages, 162 KiB  
Abstract
Sage Essential Oils: Chemical Characterization and Evaluation of the Antioxidant Activity of Commercial Samples
by Beatriz Pereira de Freitas, Yasmin Santos Gonçalves da Silva, Alex de Aguiar Novo, Eliane Przytyk Jung and Leilson de Oliveira Ribeiro
Proceedings 2024, 105(1), 41; https://doi.org/10.3390/proceedings2024105041 - 27 May 2024
Viewed by 495
Abstract
The essential oil of Salvia officinalis, an aromatic plant belonging to the Lamiaceae family, is very useful in the pharmaceutical, food and cosmetics industries due to its biological properties, which have anti-inflammatory, antioxidant and antimicrobial effects. The present work aims to optimize [...] Read more.
The essential oil of Salvia officinalis, an aromatic plant belonging to the Lamiaceae family, is very useful in the pharmaceutical, food and cosmetics industries due to its biological properties, which have anti-inflammatory, antioxidant and antimicrobial effects. The present work aims to optimize the extraction of essential oils from commercial samples using an experimental design with two independent variables, the solid/liquid ratio (w/v) and time, followed by an evaluation of the response variables, yield and antioxidant activity. A chemical characterization of the oils was also carried out. For this, the material obtained from local stores in the city of Rio de Janeiro was subjected to hydrodistillation in a Clevenger apparatus, and the identification and quantification of the compounds in the isolated oil were carried out using GC/MS. The antioxidant capacity was determined by calculating the percentage inhibition of the DPPH radical, resulting in a variation between 8.7 and 28.3% inhibition. The results show that the number of compounds identified and their respective chemical classes have an impact on the difference in the percentage of inhibition of the radical due to their particular properties. In this work, we chose to evaluate the experiments that presented the best and worst responses in the experimental design, which where obtained in the following conditions: the solid/liquid ratio was 1:14 (w/v) for 180 min and 1:50 (w/v) for 60 min, respectively. The first condition showed the best results, which may be associated with a higher concentration of sesquiterpenes, highlighting β-caryophyllene, which has recognized antioxidant and anti-inflammatory effects. It can therefore be concluded that sage essential oil has significant bioactive properties; however, the differences in extraction conditions have a direct influence on antioxidant activity, since during the process, the conditions applied can lead to the loss of important volatile compounds. Full article
19 pages, 2921 KiB  
Article
A Comparison between Bulgarian Tanacetum parthenium Essential Oil from Two Different Locations
by Borislava Lechkova, Niko Benbassat, Diana Karcheva-Bahchevanska, Kalin Ivanov, Lyudmil Peychev, Zhivko Peychev, Stanislav Dyankov, Yoana Georgieva-Dimova, Krasimir Kraev and Stanislava Ivanova
Molecules 2024, 29(9), 1969; https://doi.org/10.3390/molecules29091969 - 25 Apr 2024
Cited by 3 | Viewed by 2577
Abstract
Tanacetum parthenium L. (Asteraceae) is a perennial herbaceous plant with a long-standing historical use in traditional medicine. Recently Tanacetum parthenium L. essential oil has been associated with a promising potential for future applications in the pharmaceutical industry, in the cosmetics industry, and in [...] Read more.
Tanacetum parthenium L. (Asteraceae) is a perennial herbaceous plant with a long-standing historical use in traditional medicine. Recently Tanacetum parthenium L. essential oil has been associated with a promising potential for future applications in the pharmaceutical industry, in the cosmetics industry, and in agriculture. Investigations on the essential oil (EO) have indicated antimicrobial, antioxidant, and repellent activity. The present study aimed to evaluate the chemical composition of Bulgarian T. parthenium essential oil from two different regions, to compare the results to those reported previously in the literature, and to point out some of its future applications. The essential oils of the air-dried flowering aerial parts were obtained by hydrodistillation using a Clevenger-type apparatus. The chemical composition was evaluated using gas chromatography with mass spectrometry (GC-MS). It was established that the oxygenated monoterpenes were the predominant terpene class, followed by the monoterpene hydrocarbons. Significant qualitative and quantitative differences between both samples were revealed. Camphor (50.90%), camphene (16.12%), and bornyl acetate (6.05%) were the major constituents in the feverfew EO from the western Rhodope Mountains, while in the EO from the central Balkan mountains camphor (45.54%), trans-chrysanthenyl acetate (13.87%), and camphene (13.03%) were the most abundant components. Full article
(This article belongs to the Special Issue Essential Oils II)
Show Figures

