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Abstract: The essential oil from Conyza bonariensis (Asteraceae) aerial parts (CBEO) was extracted by
hydrodistillation in a Clevenger-type apparatus and was characterized by gas chromatography–mass
spectrometry. The antitumor potential was evaluated against human tumor cell lines (melanoma,
cervical, colorectal, and leukemias), as well as non-tumor keratinocyte lines using the MTT assay.
The effect of CBEO on the production of Reactive Oxygen Species (ROS) was evaluated by DCFH-
DA assay, and a protection assay using the antioxidant N-acetyl-L-cysteine (NAC) was also per-
formed. Moreover, the CBEO toxicity in the zebrafish model was assessed. The majority of the
CBEO compound was (Z)-2-lachnophyllum ester (57.24%). The CBEO exhibited selectivity towards
SK-MEL-28 melanoma cells (half maximal inhibitory concentration, IC50 = 18.65 ± 1.16 µg/mL),
and induced a significant increase in ROS production. In addition, the CBEO’s cytotoxicity against
SK-MEL-28 cells was reduced after pretreatment with NAC. Furthermore, after 96 h of exposure,
1.5 µg/mL CBEO induced death of all zebrafish embryos. Non-lethal effects were observed after
exposure to 0.50–1.25 µg/mL CBEO. Additionally, significant alterations in the activity of enzymes
associated with oxidative stress in zebrafish larvae were observed. These results provide evidence
that CBEO has a significant in vitro antimelanoma effect by increasing ROS production and moderate
embryotoxicity in zebrafish.

Keywords: essential oil; antiproliferative effect; embryotoxicity

1. Introduction

Cancer is a relevant public health problem worldwide [1]. In 2020, approximately
19 million people were diagnosed with cancer and about 10 million deaths were recorded [2].

Currently, cancer treatment mainly includes surgery, radiotherapy, chemotherapy, and
targeted therapy [2]. Nevertheless, limitations regarding therapeutic success have been
observed, including patients relapsing or without an adequate response to therapy [3],
in addition to significant adverse effects and chemoresistance [4]. Therefore, the search
for new therapeutic opportunities for the treatment of this disease continues to grow
globally [5].

Natural products or their derivatives represent more than 60% of the molecules used
for cancer treatment [6]. In this context, essential oils (EOs) have been widely investigated
for their pharmacological effects, including antimicrobial [7,8], anti-inflammatory [9], and
antitumor effects [10–15]. EOs are aromatic oily liquids obtained from many parts of
plants such as flowers, seeds, leaves, twigs, and roots. EO is composed of numerous
volatile constituents such as sesquiterpenes, monoterpenes, aldehydes, alcohols, esters, and
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ketones [16]. The specific advantage of EOs appears to be in the synergistic effects of their
components, as compared to the individual effects of these molecules [17].

Genus Conyza (Asteraceae) comprises about 50 species. The secondary metabolites in
Conyza plants include alkaloids, terpenoids, steroids, phenolic compounds, flavonoids, and
tannins. In most Conyza species EOs, the major chemical compounds found are limonene
and β-farnesene [18]. Conyza bonariensis (L.) Cronquist is an invasive plant, native to
South America [19]. Several studies show the biological potential of the essential oil from
C. bonariensis aerial parts as anti-aging [20], antibacterial [21], and antitumor against HeLa
(cervical carcinoma), MCF-7 (breast adenocarcinoma), A549 (lung adenocarcinoma), and
HepG2 (hepatocellular carcinoma) human tumor cell lines. Additionally, few reports
regarding its toxicity were found. Nevertheless, a significant difference in the chemical
composition of these EOs was recorded [20,21].

Literature data show differences in the chemical composition of EOs even within
the same species [22]. Studies on EOs from C. bonariensis aerial parts carried out in vari-
ous countries have revealed different major components, such as (E)-β-farnesene [23,24],
germacrene D [25], caryophyllene oxide [26], and methyl ester of matricaria [27,28].

Here, we present the chemical characterization of the EO from C. bonariensis aerial parts
(CBEO) collected in João Pessoa, Paraíba, Brazil. Additionally, we evaluate its antitumor
effect in human cell lines (SK-MEL-28, HeLa, HCT-116, HL-60, and K562), and its toxicity
on human peripheral blood mononuclear cells (PBMCs) and zebrafish.

2. Materials and Methods
2.1. Drugs and Reagents

Dulbecco’s Modified Eagle’s Medium (DMEM) (Sigma-Aldrich®; St. Louis, MO,
USA), Roswell Park Memorial Institute 1640 (RPMI) medium (Sigma-Aldrich®; St. Louis,
MO, USA), Histopaque®-1077 (Sigma-Aldrich®; St. Louis, MO, USA), Buffered phos-
phate solution (PBS) (Sigma-Aldrich®; St. Louis, MO, USA), doxorubicin (DXR) (Sigma-
Aldrich®; St. Louis, MO, USA), penicillin–streptomycin (Sigma-Aldrich®; St. Louis, MO,
USA), 2,7-dichlorodihydrofluorescein diacetate (DCFH-DA) (Sigma-Aldrich®; St. Louis,
MO, USA), N-acetylcysteine (NAC) (Sigma-Aldrich®; St. Louis, MO, USA), hydrogen
peroxide (H2O2) (Sigma-Aldrich®; St. Louis, MO, USA), 3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide (MTT) (Sigma-Aldrich®; St. Louis, MO, USA), sodium
chloride (NaCl) (Sigma-Aldrich®; St. Louis, MO, USA), potassium chloride (KCl) (Sigma-
Aldrich®; St. Louis, MO, USA), calcium chloride (CaCl2) (Sigma-Aldrich®; St. Louis,
MO, USA), magnesium sulfate (MgSO4) (Sigma-Aldrich®; St. Louis, MO, USA), sodium
sulfate (Na2SO4) Sigma-Aldrich®; St. Louis, MO, USA), methylene blue Sigma-Aldrich®;
St. Louis, MO, USA), dimethylsulfoxide (DMSO) (Dinâmica®, Indaiatuba, SP, Brazil),
Sodium Dodecyl Sulfate (SDS) (Êxodo Científica®, Sumaré, SP, Brazil), phytohaemagglu-
tinin (GIBCO®, Grand Island, NY, USA), trypsin 0.25% with ethylenediaminetetraacetic
acid (EDTA) (GIBCO®, Grand Island, NY, USA), Fetal Bovine Serum (FBS) (GIBCO®,
Grand Island, NY, USA), fish food (Tetra®, Melle, Germany), hexane (Biograde®, Anápolis,
GO, Brazil).

