Chemical Composition of the Essential Oils from Goniothalamus tortilipetalus M.R.Hend. and Their Antioxidant and Antibacterial Activities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Extraction of the Essential Oils
2.3. Analysis by GC/MS
2.4. Antioxidant Activity by DPPH Free Radical Scavenging Assay
2.5. Antioxidant Activity Using ABTS Radical Cation Scavenging Assay
2.6. Antibacterial Activity
3. Results and Discussion
3.1. Essential Oil Yield and Chemical Composition
3.2. Antioxidant Activity
3.3. Antibacterial Activity
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aslam, M.S.; Ahmad, M.S.; Mamat, A.S.; Ahmad, M.Z.; Salam, F. Goniothalamus: Phytochemical and ethnobotanical review. Recent Adv. Biol. Med. 2016, 2, 34–47. [Google Scholar] [CrossRef]
- Wiart, C. Goniothalamus species: A source of drugs for the treatment of cancers and bacterial infections? Evid. Based Complement. Altern. Med. 2007, 4, 635095. [Google Scholar] [CrossRef] [PubMed]
- Jaidee, W.; Andersen, R.J.; Patrick, B.O.; Pyne, S.G.; Muanprasat, C.; Borwornpinyo, S.; Laphookhieo, S. Alkaloids and styryllactones from Goniothalamus cheliensis. Phytochemistry 2019, 157, 8–20. [Google Scholar] [CrossRef] [PubMed]
- Moharam, B.A.; Jantan, I.; Ahmad, F.; Jalil, J. Antiplatelet aggregation and platelet activating factor (PAF) receptor antagonistic activities of the essential oils of five Goniothalamus species. Molecules 2010, 15, 5124–5138. [Google Scholar] [CrossRef] [PubMed]
- Surivet, J.P.; Vatèle, J.M. Total synthesis of antitumor Goniothalamus styryllactones. Tetrahedron 1999, 55, 13011–13028. [Google Scholar] [CrossRef]
- Meesakul, P.; Jaidee, W.; Richardson, C.; Andersen, R.J.; Patrick, B.O.; Willis, A.C.; Muanprasat, C.; Wang, J.; Lei, X.; Hadsadee, S.; et al. Styryllactones from Goniothalamus tamirensis. Phytochemistry 2020, 171, 112248. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, E.; Salim, K.A.; Lim, L.B. Phytochemical screening, total phenolics and antioxidant activities of bark and leaf extracts of Goniothalamus velutinus (Airy Shaw) from Brunei Darussalam. J. King Saud. Univ. Sci. 2015, 27, 224–232. [Google Scholar] [CrossRef]
- Trieu, Q.H.; Pham, V.C.; Retailleau, P.; Litaudon, M.; Doan, T.M.H. Rare flavonoids and sesquiterpenoids isolated from the leaves of Goniothalamus gracilipes. Fitoterapia 2021, 155, 105034. [Google Scholar] [CrossRef]
- Tantithanaporn, S.; Wattanapiromsakul, C.; Itharat, A.; Keawpradub, N. Cytotoxic activity of acetogenins and styryl lactones isolated from Goniothalamus undulatus Ridl. root extracts against a lung cancer cell line (COR-L23). Phytomedicine 2011, 18, 486–490. [Google Scholar] [CrossRef]
- Funnimid, N.; Pompimon, W.; Nuntasaen, N. In vitro evaluation of crude extracts and isolated compounds from Goniothalamus rongklanus and Goniothalamus latestigma for bioactive properties. J. Nat. Remedies 2019, 19, 146–152. [Google Scholar] [CrossRef]
- Zohdi, R.M.; Kaharudin, F.A.; Mukhtar, S.M.; Sidek, H.M.; Ismail, N.H. Dichloromethane stem bark extract of Goniothalamus lanceolatus Miq. modulates inflammatory cytokines and ameliorates tissue damage in Plasmodium berghei-infected mice. J. Appl. Pharm. Sci. 2022, 12, 149–155. [Google Scholar] [CrossRef]