Figure 1

15 pages, 891 KiB  
Article
Citrus limon Wastes from Part of the Eastern Cape Province in South Africa: Medicinal, Sustainable Agricultural, and Bio-Resource Potential
by Phumelele Nodola, Gugulethu M. Miya, Vuyokazi Mazwi, Ayodeji O. Oriola, Opeoluwa O. Oyedeji, Yiseyon S. Hosu, Simon K. Kuria and Adebola O. Oyedeji
Molecules 2024, 29(7), 1675; https://doi.org/10.3390/molecules29071675 - 8 Apr 2024
Cited by 3 | Viewed by 2245
Abstract
The fruits of Citrus limon are often purchased for their vitamin C-rich juice, while the fruit peel and the tree leaves are discarded as wastes. This study obtained the chemical profiles of the essential oils (EOs) of C. limon wastes (the peel and [...] Read more.
The fruits of Citrus limon are often purchased for their vitamin C-rich juice, while the fruit peel and the tree leaves are discarded as wastes. This study obtained the chemical profiles of the essential oils (EOs) of C. limon wastes (the peel and leaves), evaluated their medicinal value as antioxidants, their potential for sustainable use in agriculture as an insecticide for post-harvest preservation of grains, and their potential as a bioresource in livestock feed formulations. The EOs were isolated from C. limon leaves and peel using a hydro-distillation method on a Clevenger apparatus. The oil constituents were identified using the gas chromatography-mass spectrometry (GC-MS) hyphenated technique. The oils were evaluated for their in vitro antioxidant activity using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric-reducing antioxidant power methods. An insecticidal study was conducted using contact toxicity, fumigation, and repellence bioassay methods against Sitophilus zeamais (maize weevils). Finally, the predicted income from using lemon peel as an alternative or substitute ingredient for maize in livestock feed formulations was obtained through a conventional simulation method. Chemically, limonene was found to be present in all the EOs analyzed (12–52%), while α-pinene was only found in the fresh leaf and peel oils (13.3% and 10.6%). Caryophyllene oxide was identified as the major component of the dried leaf oil (17.7%). At 20 µg m, the dry peel oil exhibited the highest inhibitory activity (52.41 ± 0.26%) against the DPPH radical, which was comparable to L-ascorbic acid (a standard antioxidant) at 54.25 ± 3.55%. The insecticidal study revealed that the dry peel oil is a better insect repellent (73.33 ± 6.95% at 10 µL) and fumigant (LC50 = 0.17 µL g−1 after 48 h) natural agent compared to the peel oil. Conversely, the dry peel oil showed a better contact activity (LC50 = 1.69 µL g−1) against the maize weevils compared to the dry leaf oil. The simulation study showed the cost of using dry lemon peel as an alternative to maize in livestock feed formulation to be ZAR 2.8 billion, compared against the higher cost of feed formulation with maize, which currently stands at ZAR 24.9 billion. This study has shown that C. limon wastes (the peel and leaves) contain EOs with unique chemical profiles, valuable medicinal properties as free radical scavengers, and considerable insecticidal properties for agricultural use in post-harvest grain preservation, presenting a cost-effective and promising bioresource for livestock feed production. Full article
(This article belongs to the Special Issue Plant Bioactive Compounds in Pharmaceuticals)
Show Figures