The drugs and reagent solutions were prepared immediately before use.

2.2. Human Tumor Cell Lines

The SK-MEL-28 (human melanoma), HeLa (human cervical cancer), HCT-116 (hu-
man colon carcinoma), HL-60 (human promyelocytic leukemia), K562 (chronic myeloid
leukemia), and HaCat (human immortalized keratinocytes) cell lines were obtained from
Rio de Janeiro Cell Bank (BCRJ), Brazil, and cultured in Dulbecco’s Modified Eagle’s
Medium (DMEM) (SK-MEL-28, HeLa and HaCaT) or Roswell Park Memorial Institute
1640 (RPMI) (HCT-116, HL-60 and K562) medium supplemented with 10% Fetal Bovine
Serum and 1% penicillin–streptomycin at 37 ◦C with 5% CO2.
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2.3. Human Peripheral Blood Mononuclear Cells (PBMC)

Blood samples were collected from healthy donors in tubes containing EDTA. Human
peripheral blood mononuclear cells (PBMCs) were isolated after centrifugation (400× g,
20 ◦C, for 30 min) of the blood samples in tubes containing Histopaque®-1077. Subse-
quently, the interface containing the mononuclear cells was collected and washed with PBS
(400× g, 10 min, 20 ◦C). Twenty-four hours before CBEO or DXR treatment, PBMCs were re-
suspended in RPMI-1640 medium supplemented with 10% FBS, 1% penicillin-streptomycin,
and 2% phytohemagglutinin, and cultured in 96-well plates (1 × 106 cells/mL) at 37 ◦C
with 5% CO2 [29].

2.4. Zebrafish Embryos

Zebrafish embryos (AB wild-type strain) with approximately 1 h post-fertilization
(hpf) were provided by the Production Unit for Alternative Model Organisms (UniPOM),
Federal University of Paraíba (UFPB), João Pessoa, Brazil. The parents were maintained in
a recirculation system with regular monitoring of water quality parameters (pH, ammonia,
and nitrite levels). The room temperature (26 ± 1 ◦C) and photoperiod (14:10 light/dark
cycle) were controlled. Fish were fed daily with commercial food and freeze-dried spirulina
(Fazenda Tamanduá, Patos, PB, Brazil), and were also monitored for abnormal behavior or
disease development.

The day before the experiment, zebrafish adults (male-to-female ratio of 2:1) were
transferred to a 7 L spawning tank with a bottom mesh and a quick-opening valve for
embryo collection. Embryos were collected on the day of the experiment and cultured
in adapted embryonic medium E3 (5.0 mM NaCl, 0.17 mM KCl, 0.33 mM CaCl2, and
0.33 mM MgSO4) containing 0.005% methylene blue. Only spawning with a fertilization
rate of ≥90% was used. Viable embryos (showing a normal cleavage pattern and without
morphological changes) were selected under an inverted light microscope (Televal 31,
Zeiss®, Oberkochen, Germany) at 50×magnification.

2.5. Botanical Material and Essential Oil Extraction

Conyza bonariensis (L.) Cronquist branches and leaves (1 kg) were collected from the
Medicinal Plant Garden, Institute of Research in Drugs and Medicines of Federal University
of Paraíba (UFPB), João Pessoa, Paraíba, Brazil (7◦08′30.0′′ S–34◦50′46.7′′ W) in September
of 2019. An exsiccate of C. bonariensis was identified by Prof. Dr. Maria de Fátima Agra
and deposited at Herbarium Lauro Pires Xavier-JPB of UFPB, under the number JPB 26391
(registry number SISGEN ABB39C8).

Essential oil extraction was performed by hydrodistillation in a Clevenger-type appa-
ratus. The samples were crushed and subjected to distillation for 2 h [30]. After extraction,
the essential oil was dried with anhydrous sodium sulfate (Na2SO4), with a yielding (w/w)
of 1.3%.

2.6. Essential Oil Analysis

Gas chromatography–mass spectrometry (GC-MS) analysis was performed using a
Shimadzu QP-2010 Ultra Quadrupole MS system, operating at 70 eV ionization energy.
A capillary column RTX-5MS (30 m × 0.25 mm i.d., 0.25 µM film thickness) was used with
Helium as a carrier gas at a flow rate of 3 mL/min with a 1:100 split. The injector and
detector temperatures were set at 220 ◦C and 280 ◦C, respectively. The column temperature
was programmed from 40 ◦C (isothermal for 1 min) to 220 ◦C at a rate of 10 ◦C/min
(remaining isothermal for 2 min at 220 ◦C). Subsequently, the temperature was increased
from 220 ◦C to 280 ◦C at a rate of 20 ◦C/min and held isothermally for 5 min at 280 ◦C.
The ions were scanned in scan mode, ranging from m/z 50 to 500. The sample solution was
prepared in hexane at a dilution of 999:1 (v/v) and 1 µL was injected into the chromatograph
at a flow rate (split) of 1:200.

To calculate the retention indices of compounds, under the same operating conditions,
a series of hydrocarbons (C10 to C40) (Sigma-Aldrich®) was injected. The retention index
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for each compound was determined based on a similarity index above 89% estimated by
the libraries (Nist. 08 and Wiley 9) used for compound identification. The retention index
was calculated using the chromatogram obtained through the Van Den Dool and Kratz
equation [31].