- Suthiphasilp, V.; Maneerat, W.; Rujanapun, N.; Duangyod, T.; Charoensup, R.; Deachathai, S.; Andersen, R.J.; Patrick, B.O.; Pyne, S.G.; Laphookhieo, S. α-Glucosidase inhibitory and nitric oxide production inhibitory activities of alkaloids isolated from a twig extract of Polyalthia cinnamomea. Bioorg. Med. Chem. 2020, 28, 115462. [Google Scholar] [CrossRef]
- Jantan, I.; Ahmad, F.; Ahmad, A.S. A comparative study of the essential oils of four Goniothalamus species. Acta Hortic. 2003, 677, 27–36. [Google Scholar] [CrossRef]
- Jantan, I.B.; Ahmad, F.B.; Din, L.B. Chemical constituents of the bark oil of Goniothalamus macrophyllus Hook. f. from Malaysia. J. Essent. Oil Res. 2005, 17, 181–183. [Google Scholar] [CrossRef]
- Ahmad, F.B.; Jantan, I.B. Chemical constituents of the essential oils of Goniothalamus uvariodes King. Flavour. Fragr. J. 2003, 18, 128–130. [Google Scholar] [CrossRef]
- Humeirah, A.S.; Azah, M.N.; Mastura, M.; Mailina, J.; Saiful, J.A.; Muhajir, H.; Puad, A.M. Chemical constituents and anti-microbial activity of Goniothalamus macrophyllus (Annonaceae) from Pasoh Forest Reserve, Malaysia. Afr. J. Biotechnol. 2010, 9, 5511–5515. [Google Scholar]
- Hisham, A.; Pathare, N.; Al-Saidi, S.; Jayakumar, G.; Ajitha, M.D.; Harikumar, B. The composition and antimicrobial activity of stem bark essential oil of Goniothalamus cardiopetalus (Bl.) Hook. f. et Thoms. J. Essent. Oil Res. 2006, 18, 451–454. [Google Scholar] [CrossRef]
- Ahmad, F.B.; Moharm, B.A.; Jantan, I. A comparative study of the constituents of the essential oils of Goniothalamus tapis Miq. and G. tapisoides Mat Salleh from Borneo. J. Essent. Oil Res. 2010, 22, 499–502. [Google Scholar] [CrossRef]
- Thang, T.D.; Dai, D.N.; Ogunwande, I.A. Identification of the volatile compounds in the leaf and stem bark of three Goni-othalamus species from Vietnam. J. Essent. Oil-Bear. Plants. 2016, 19, 743–749. [Google Scholar] [CrossRef]
- Monggoot, S.; Pripdeevech, P. Chemical composition and antibacterial activities of Goniothalamus marcanii flower essential oil. J. Appl. Pharm. Sci. 2017, 7, 144–148. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4th ed.; Allured Publ. Corp.: Carol Stream, IL, USA, 2007. [Google Scholar]
- Dudonné, S.; Vitrac, X.; Coutiére, P.; Woillez, M.; Mérillon, J.M. Comparative study of antioxidant properties and total phenolic content of 30 plant extracts of industrial interest using DPPH, ABTS, FRAP, SOD, and ORAC assays. J. Agric. Food Chem. 2009, 57, 1768–1774. [Google Scholar] [CrossRef] [PubMed]
No | Compound Name | RI 1 | RI 2 | Flowers | Leaves | Twigs |
---|---|---|---|---|---|---|
1 | α-Pinene | 934 | 932 | 0.58 ± 0.04 | 1.50 ± 0.06 | 0.18 ± 0.02 |
2 | Myrcene | 991 | 988 | 2.47 ± 0.05 | 0.35 ± 0.00 | |
3 | δ-2-Carene | 1003 | 1001 | 1.18 ± 0.03 | ||
4 | α-Phellandrene | 1006 | 1002 | 1.77 ± 0.03 | 1.68 ± 0.00 | |
5 | α-Terpinene | 1022 | 1014 | 0.82 ± 0.04 | 3.05 ± 0.05 | 7.08 ± 0.03 |
6 | p-Cymene | 1026 | 1020 | 39.57 ± 0.65 | 7.76 ± 0.11 | |
7 | o-Cymene | 1029 | 1022 | 4.14 ± 0.08 | ||
8 | β-Phellandrene | 1029 | 1025 | 6.04 ± 0.08 | ||