Figure 1

12 pages, 1267 KiB  
Article
Chemical Composition and Bioactivity of Dill Seed (Anethum graveolens L.) Essential Oil from Plants Grown under Shading
by Lidija Milenković, Zoran S. Ilić, Ljiljana Stanojević, Bojana Danilović, Ljubomir Šunić, Žarko Kevrešan, Jelena Stanojević and Dragan Cvetković
Plants 2024, 13(6), 886; https://doi.org/10.3390/plants13060886 - 19 Mar 2024
Cited by 14 | Viewed by 3303
Abstract
This study determined the content and composition of dill seed (Anethum graveolens L.) essential oil under varying light conditions: non-shaded plants in open fields and plants covered with pearl shade nets (40% shade index). Essential oil was extracted using Clevenger hydrodistillation. The [...] Read more.
This study determined the content and composition of dill seed (Anethum graveolens L.) essential oil under varying light conditions: non-shaded plants in open fields and plants covered with pearl shade nets (40% shade index). Essential oil was extracted using Clevenger hydrodistillation. The essential oil content was 4.63% for non-shaded plants and 4.81% for shaded plants. GC/MS analysis revealed twenty-one and twenty-two components in dill seed from non-shaded and shaded plants, respectively. The terpenic fraction of essential oil from non-shaded plants consisted mainly of oxygen-containing monoterpene derivatives (53.6%), with carvone (46.1%) as the primary component, followed by monoterpene hydrocarbons (46.4%), predominantly limonene (43.8%). Essential oil from shaded plants contained a higher content of carvone (49.8%) and a lower content of limonene (37.8%) compared to essential oil from non-shaded plants. Non-shaded plant essential oil exhibited stronger antioxidant activity (EC50 value: 26.04 mg mL−1) than shaded plant essential oil (54.23 mg mL−1). Dill seed essential oil showed the most potent antimicrobial activity (disc diffusion method) against Escherichia coli (inhibition zone: 15–18 mm). Shaded plants demonstrated a positive influence of essential oil against Klebsiella pneumoniae. Carvone and its derivatives, as the main components, hold significant potential in the food industry and alternative medicines. A practical implication of this study could be higher plant densities or intercropping of dill, as it thrives with minimal light. Full article
Show Figures

Figure 1

8 pages, 522 KiB  
Article
Chemical Composition of the Essential Oils from Goniothalamus tortilipetalus M.R.Hend. and Their Antioxidant and Antibacterial Activities
by Aknarin Anatachodwanit, Phunrawie Promnart, Suwanna Deachathai, Tharakorn Maneerat, Rawiwan Charoensup, Thidarat Duangyod and Surat Laphookhieo
Chemistry 2024, 6(2), 264-271; https://doi.org/10.3390/chemistry6020013 - 23 Feb 2024
Cited by 3 | Viewed by 2278
Abstract
This work was the first investigation of the essential oil composition of Goniothalamus tortilipetalus M.R.Hend. The aim of this study is to investigate the essential oil composition extracted from different parts of Goniothalamus tortilipetalus M.R.Hend., including flowers, leaves, and twigs, and to evaluate [...] Read more.
This work was the first investigation of the essential oil composition of Goniothalamus tortilipetalus M.R.Hend. The aim of this study is to investigate the essential oil composition extracted from different parts of Goniothalamus tortilipetalus M.R.Hend., including flowers, leaves, and twigs, and to evaluate their antioxidant and antibacterial activities. The Clevenger apparatus was used for hydrodistillation to prepare the essential oils. The essential oils were investigated using gas chromatography–mass spectrometry (GC-MS). The three major compounds of the flowers were bicyclogermacrene (15.81%), selin-11-en-4-α-ol (14.68%), and E-caryophyllene (7.02%), whereas the leaves were p-cymene (39.57%), ascaridole (9.39%), and α-copaene (9.12%). In the case of the twigs, α-copaene (10.34%), selin-11-en-4-α-ol (8.85%), and p-cymene (7.76%) were the major compounds. The flower essential oil showed antioxidant activities with IC50 values of 725.21 µg/mL and 123.06 µg/mL for DPPH and ABTS assays, respectively. The flower essential oil also displayed antibacterial activity against Bacillus subtilis, Staphylococcus aureus, Micrococcus luteus, Salmonella typhimurium, and Shigella flexneri, with the same MIC value of 640 µg/mL. Full article
(This article belongs to the Section Biological and Natural Products)
Show Figures