2.7. Cytotoxicity Assessment of CBEO in Human Cells

The MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay was
performed to evaluate the CBEO cytotoxicity. MTT is a yellow tetrazolium salt that can
permeate cell membranes. In viable cells, MTT is converted to insoluble purple formazan
crystals, which can be measured spectrophotometrically. The optical density value is
proportional to the number of viable cells [32]. The human cell lines SK-MEL-28, HeLa,
HCT-116, HL-60, K562, and HaCaT were cultured in DMEM or RPMI medium supple-
mented with 10% FBS, 100 U/mL penicillin, and 100 µg/mL streptomycin at 37 ◦C in a
humidified atmosphere with 5% CO2. The cell suspension was added to 96-well plates
(100 µL/well) at a density of 3 × 105 cells/mL (for SK-MEL-28, HeLa, HCT-116, and
HaCaT), 5 × 105 cells/mL (for HL-60 and K562), or 1 × 106 cells/mL (PBMC). After cul-
turing for 24 h, cells were incubated with 100 µL of CBEO (HaCaT and human tumor
cell lines: 2.34–300 µg/mL; PBMC: 0.15–20 µg/mL) dissolved in DMSO. Doxorubicin
(DXR) (molecular weight—MW: 543.52 g/mol) was used as a standard drug. After 72 h,
110 µL of the supernatant was discarded and 10 µL of the 3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide (MTT) solution (5 mg/mL) was added and incubated for
another 4 h. The deposited formazan was dissolved with Sodium Dodecyl Sulfate (SDS)
(100 mL/well) [33] and the optical densities were measured using a microplate reader
(Synergy HT, BioTek®, Winooski, VT, USA) at λ = 570 nm and used to calculate the IC50
(half-maximal inhibitory concentration). Three independent experiments were performed
in triplicate.

The Selectivity Index (SI) was determined from the ratio between the IC50 of the
non-tumor cell line (HaCaT) and the IC50 of the tumor cell line.

2.8. Quantification of Reactive Oxygen Species in Human Tumor Cells

Reactive Oxygen Species (ROS) were quantified by the 2,7-dichlorodihydrofluorescein
diacetate (DCFH-DA) reagent oxidation method [34]. DCFH-DA is a non-polar and non-
fluorescent probe, that can freely cross cell membranes. Intracellular esterases cleave DCFH-
DA to DCFH, which is oxidized by ROS to DCF, a highly fluorescent molecule. Therefore,
the number of fluorescent cells is proportional to the amount of intracellular ROS [35].
For this experiment, SK-MEL-28 cells were seeded in 24-well plates at a concentration of
2 × 105 cells/mL. After 24 h, cells were exposed to CBEO (20 or 40 µg/mL), DXR (4 µM), or
hydrogen peroxide (H2O2) (500 µM) in the presence of DCFH-DA (10 µM), and incubated
for 30 min, 1 h, or 3 h. After the incubation periods, the cells were trypsinized, washed, and
resuspended in PBS. The percentage of fluorescent cells was obtained by flow cytometry
from 10,000 events acquired at 530 nm fluorescence and 485 nm excitation wavelengths.
Three independent experiments were performed in duplicate.

2.9. Evaluation of CBEO Cytotoxicity in the Presence or Absence of N-acetylcysteine (NAC)

To assess the involvement of ROS in CBEO cytotoxicity, SK-MEL-28 cells were added
to 96-well plates (100 µL/well) at a density of 3 × 105 cells/mL and incubated for 24 h
(37 ◦C, CO2 5%). After this incubation period, cells were incubated for another 3 h (37 ◦C,
CO2 5%) in the presence or absence of 5 µM of N-acetylcysteine (NAC). Subsequently, cells
were treated with CBEO (20 or 40 µg/mL, 100 µL per well) or DXR (4 µM, 100 µL per
well) and incubated for 72 h in an atmosphere of 5% CO2 and 37 ◦C. Then, the plates were
centrifuged, and 110 µL of the supernatant was removed. Then, 10 µL of the MTT solution
(5 mg/mL) was added, followed by incubation for 4 h at 37 ◦C, CO2 5%. The formazan
was dissolved with 100 µL of SDS [32] and the optical densities were measured using a
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microplate reader (Synergy HT, BioTek®) at λ = 570 nm. Three independent experiments
were performed in triplicate.

2.10. CBEO Toxicity in Zebrafish Model
2.10.1. Acute Toxicity Test Using Zebrafish Embryos

CBEO acute toxicity was determined by Fish Embryo Acute Toxicity (FET) assay.
The FET test was conducted independently with CBEO according to OECD’s guideline
number 236 [36] with slight modifications.

Zebrafish embryos with up to 3 hpf of age were exposed to five increasing concentra-
tions (0.5, 0.75, 1.0, 1.25, and 1.5 mg/L) of CBEO. For each concentration tested, a 96-well
plate was prepared, containing 20 fertilized eggs (1 embryo per well) exposed to the test
sample, and 4 embryos were exposed only to E3 medium (internal controls). Two addi-
tional plates containing embryos exposed to E3 medium (negative control) and 0.1% DMSO
(solvent control) were also assayed. The volume of liquid in each well at the beginning of
the exposure was 0.3 mL. The plates were protected from evaporation by using their own
lid and incubating them in a humidified chamber with controlled temperature (26 ± 1 ◦C)
and humidity (70%).

The exposure was performed for 96 h, and the embryos were analyzed daily for
lethality endpoints: egg coagulation; lack of somite formation; lack of detachment of the
tail-bud from the yolk sac; and lack of heartbeat. In the presence of these endpoints, the
embryo/larva was considered dead.

The number of deaths was used to calculate the survival rate (survival % = number of
alive/total organisms × 100). Additionally, non-lethal effects (eye malformation, otolith
malformation, mouth malformation, spine malformation, body pigmentation, hatching
delay, yolk sac edema, yolk sac deformation, pericardial edema, head edema, blood clotting,
and undersize) were also recorded every 24 h. The exposures were under static conditions
(without renovation of the test sample or negative and solvent controls). Observations
were using a stereomicroscope (50× magnification) and documented with photographs.
After 96 h, surviving larvae were euthanized with eugenol and appropriately disposed of.