9 | γ-Terpinene | 1058 | 1054 | 1.30 ± 0.01 | 1.59 ± 0.01 | |
10 | p-Cymenene | 1089 | 1089 | 0.44 ± 0.00 | ||
11 | Linalool | 1100 | 1095 | 0.54 ± 0.02 | 2.77 ± 0.01 | 2.37 ± 0.02 |
12 | (Z)-p-Menth-2-en-1-ol | 1122 | 1118 | 1.47 ± 0.01 | 0.21 ± 0.00 | |
13 | (E)-p-Menth-2-en-1-ol | 1139 | 1136 | 1.37 ± 0.00 | ||
14 | β-Pinene oxide | 1156 | 1154 | 0.79 ± 0.01 | ||
15 | Terpinen-4-ol | 1177 | 1174 | 0.94 ± 0.01 | 1.64 ± 0.00 | 1.25 ± 0.01 |
16 | p-Cymen-8-ol | 1185 | 1179 | 0.25 ± 0.01 | ||
17 | α-Terpineol | 1191 | 1186 | 0.32 ± 0.01 | 0.36 ± 0.01 | |
18 | Ascaridole | 1239 | 1234 | 9.39 ± 0.09 | ||
19 | Cumin aldehyde | 1240 | 1238 | 0.17 ± 0.01 | ||
20 | Piperitone | 1254 | 1249 | 1.30 ± 0.02 | 0.56 ± 0.01 | |
21 | Bornyl acetate | 1286 | 1287 | 0.95 ± 0.02 | ||
22 | Thymol | 1293 | 1289 | 0.17 ± 0.01 | ||
23 | Carvacrol | 1302 | 1298 | 0.65 ± 0.01 | 0.69 ± 0.01 | |
24 | α-Cubebene | 1350 | 1345 | 0.22 ± 0.03 | ||
25 | Engenol | 1358 | 1356 | 0.25 ± 0.01 | ||
26 | α-Copaene | 1376 | 1374 | 2.88 ± 0.03 | 9.12 ± 0.15 | 10.34 ± 0.09 |
27 | β-Elemene | 1393 | 1389 | 5.68 ± 0.03 | 1.34 ± 0.03 | 3.82 ± 0.04 |
28 | Cyperene | 1401 | 1398 | 1.47 ± 0.01 | ||
29 | E-Caryophyllene | 1422 | 1417 | 7.02 ± 0.05 | 4.85 ± 0.04 | |
30 | α-Bergamotene | 1436 | 1432 | 0.75 ± 0.04 | ||
31 | Aromadendrene | 1440 | 1439 | 0.38 ± 0.02 | ||
32 | α-Guaiene | 1440 | 1437 | 0.18 ± 0.01 | ||
33 | α-Humulene | 1454 | 1452 | 1.14 ± 0.08 | 0.99 ± 0.04 | |
34 | β-Chamigrene | 1476 | 1476 | 2.50 ± 0.04 | ||
35 | γ-Gurjunene | 1476 | 1475 | 2.03 ± 0.03 | ||
36 | β-Selinene | 1487 | 1489 | 6.89 ± 0.04 | 1.31 ± 0.03 | 3.26 ± 0.03 |
37 | Viridiflorene | 1496 | 1496 | 1.72 ± 0.05 | ||
38 | α-Selinene | 1497 | 1498 | 3.82 ± 0.03 | ||
39 | Bicyclogermacrene | 1497 | 1500 | 15.81 ± 0.47 | ||
40 | α-Muurolene | 1501 | 1500 | 0.39 ± 0.01 | ||
41 | Germacrene A | 1506 | 1508 | 5.23 ± 0.13 | ||
42 | δ-Cadinene | 1524 | 1522 | 0.85 ± 0.01 | 2.99 ± 0.04 | |
43 | Zonarene | 1527 | 1528 | 0.30 ± 0.01 | ||
44 | α-Calacorene | 1544 | 1544 | 0.22 ± 0.01 | ||
45 | Elemol | 1551 | 1548 | 0.41 ± 0.01 | ||
46 | E-Nerolidol | 1565 | 1561 | 3.24 ± 0.32 | 0.46 ± 0.00 | |
47 | Maalilo | 1569 | 1566 | 0.30 ± 0.03 | ||
48 | Spathulenol | 1579 | 1577 | 4.18 ± 0.07 | 7.22 ± 0.19 | 2.32 ± 0.03 |
49 | Caryophyllene oxide | 1584 | 1582 | 5.86 ± 0.08 | ||
50 | Thujopsan-2-α-ol | 1586 | 1586 | 2.70 ± 0.02 | ||
51 | β-Copaen-4-α-ol | 1589 | 1590 | 0.42 ± 0.45 | ||
52 | Viridiflorol | 1592 | 1592 | 1.63 ± 0.03 | ||
53 | Globulol | 1593 | 1590 | 1.11 ± 0.30 | ||
54 | Cubeban-11-ol | 1594 | 1595 | 0.50 ± 0.11 | ||
55 | Guaiol | 1599 | 1600 | 1.32 ± 0.21 | ||
56 | Rosifoliol | 1603 | 1600 | 0.88 ± 0.03 | ||
57 | Rosifoliol | 1604 | 1600 | 1.05 ± 0.06 | ||
58 | Cubenol (1-epi) | 1629 | 1627 | 0.35 ± 0.13 | ||
59 | 1-epi-Cubenol | 1631 | 1627 | 2.97 ± 0.10 | ||
60 | γ-Eudesmol | 1634 | 1630 | 1.27 ± 0.09 | ||
61 | Caryophylla-4(12),8(13)-dien-5α-ol | 1639 | 1639 | 0.32 ± 0.01 | ||
62 | Aromadendrene epoxide | 1639 | 1639 | 1.65 ± 0.06 | ||
63 | α-Muurolol | 1643 | 1644 | 0.34 ± 0.13 | ||
64 | Cubenol | 1645 | 1645 | 1.82 ± 0.08 | ||
65 | α-Muurolol | 1649 | 1644 | 0.41 ± 0.05 | ||
66 | β-Eudesmol | 1653 | 1650 | 1.37 ± 0.05 | ||