Figure 1

12 pages, 1339 KiB  
Article
Composition of Essential Oils from Fruits of Peucedanum longifolium and Rhizomatophora aegopodioides (Apiaceae) with Regard to Other Related Taxa—A Chemometric Approach
by Ljuboš Ušjak, Marjan Niketić and Silvana Petrović
Separations 2024, 11(1), 14; https://doi.org/10.3390/separations11010014 - 30 Dec 2023
Cited by 1 | Viewed by 1872
Abstract
The aim of this work was to investigate the composition of essential oils isolated from fruits of Peucedanum longifolium, and Rhizomatophora aegopodioides (a species which was previously placed in the genus Peucedanum), as well as to compare the obtained results to [...] Read more.
The aim of this work was to investigate the composition of essential oils isolated from fruits of Peucedanum longifolium, and Rhizomatophora aegopodioides (a species which was previously placed in the genus Peucedanum), as well as to compare the obtained results to those available for other previously investigated related species (including taxa which are also, according to some authors, excluded from the genus Peucedanum). Essential oils were obtained via hydrodistillation in a Clevenger-type apparatus and their composition was analyzed using GC-FID and GC-MS. To compare these data to those of previously investigated taxa, a chemometric approach was applied; the data were analyzed using multivariate statistical methods: non-metric multidimensional scaling (nMDS) and hierarchical cluster analysis. The most abundant in P. longifolium essential oil were monoterpenes (79.7%), mostly α-phellandrene (26.2%), β-phellandrene + limonene (21.0%) and myrcene (9.5%), followed by sesquiterpenes (18.3%), mostly germacrene B (9.5%). On the other hand, dominant in R. aegopodioides essential oil were non-terpenic aliphatic hydrocarbons (46.1%), mainly n-undecane (16.5%) and n-nonane (11.3%). In addition, this essential oil also contained a notable quantity of sesquiterpenes (25.1%), with (E)-sesquilavandulol being the most abundant (10.0%). The results of multivariate statistics revealed a clear separation of the essential oil composition of R. aegopodioides and P. longifolium, as well as of P. longifolium and P. officinale. The clustering of the samples of most of the taxa that do not belong to the Peucedanum in the narrow sense (sensu stricto) was also observed, which is in accordance with their recent inclusion in separate genera. Full article
Show Figures

Graphical abstract

12 pages, 1275 KiB  
Article
Iberis sempervirens: Antiproliferative Potential from Our Garden
by Azra Đulović, Vedrana Čikeš Čulić, Franko Burčul and Ivica Blažević
Appl. Sci. 2024, 14(1), 346; https://doi.org/10.3390/app14010346 - 29 Dec 2023
Viewed by 1434
Abstract
Glucosinolates (GSLs) extracted from various parts of Iberis sempervirens L., including seeds, stems, leaves, and flowers, were qualitatively and quantitatively assessed. The analyses of GSLs were performed by their desulfo counterparts using the UHPLC-DAD-MS/MS technique and by their volatile breakdown products, isothiocyanates, using [...] Read more.
Glucosinolates (GSLs) extracted from various parts of Iberis sempervirens L., including seeds, stems, leaves, and flowers, were qualitatively and quantitatively assessed. The analyses of GSLs were performed by their desulfo counterparts using the UHPLC-DAD-MS/MS technique and by their volatile breakdown products, isothiocyanates, using the GC-MS technique. The GSL profile comprised various types, including those derived from: methionine, represented by methylsulfinylalkyl GSL (glucoiberin), and methylsulfanylalkyl GSL (glucoibervirin and glucoerucin); phenylalanine (glucotropaeolin); and tryptophan (4-methoxyglucobrassicin). Among these, the highest level of glucoiberin was detected in the leaves, reaching 35.37 µmol/g of dry weight (DW), while the highest level of glucoibervirin was detected in the seeds, reaching 18.51 µmol/g DW. To obtain GSL breakdown products, a variety of isolation methods were employed, including hydrodistillation in a Clevenger-type apparatus (HD), CH2Cl2 after myrosinase hydrolysis for 24 h (EXT), microwave-assisted distillation (MAD), and microwave hydrodiffusion and gravity (MHG). Volatile isolates were tested for their antiproliferative activity using an MTT assay against the human lung cancer cell line A549 and the human bladder cancer cell line T24 during an incubation period of 72 h. HD and MAD showed the best activity against T24, with IC50 values of 0.61 µg/mL and 0.62 µg/mL, respectively, while EXT was the most effective against the A549 cell line, with an IC50 of 1.46 µg/mL. Full article
(This article belongs to the Special Issue Natural Products: Sources and Applications)
Show Figures