The number of deaths and prevalent non-lethal effects (presence in at least three
concentrations) was used to calculate the LC50 (median lethal concentration) and EC50
(median effective concentration) through probit analysis [37]. These values were also
used to determine the NOAEL (No Observed Adverse Effect Level) and LOAEL (Lowest
Observable Adverse Effect Level).

2.10.2. Oxidative Stress Biomarker Enzymes in Zebrafish Larvae

The FET test was repeated for CBEO under the same conditions described in item 2.8.1.,
but at this time the embryos were independently exposed to three sublethal concentrations
of CBEO (0.12, 0.25, and 0.50 µg/mL) [38]. After 96 h of exposure, the larvae were quickly
frozen in 0.1 M sodium phosphate buffer, pH 7.4.

Subsequently, the larvae were macerated using cold NaCl 0.9% 1:9 (w/v) solution. Ho-
mogenates were centrifuged at 10,000× g for 10 min at 4 ◦C, and the resulting supernatants
were used for measurement of soluble protein content and enzymatic activity. The activi-
ties of lactate dehydrogenase (LDH), glutathione transferase (GST), acetylcholinesterase
(AChE), glutathione peroxidase (GPx), and catalase (CAT) enzymes were measured accord-
ing to Domingues et al. (2010) [39]. Tests were performed in quadruplicate for each enzyme.

2.11. Statistical Analysis

Statistical analysis was performed using GraphPad Prism 8.0.2 (Graphpad Software
Inc., San Diego, CA, USA). Results are expressed as the mean ± standard error of the
mean (SEM). Data statistical analysis was performed using Analysis of Variance (ANOVA),
followed by Tukey’s test (p < 0.05). The half-maximal inhibitory concentrations (IC50) and
their 95% confidence intervals (CI 95%) were obtained by non-linear regression analysis.
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For embryotoxicity assay, the median lethal concentration (LC50) values and the median
effect concentration (EC50) values were calculated by probit regression analysis.

3. Results
3.1. (Z)-2-lachnophyllum Ester Was the Major Compound in the Chemical Characterization
of CBEO

The analysis of the chemical profile of CBEO led to the identification of 96.95% of
its components. The major compound was (Z)-2-lachnophyllum ester (57.24%) (MW:
176.21 g/mol), and the remaining components were monoterpenes and sesquiterpenes
(39.71%), as shown in Table 1.

Table 1. Identification and quantification of secondary metabolites present in the essential oil from
Conyza bonariensis (L.) Cronquist aerial parts (CBEO).

Compound Area
(%)

Rt
a

(min)

RI b

Kovats
(Calculated)

RI b

Kovats
(Literature)

α-thujene 0.03 6.320 928.792 925.0
(-)-α-pinene 0.66 6.458 937.300 937.0

Sabinene 0.74 7.131 978.792 972.0
β-pinene 1.70 7.209 983.600 976.0
Mircene 0.51 7.376 993.896 993.0

p-cymene 0.08 7.990 1032.198 1024.0
Limonene 14.26 8.062 1036.699 1038.0

(E)-β-ocimene 0.04 8.160 1042.826 1047.0
(Z)-β-ocimene 1.32 8.333 1053.642 1036.0
Terpinen-4-ol 0.11 10.500 1189.122 1177.0

(E,E)-2,6-dimethyl-3,5,7-octatriene-2-ol 0.16 10.873 1214.039 1209.2
Thymol 0.24 12.134 1302.998 1297.0

Carvacrol 0.61 12.282 1302.114 1300.0
(E)-caryophyllene 4.19 14.046 1442.840 1433.0
(E)-α-bergamotene 0.64 14.144 1450.658 1434.0

(E)-β-farnesene 0.75 14.316 1464.380 1446.0
(+)-β-funebrene 0.20 14.388 1470.124 1415.0
α-humulene 0.41 14.495 1478.660 1459.0

1-(1,5-dimethyl-4-hexenyl)-4-
methylbenzene 0.38 14.730 1497.407 1484.0

Germacrene-D 0.78 14.835 1505.784 1519.0
(Z)-2-lachnophyllum ester 57.24 15.105 1527.323 1512.0
β-sesquiphellandrene 7.04 15.265 1540.088 1525.0

(E)-nerolidol 0.68 15.678 1573.036 1565.0
Germacrene-B 0.34 15.827 1584.922 1566.0
Spathulenol 1.67 16.065 1604.363 1605.0

Caryophyllene oxide 1.22 16.158 1612.645 1613.0
Isospathulenol 0.41 16.758 1666.073 1666.0

Cadin-4-en-10-ol 0.33 16.937 1682.012 1673.0
Neophytadiene 0.21 18.698 1839.421 1849.0

Total 96.95%
a Rt: Retention time; b RI: Retention index.

3.2. CBEO Induces Cytotoxicity in Human Cell Lines

CBEO induced the least cytotoxicity on the acute promyelocytic leukemia cell line
(HL-60), IC50 of 32.20 ± 1.10 µg/mL, while the human melanoma cell line (SK-MEL-28)
was the most sensitive to the treatment, IC50 of 18.65 ± 1.16 µg/mL. Regarding the non-
tumor human keratinocyte cell line (HaCaT), CBEO presented IC50 of 56.49 ± 1.03, and the
standard drug, doxorubicin (DXR), showed high cytotoxicity (IC50: 0.28 ± 0.001 µM) after
72 h of treatment. Then, the Selectivity Indices (SI) of CBEO and DXR were determined
using the HaCaT healthy skin cell line as a non-tumor cell model. The CBEO showed the
highest SI for SK-MEL-28 cells (3.03), as shown in Table 2.
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Table 2. Cytotoxicity of the essential oil from Conyza bonariensis (L.) aerial parts (CBEO), and doxoru-
bicin (DXR) against human tumor and non-tumor cell lines after 72 h of treatment.