67 | Selin-11-en-4-α-ol | 1657 | 1658 | 14.68 ± 0.16 | 8.85 ± 0.07 | |
68 | Intermedeol (neo-) | 1660 | 1658 | 0.57 ± 0.07 | ||
69 | Intermedeol | 1662 | 1665 | 0.47 ± 0.04 | ||
70 | Bulnesol | 1670 | 1670 | 0.90 ± 0.02 | 2.55 ± 0.05 | |
71 | (Z)-α-Santalol | 1672 | 1674 | 1.77 ± 0.07 | 0.61 ± 0.02 | |
72 | Guaiol acetate | 1722 | 1725 | 0.96 ± 0.05 | ||
73 | Hexadecanoic acid | 1959 | 1959 | 0.41 ± 0.03 | ||
Number of compounds identified | 32 | 21 | 51 | |||
Total identified (%) | 91.18 | 96.97 | 95.10 | |||
Monoterpene hydrocarbons (%) | 3.61 | 71.36 | 25.81 | |||
Oxygenated monoterpenes (%) | 0.54 | 4.24 | 2.75 | |||
Sesquiterpene hydrocarbons (%) | 49.12 | 13.49 | 34.67 | |||
Oxygenated sesquiterpenes (%) | 37.91 | 7.22 | 30.73 |
Sample | Antioxidant (IC50, µg/mL) | |
---|---|---|
DPPH | ABTS | |
Flower essential oil | 725.21 | 123.06 |
Leaf essential oil | 2017.39 | 290.63 |
Twig essential oil | 2435.50 | 382.17 |
Ascorbic Acid | 5.87 | 6.41 |
Microorganisms | Essential Oils (µg/mL) | Antibiotics (µg/mL) | ||||
---|---|---|---|---|---|---|
Flower | Leaf | Twig | Amp | Gen | Van | |
Gram-positive | ||||||
B. subtilis (TISTR 1248) | 640 | inactive | inactive | 0.25 | 0.25 | 128 |
L. monocytogenes (F2369) | 1280 | inactive | inactive | 1 | 1 | 1 |
S. aureus (ATCC 25923) | 640 | 1280 | inactive | 0.5 | 8 | 64 |
M. luteus (DMST 15503) | 640 | 1280 | 1280 | 0.25 | 0.25 | 0.25 |
Gram-negative | ||||||
E. coli (TISTR 780) | 1280 | inactive | inactive | 8 | 0.5 | 64 |
S. typhimurium (DMST 562) | 640 | 1280 | inactive | 1 | 0.5 | 64 |
P. aeruginosa (ATCC 10145) | 1280 | inactive | inactive | 64 | 1 | 128 |
S. flexneri (DMST 4423) | 640 | inactive | inactive | 128 | 2 | 128 |
S. typhi (DMST 22842) | 1280 | 1280 | inactive | 128 | 1 | 128 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anatachodwanit, A.; Promnart, P.; Deachathai, S.; Maneerat, T.; Charoensup, R.; Duangyod, T.; Laphookhieo, S. Chemical Composition of the Essential Oils from Goniothalamus tortilipetalus M.R.Hend. and Their Antioxidant and Antibacterial Activities. Chemistry 2024, 6, 264-271. https://doi.org/10.3390/chemistry6020013
Anatachodwanit A, Promnart P, Deachathai S, Maneerat T, Charoensup R, Duangyod T, Laphookhieo S. Chemical Composition of the Essential Oils from Goniothalamus tortilipetalus M.R.Hend. and Their Antioxidant and Antibacterial Activities. Chemistry. 2024; 6(2):264-271. https://doi.org/10.3390/chemistry6020013
Chicago/Turabian StyleAnatachodwanit, Aknarin, Phunrawie Promnart, Suwanna Deachathai, Tharakorn Maneerat, Rawiwan Charoensup, Thidarat Duangyod, and Surat Laphookhieo. 2024. "Chemical Composition of the Essential Oils from Goniothalamus tortilipetalus M.R.Hend. and Their Antioxidant and Antibacterial Activities" Chemistry 6, no. 2: 264-271. https://doi.org/10.3390/chemistry6020013
APA StyleAnatachodwanit, A., Promnart, P., Deachathai, S., Maneerat, T., Charoensup, R., Duangyod, T., & Laphookhieo, S. (2024). Chemical Composition of the Essential Oils from Goniothalamus tortilipetalus M.R.Hend. and Their Antioxidant and Antibacterial Activities. Chemistry, 6(2), 264-271. https://doi.org/10.3390/chemistry6020013