Figure 1

12 pages, 1419 KiB  
Article
Antibacterial and Antiviral Properties of Pinus densiflora Essential Oil
by Yu Jin Oh, Yeong-Su Kim, Jae Woo Kim and Dae Wook Kim
Foods 2023, 12(23), 4279; https://doi.org/10.3390/foods12234279 - 27 Nov 2023
Cited by 8 | Viewed by 3275
Abstract
The Korean mountains are home to the Korean red pine (Pinus densiflora). Pine needle oil has been used as a food additive and a traditional herbal medicine; however, any health-related properties of its trunk oil remain unknown. Herein, we assessed antibacterial [...] Read more.
The Korean mountains are home to the Korean red pine (Pinus densiflora). Pine needle oil has been used as a food additive and a traditional herbal medicine; however, any health-related properties of its trunk oil remain unknown. Herein, we assessed antibacterial and antiviral properties of essential oil extracted from the trunk of P. densiflora. Th extracted oil was hydrodistilled using a Clevenger apparatus and analyzed using gas chromatography–mass spectrometry. The antimicrobial activity of the oil was tested using the microbroth dilution technique against 10 bacterial species (6 g-positive and 4 g-negative) and fungi. The extract exerted strong antimicrobial activity against Vibrio parahaemolyticus, Bacillus cereus, Listeria monocytogenes, Propionibacterium acnes, and Malassezia furfur (minimum inhibitory concentration = 10 mL/L). Additionally, it exhibited dose-dependent activity against influenza virus A and feline coronavirus. Furthermore, among 20 identified constituents accounting for 98.7% of the oil contents, the major components included 3-cyclohexene-1-methanol (10.12%), 2-(4-methylcyclohexyl)-2-propanol (9.09%), fenchone (8.14%), O-isopropyltoluene (6.35%), and isothymol methyl ether (6.14%). The P. densiflora trunk essential oil showed antibacterial and antiviral activities that depended on its chemical composition and the microbial strains tested herein. The essential oil can be used as an antimicrobial agent and disinfectant. Full article
Show Figures