Cell Lines a IC50
b SI c

CBEO (µg/mL) DXR (µM) CBEO DXR

SK-MEL-28 18.65 ± 1.16 3.55 ± 1.67 3.03 0.08
HeLa 30.34 ± 1.08 3.80 ± 1.10 1.86 0.07

HCT-116 31.28 ± 1.16 2.57 ± 0.001 1.81 0.11
HL-60 32.20 ± 1.10 0.22 ± 0.001 1.75 1.27
K562 32.13 ± 1.09 0.71 ± 1.13 1.76 0.39

HaCaT 56.49 ± 1.03 0.28 ± 0.001 - -
Data obtained from three independent experiments carried out in triplicate and presented as IC50 values obtained
by nonlinear regression with a 95% confidence interval and expressed as mean ± standard error of the mean
(SEM); a SK-MEL-28: human melanoma cell line; HeLa: human cervical cancer cell line; HCT-116: human colon
carcinoma cell line; HL-60: human promyelocytic leukemia cell line; K562: chronic myeloid leukemia cell line;
HaCat: human immortalized keratinocytes cell line; b CI50: mean inhibitory concentration; c SI: selectivity index
(IC50 non-tumor cell line/IC50 tumor cell line).

3.3. CBEO Induces Less Cytotoxicity in PBMC Cells Than Doxorubicin

CBEO cytotoxicity was also evaluated in human peripheral blood mononuclear cells
(PBMC). CBEO induced a concentration-dependent cytotoxicity. The IC50 values were
2.68 ± 1.29 (Figure 1A) and 0.06 ± 1.19 µM (Figure 1B) for CBEO and DXR, respectively,
after 72 h of treatment.
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Figure 1. Cytotoxicity of (A) essential oil from Conyza bonariensis (L.) aerial parts (CBEO) or
(B) doxorubicin (DXR) against human peripheral blood mononuclear cells (PBMC) after 72 h of
treatment. Data obtained from three independent experiments carried out in triplicate and expressed
as mean ± standard error of the mean (SEM) analyzed by analysis of variance (ANOVA) followed by
Tukey’s test. Different letters denote significant differences among conditions; p < 0.05.

3.4. CBEO Induces Oxidative Stress in SK-MEL-28 Cells

In the dichlorodihydrofluorescein 2′7-diacetate (DCFH-DA) assay, CBEO treatment
induced a significant increase in the percentage of fluorescent cells after 30 min (20 µg/mL:
90.32 ± 1.64%; 40 µg/mL: 92.33 ± 1.96%, p < 0.05 for both), 1 h (20 µg/mL: 38.36 ± 1.82%;
40 µg/mL: 71.60 ± 1.78%, p < 0.05 for both), and 3 h (20 µg/mL: 8.05 ± 0.36%, p < 0.05)
of treatment, compared to the control (30 min: 8.22 ± 1.26%; 1 h: 2.18 ± 0.16%; and
3 h: 3.15 ± 0.63%). DXR, which was used as a standard drug, induced a significant in-
crease in the percentage of fluorescent cells after 30 min (75.64 ± 6.02% p < 0.05) and 3 h
(10.64 ± 0.92%, p < 0.05) of treatment, compared to the control. As expected, in the group
exposed to hydrogen peroxide (H2O2), there was a significant increase in the percentage of
fluorescent cells, compared to the control (30 min: 97.65 ± 0.86%; 1 h: 98.87 ± 0.17%; and
3 h: 99.45 ± 0.23%, p < 0.05 for all) (Figure 2).
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3.5. CBEO Cytotoxicity in SK-MEL-28 Cells Is ROS-Dependent

After 72 h of CBEO treatment, in the absence of N-acetylcysteine (NAC), a significant re-
duction in cell viability was observed (20 µg/mL: 54.06 ± 3.96%; 40 µg/mL: 20.97 ± 5.60%,
p < 0.05 for both) compared to the control (100.00 ± 2.47%). NAC pretreatment significantly
reduced the CBEO cytotoxic effect, compared to the groups treated only with CBEO at
the respective tested concentrations (20 µg/mL in the presence of NAC: 103.3 ± 2.82%;
40 µg/mL in the presence of NAC: 61.63 ± 1.52%, p < 0.05 for both) (Figure 3).
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Figure 3. Cytotoxicity of essential oil from Conyza bonariensis (L.) aerial parts (CBEO) (20 or 40 µg/mL)
or doxorubicin (DXR) (4 µM) in the presence or absence of N-acetylcysteine (NAC) (5 µM) against
melanoma cells (SK-MEL-28) after 72 h. Data obtained from three independent experiments carried
out in triplicate and expressed as a percentage of cell viability (%) were analyzed by analysis of
variance (ANOVA) followed by Tukey’s test. Different letters denote significant differences among
conditions; p < 0.05.
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As expected, NAC pretreatment significantly reduced the DXR cytotoxicity (28.45± 1.96%,
p < 0.05) compared to the group treated with DXR in the absence of NAC (47.23 ± 0.81%)
(Figure 3).

3.6. Embryotoxicity Induced by CBEO in Zebrafish Model

The embryotoxicity assay was performed using CBEO concentrations ranging from
0.5 to 1.5 µg/mL. After 96 h of exposure, all embryos died at the highest concentration
tested. However, the two lowest concentrations (0.5 and 0.75 µg/mL) did not induce any
mortality (Figure 4).
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Figure 4. Effects of exposure of zebrafish embryos and larvae to the essential oil from Conyza bonar-
iensis (L.) aerial parts (CBEO) after 96 h (n = 20 embryos/concentration). No effect: morphological
characteristics comparable to control organisms; non-lethal effect: presence of non-lethal endpoints
(eye malformation; otolith malformation, mouth malformation, spine malformation, body pigmenta-
tion, hatching delay, yolk sac edema, yolk sac deformation, pericardial edema, head edema, blood
clotting, and undersize); mortality: presence of lethality outcomes (egg coagulation; lack of somite
formation; lack of detachment of the tail-bud from the yolk sac and lack of heartbeat).

The non-lethal effects observed included pericardial edema, yolk sac edema, de-
layed egg hatching, and egg and blood clotting. Additionally, coagulation and absence of
heartbeats were the only lethality outcomes observed in embryos and larvae after CBEO
treatments (Figure 5).
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Figure 5. Representative images of lethal and non-lethal effects observed zebrafish embryos and
larvae exposed to different concentrations of the essential oil from Conyza bonariensis (L.) aerial parts
(CBEO) in the embryotoxicity test. In (a–d), control organisms with normal development after 24,
48, 72 and 96 h, respectively, exposed only to E3 medium; (e) embryo after 24 h of exposure to
CBEO (1.5 µg/mL) showed egg coagulation; (f) embryo after 24 h of exposure to CBEO (0.75 µg/mL)
without lethal or non-lethal effects; (g) embryo after 48 h of exposure to CBEO (1.0 µg/mL) showed
yolk sac edema (YSE); (h) embryo after 72 h exposure to CBEO (1.25 µg/mL) showed yolk sac edema
(YSE), pericardial edema (PE) and blood clotting (BC); and (i) embryo after 96 h of exposure to CBEO
(1.25 µg/mL) showed delayed hatching (HD) and pericardial edema (PE). 50×magnification.
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As observed in Table 3, CBEO presented a median lethal concentration (LC50) of
1.20 µg/mL. The Lowest Observed Adverse Effect Level (LOAEL) values were 0.5 µg/mL
for delayed hatching and 1.0 µg/mL for yolk sac edema, pericardial edema, and blood
clotting. The No Observed Adverse Effect Level (NOAEL) value was 0.75 µg/mL for
yolk sac edema, pericardial edema, and blood coagulation. The median effective con-
centration (EC50) for the non-lethal effects found were 0.99 (delayed hatching) and 1.36
(pericardial edema).

Table 3. Effects of exposure to essential oil from Conyza bonariensis (L.) aerial parts (CBEO) on
developmental parameters of early stages of zebrafish after 96 h.

Embryotoxicological Endpoints NOAEL a LOAEL b EC50
c

Eye malformation n.e. † n.e. † n.e. †

Otolith malformation n.e. † n.e. † n.e. †

Mouth malformation n.e. † n.e. † n.e. †

Spine malformation n.e. † n.e. † n.e. †

Body pigmentation n.e. † n.e. † n.e. †

Hatching delay 0.5 n.e. † 0.99 (0.69–1.42) *
Yolk sac edema 1.0 0.75 n.e. †

Pericardial edema 1.0 0.75 1.36 (1.10–1.70) *
Head edema n.e. † n.e. † n.e. †

Blood clotting 1.0 0.75 n.e. †

Undersize n.e. † n.e. † n.e. †

Mortality (LC50) d - - 1.20 (1.12–1.3) *
a NOAEL: No Observed Adverse Effect Level; b LOAEL: Lowest Observed Adverse Effect Level; c EC50: median
effective concentration; d LC50: median lethal concentration; † n.e: no effect or less than 20% of embryos affected
in the analyzed parameter; * LC50 and EC50 values are expressed in µg/mL followed by 95% confidence interval
(CI) in parentheses.

Subsequently, the activity of enzymes related to oxidative stress in zebrafish larvae
exposed to low concentrations of CBEO (0.12 to 0.50 µg/mL) was studied. The rationale
for choosing these concentrations lies in the fact that when conducting tests with sublethal
concentrations, we typically observe the endogenous mechanisms of detoxification and
neutralization of Reactive Oxygen Species (ROS) in action, rather than observing the
final adverse effects such as cell death and necrosis, which are less informative from a
mechanistic standpoint.

As shown in Figure 6, there was a significant reduction in acetylcholinesterase
(AChE) activity in zebrafish larvae after treatment with CBEO at all concentrations
(0.12 µg/mL: 51.27 ± 0.70 µmol/min/mg; 0.25 µg/mL: 64.12 ± 0.27 µmol/min/mg;
and 0.50 µg/mL: 46.01 ± 0.87 µmol/min/mg; p < 0.05 for all), compared to the con-
trol (77.87 ± 1.12 µmol/min/mg). Furthermore, a significant increase in glutathione
transferase (GST) activity was observed after treatment with CBEO (0.25 µg/mL:
63.30 ± 0.36 µmol/min/mg; and 0.50 µg/mL: 80.43 ± 0.50 µmol/min/mg; p < 0.05 for
both) compared to the control (61.56 ± 0.34 µmol/min/mg). For catalase (CAT) activity,
we observed a significant increase in the activity of this enzyme in larvae treated with
CBEO (0.12 µg/mL: 3.36± 0.16 µmol/min/mg; 0.25 µg/mL: 3.73 ± 0.28 µmol/min/mg;
and 0.50 µg/mL: 3.71 ± 0.08 µmol/min/mg, p < 0.05 for all) compared to the con-
trol (2.36 ± 0.06 µmol/min/mg). In addition, treatment of larvae with 0.25 and
0.50 µg/mL of CBEO induced a significant increase in lactate dehydrogenase (LDH)
activity (353.6 ± 0.96 µmol/min/mg and 417.4 ± 14.57 µmol/min/mg, respectively;
p < 0.05 for both) compared to the control (314.00 ± 2.65 µmol/min/mg). For glu-
tathione peroxidase (GPx) activity, we observed a significant increase in the activity
of this enzyme in larvae treated with 0.5 µg/mL CBEO (10.70 ± 0.37 µmol/min/mg,
p < 0.05) compared to the control (9.52 ± 0.10 µmol/min/mg).
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Figure 6. Activity of oxidative stress marker enzymes in zebrafish larvae after 96 h of expo-
sure to different concentrations of essential oil from Conyza bonariensis (L.) aerial parts (CBEO).
(A): acetylcholinesterase (AChE); (B): glutathione transferase (GST); (C): catalase activity (CAT);
(D): lactate dehydrogenase (LDH); and (E): glutathione peroxidase (GPx) activity. Data are presented
as mean ± standard error of the mean (SEM) and were analyzed using one-way ANOVA followed by
Tukey’s test. Different letters denote significant differences among conditions; p < 0.05.