Figure 1

15 pages, 295 KiB  
Article
Chemical Composition and Antimicrobial Activity against the Listeria monocytogenes of Essential Oils from Seven Salvia Species
by Maria Francesca Bozzini, Ylenia Pieracci, Roberta Ascrizzi, Basma Najar, Marco D’Antraccoli, Luca Ciampi, Lorenzo Peruzzi, Barbara Turchi, Francesca Pedonese, Alice Alleva, Guido Flamini and Filippo Fratini
Foods 2023, 12(23), 4235; https://doi.org/10.3390/foods12234235 - 23 Nov 2023
Cited by 11 | Viewed by 2542
Abstract
In recent years, essential oils (EOs) have received interest due to their antibacterial properties. Accordingly, the present study aimed to investigate the effectiveness of the EOs obtained from seven species of Salvia on three strains of Listeria monocytogenes (two serotyped wild strains and [...] Read more.
In recent years, essential oils (EOs) have received interest due to their antibacterial properties. Accordingly, the present study aimed to investigate the effectiveness of the EOs obtained from seven species of Salvia on three strains of Listeria monocytogenes (two serotyped wild strains and one ATCC strain), a bacterium able to contaminate food products and cause foodborne disease in humans. The Salvia species analysed in the present study were cultivated at the Botanic Garden and Museum of the University of Pisa, and their air-dried aerial parts were subjected to hydrodistillation using a Clevenger apparatus. The obtained EOs were analysed via gas chromatography coupled with mass spectrometry for the evaluation of their chemical composition, and they were tested for their inhibitory and bactericidal activities by means of MIC and MBC. The tested Eos showed promising results, and the best outcomes were reached by S. chamaedryoides EO, showing an MIC of 1:256 and an MBC of 1:64. The predominant compounds of this EO were the sesquiterpenes caryophyllene oxide and β-caryophyllene, together with the monoterpenes bornyl acetate and borneol. These results suggest that these EOs may possibly be used in the food industry as preservatives of natural origins. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
Show Figures

Graphical abstract

19 pages, 2475 KiB  
Communication
Chemical Composition, In Vitro Antitumor Effect, and Toxicity in Zebrafish of the Essential Oil from Conyza bonariensis (L.) Cronquist (Asteraceae)
by Rafael Carlos Ferreira, Yuri Mangueira do Nascimento, Paulo Bruno de Araújo Loureiro, Rafael Xavier Martins, Maria Eduarda de Souza Maia, Davi Felipe Farias, Josean Fechine Tavares, Juan Carlos Ramos Gonçalves, Marcelo Sobral da Silva and Marianna Vieira Sobral
Biomolecules 2023, 13(10), 1439; https://doi.org/10.3390/biom13101439 - 24 Sep 2023
Cited by 10 | Viewed by 2447
Abstract
The essential oil from Conyza bonariensis (Asteraceae) aerial parts (CBEO) was extracted by hydrodistillation in a Clevenger-type apparatus and was characterized by gas chromatography–mass spectrometry. The antitumor potential was evaluated against human tumor cell lines (melanoma, cervical, colorectal, and leukemias), as well as [...] Read more.
The essential oil from Conyza bonariensis (Asteraceae) aerial parts (CBEO) was extracted by hydrodistillation in a Clevenger-type apparatus and was characterized by gas chromatography–mass spectrometry. The antitumor potential was evaluated against human tumor cell lines (melanoma, cervical, colorectal, and leukemias), as well as non-tumor keratinocyte lines using the MTT assay. The effect of CBEO on the production of Reactive Oxygen Species (ROS) was evaluated by DCFH-DA assay, and a protection assay using the antioxidant N-acetyl-L-cysteine (NAC) was also performed. Moreover, the CBEO toxicity in the zebrafish model was assessed. The majority of the CBEO compound was (Z)-2-lachnophyllum ester (57.24%). The CBEO exhibited selectivity towards SK-MEL-28 melanoma cells (half maximal inhibitory concentration, IC50 = 18.65 ± 1.16 µg/mL), and induced a significant increase in ROS production. In addition, the CBEO’s cytotoxicity against SK-MEL-28 cells was reduced after pretreatment with NAC. Furthermore, after 96 h of exposure, 1.5 µg/mL CBEO induced death of all zebrafish embryos. Non-lethal effects were observed after exposure to 0.50–1.25 µg/mL CBEO. Additionally, significant alterations in the activity of enzymes associated with oxidative stress in zebrafish larvae were observed. These results provide evidence that CBEO has a significant in vitro antimelanoma effect by increasing ROS production and moderate embryotoxicity in zebrafish. Full article
Show Figures

Graphical abstract

Back to TopTop