4. Discussion

Nature represents a significant source of bioactive products. Thus, research around
the world has sought to discover and investigate the biological effects of natural products
against diseases such as cancer [40]. The present study focuses on elucidating the chemical
composition, in vitro antitumor activity, and the embryotoxicity in zebrafish model of the
essential oil extracted from Conyza bonariensis (L.) aerial parts (CBEO).

The biological properties of essential oils (EOs) are due to their chemical compo-
sition [22]. Geographic origin [41] and environmental conditions such as temperature,
precipitation, relative humidity, day length, and light intensity [42] influence the biosynthe-
sis and accumulation of natural products [43]. Consequently, variations in the chemical
profiles of EOs can occur from plant to plant, even within the same species [22].

Chemical analysis of the CBEO revealed the (Z)-2-lachnophyllum ester, an acetylenic
compound, as the major compound (57.24%). However, it is worth noting that the chemical
profile of the EO from Conyza bonariensis (L.) aerial parts can vary depending on the country
and regions where the plant grows. Until now, (E)-β-farnesene [23], germacrene D [25],
caryophyllene oxide [26], limonene [44], 1H-indene-3-carboxaldehyde,2,6,7,7a-tetrahydro-1,5-
dimethyl [45], and allo-aromadendrene [46] have been identified as the major components of
the essential oil from Conyza bonariensis (L.) aerial parts. Lundgren et al. (2021) [47] showed
the characterization of the EO of C. bonariensis (L.) cultivated in the Medicinal Plant Garden
of the Institute of Research in Drugs and Medicines of the Federal University of Paraíba
(UFPB), João Pessoa, Paraíba, Brazil. These authors obtained a different profile chemical
from that obtained in our work, with sesquicineole as the major compound. This shows
the influence of conditions such as time of harvest (seasonality), mechanical or chemical
injuries, genetic factors and evolution, storage, irrigation, herbivory, attack of fungal
pathogens, and activity of the pollinators in the production and composition of EOs, as
already described in the literature [48,49]. In addition, we have highlighted the presence of
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other acetylenic compounds in C. bonariensis such as methyl ester of matricaria. Specifically,
acetylenic compounds constitute a group of molecules common in species of the Asteraceae
family and the Conyza genus [50–52]. Barbosa et al. (2004) [27] obtained different major
constituents in the essential oils from distinct parts of this species, such as the methyl ester
of matricaria in the roots (74.4%). Furthermore, Mabrouk et al. (2011) [28] observed distinct
chemical profiles of the essential oils from C. bonariensis cultivated in Tunisia in different
seasons. However, the methyl ester of matricaria remained the predominant compound in
all of them (63.5–76.4%).

Finally, the (Z)-2-lachnophyllum ester has also been described as the major component
(21.2%) of Conyza bonariensis (L.) cultivated at the University of Athens, Athens, Greece [53].
Thus, our study presents an EO from Conyza bonariensis (L.) aerial parts with unprecedented
chemical profile.

Currently, cancer represents a major public health problem worldwide [54], and
many efforts are being made in the search for new therapies. The constituents of CBEO
include α-pinene, β-pinene, p-cymene, limonene, terpinen-4-ol, caryophyllene oxide,
β-sesquiphelandrene, α-humulene, carvacrol, and thymol [55–69]. The major compound
of CBEO, (Z)-2-lachnophyllum ester, exhibited a significant in vitro antitumor effect on the
tumor cell lines MDA-MB-231 (human breast carcinoma), MCF-7 (human breast carcinoma),
and 5637 (human bladder carcinoma), with half-maximal inhibitory concentration (IC50)
values ranging from 7.2 to 53.1 µg/mL [70]. Additionally, (Z)-2-lachnophyllum ester also
possesses antifungal, antioxidant [71], insecticide [72], and nematicidal [73] properties.
Considering the advantage of the synergistic effect of EO compounds compared to the
biological effects of these constituents individually [17], the in vitro antitumor activity of
CBEO was investigated against different human malignant cell lines. Doxorubicin (DXR),
a drug widely used in antineoplastic chemotherapy [74] and in several in vitro studies,
including the investigation of EO anticancer effects [75–79], was used as a standard drug.
Our data show that CBEO induced the greatest cytotoxicity against SK-MEL-28 human
melanoma cells. Still, considering the Selectivity Index (SI), we can suggest that this cyto-
toxic effect was more selective for SK-MEL-28 cells when compared to the effect observed
in healthy human skin cells, HaCaT. Cutaneous melanoma is the most relevant malignant
tumor among skin cancers, as it is responsible for the majority of deaths [80]. In 2020,
approximately 325,000 patients were diagnosed with skin melanoma and approximately
57,000 died from this disease [81]. Thus, novel therapeutic alternatives are needed, and sev-
eral EOs have been investigated for the treatment of this disease [82] showing effects such
as induction of apoptosis by upregulation of Bax and downregulation of Bcl-2 genes [83],
cell cycle arrest, and increase in Reactive Oxygen Species (ROS) production [15].

We also analyzed the effect of CBEO against human peripheral blood mononuclear
cells (PBMCs). PBMCs, including monocytes and lymphocytes, are frequently isolated
for use in preclinical research [84] as well as in studies of new candidates in anticancer
therapy [85,86]. The assessment of cytotoxicity in PBMCs is a relevant indicator of hu-
man systemic toxicity of natural products [87]. EO effects have been investigated in
PBMCs [15,88,89], demonstrating that this experimental model is useful in the investiga-
tion of toxicity in human healthy cells. Here, we show that CBEO induced cytotoxicity
against PBMCs in a concentration-dependent manner. However, this toxic effect was lower
than that observed for the standard drug DXR. Conventional chemotherapy is not selec-
tive [90], and thus, damage can also occur in healthy cells, such as blood cells [91–94]. EOs
composed mostly of monoterpenes and sesquiterpenes show cytotoxicity against PBMCs,
such as EO from Duguetia pycnastera leaves (IC50: 21.28 µg/mL) [95], EO from Satureja
khuzistanica aerial parts (IC50: 28.21 µg/mL) [96], and EO from Xylopia laevigata leaves (IC50:
35.30 µg/mL) [97]. Thus, the greater cytotoxic effect of CBEO on PBMC (IC50: 2.68 µg/mL)
may be related to the major compound, (Z)-2-lachnophyllum ester, which has no report in
the literature.

We investigated the effect of CBEO on the redox state of SK-MEL-28 cells. In the
2,7-dichlorodihydrofluorescein diacetate (DCFH-DA) assay, elevated levels of ROS were
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obtained after CBEO treatment. In addition, pretreatment with N-acetylcysteine (NAC), an
antioxidant molecule [98], significantly reduced the CBEO cytotoxicity, corroborating the
involvement of ROS in the antitumor effect induced by this EO. It has been reported that
increased ROS production is a common event in EO-induced tumor cell death [99]. In fact,
oxidative stress induction has been observed in tumor cells after EO treatment [99–101].
Tumor cells are known to have high levels of ROS [102] involved in processes such as
the induction of cell proliferation and metastasis, inhibition of apoptosis [103], and angio-
genesis stimulation [104]. However, excessive intracellular ROS concentration leads to
irreparable damage and death of tumor cells [105]. Antineoplastic agents such as doxoru-
bicin, methotrexate, cisplatin, and topotecan induce apoptosis of tumor cells by inducing
oxidative stress [106–109]. Therefore, the increase in ROS production induced by CBEO
treatment is a mechanism involved in the antitumor effect of this EO in SK-MEL-28 cells.

The assessment of drug toxicity is a critical process in the development of new drug
candidates [110]. In this context, the zebrafish (Danio rerio) genome shares 70% simi-
larity with the human genome [111,112]. The zebrafish embryo test is a highly sensi-
tive toxicity test [113], making this experimental model relevant in human health risk
assessments [114,115]. Our study provides an assessment of CBEO toxicity in zebrafish
embryos and larvae. No mortality of embryos or larvae was observed for the lowest CBEO
concentrations (0.50 and 0.75 µg/mL) after 96 h of exposure. However, increasing CBEO
concentrations were related to mortality in a concentration-dependent manner, as noted
for other EOs [87,116]. In addition, the median lethal concentration (LC50) was consid-
ered low (1.20 µg/mL); however, similar results related to high toxicity in the zebrafish
model were recorded for other EOs from different species, including Zingiber ottensii (LC50:
1.00 µg/mL) composed mainly of monoterpenes and sesquiterpenes [117], and Cupressus
sempervirens (LC50: 6.60 µg/mL), whose major compound is α-pinene, a monoterpene [111].
To our knowledge, no zebrafish embryotoxicity results were found regarding the (Z)-2-
lachnophyllum ester, the major compound of CBEO. In addition, this is the first toxicity
report of essential oil from Conyza species in this experimental model.

Furthermore, delayed hatching, yolk sac, pericardial edema, and blood clotting were
observed in embryos exposed to concentrations of 0.5–1.25 µg/mL. Similarly, the EO from
Leonurus japonicus aerial parts, rich in phytol and (−)-caryophyllene oxide, induced effects
such as yolk sac edema, curved spine, scattered hemorrhages in the edematous yolk sac,
incomplete cardiac development, and pericardial edema [118]. Piasecki et al. (2021) [22]
observed shortened tails after exposure of embryos to Cymbopogon nardus essential oil. In ad-
dition, embryos treated with Cymbopogon winterianus essential oil showed slightly shortened
tails and mild cardiac changes. In addition, embryos treated with the EO from Cymbopogon
citratus and Cymbopogon martini showed slightly slowed development and shortened tails,
respectively. All these EOs have monoterpenes as major compounds, such as geraniol and
citronellol. At lower concentrations, they all contain limonene (0.7–10%) [22]. Therefore,
the significant sensitivity of these organisms to the action of chemical substances is evident,
facilitating the search for information on the toxicity of EOs, which contributes to the
development of potential medicines.

We also investigated the effect of CBEO on the activity of lactate dehydrogenase (LDH),
glutathione transferase (GST), acetylcholinesterase (AChE), glutathione peroxidase (GPx),
and catalase (CAT) enzymes in zebrafish larvae. AChE is responsible for hydrolyzing
acetylcholine (ACh) [119], a neurotransmitter molecule that plays an important role in the
central and peripheral nervous systems [120]. CBEO reduced AChE activity, indicating
probable cholinergic system toxicity. Decreased AChE activity is reported with an increase
in oxidative stress [121]. Cells need energy to counteract and repair oxidative stress. LDH
involves an anaerobic pathway that helps meet energy demand under such conditions.
Hence, increased LDH activity can serve as a biomarker for oxidative stress [120]. CBEO
treatment led to increased LDH activity, indicating a higher energy requirement in zebrafish
larvae exposed to the treatment [29]. CAT is an antioxidant enzyme that converts hydro-
gen peroxide (H2O2) into water and oxygen [122]. CAT is a ROS-scavenger that reduces
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the intracellular concentration of H2O2 [123]. CBEO induced an increase in CAT activity,
suggesting a protective mechanism against a possible toxic oxidative effect [124]. GPx and
GST enzymes belong to the family of glutathione-related enzymes present in the body’s
antioxidant defense system [120]. Therefore, the increase in GPx and GST activity observed
after exposure to CBEO may be associated with increased antioxidant capacity [29]. Taken
together, these results indicate a redox imbalance with modulation of the activity of en-
zymes related to oxidative stress, possibly in an attempt to combat a probable increase in
ROS production induced by CBEO.

Our results provide the characterization of an unprecedented EO from Conyza bonariensis
(L.) that demonstrates significant in vitro antimelanoma activity through the induction of
oxidative stress. Regarding the toxicity of CBEO, significant cytotoxicity towards PBMCs
was observed. Additionally, an oxidative imbalance appears to be involved in the moderate
toxicity observed in the zebrafish model. Therefore, further assays should be conducted to
better understand the pharmacological and toxicological effects of this EO. Furthermore,
these findings stimulate the isolation of (Z)-2-lachnophyllum ester and subsequent in vitro
and/or in vivo tests to understand whether the oil’s activity is related to the phytocomplex
or the isolated major component.
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