A Comparison between Bulgarian Tanacetum parthenium Essential Oil from Two Different Locations
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Plant Materials
4.2. Chemicals and Reagents
4.3. Isolation of the Essential Oil
4.4. Chromatographic Conditions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pareek, A.; Suthar, M.; Rathore, G.; Bansal, V. Feverfew (Tanacetum parthenium L.): A Systematic Review. Pharmacogn. Rev. 2011, 5, 103. [Google Scholar] [CrossRef] [PubMed]
- Ernst, E.; Pittler, M. The Efficacy and Safety of Feverfew (Tanacetum parthenium L.): An Update of a Systematic Review. Public Health Nutr. 2000, 3, 509–514. [Google Scholar] [CrossRef] [PubMed]
- Guarino, C. Ethnobotanical Study of the Sannio Area, Campania, Southern Italy. Ethnobot. Res. Appl. 2008, 6, 255. [Google Scholar] [CrossRef]
- Gevrenova, R.; Balabanova, V.; Zheleva-Dimitrova, D.; Momekov, G. The Most Promising Southeastern European Tanacetum Species: A Review of Chemical Composition and Biological Studies. Pharmacia 2023, 70, 1067–1081. [Google Scholar] [CrossRef]
- Chavez, M.L.; Chavez, P.I. Feverfew. Hosp. Pharm. 1999, 34, 436–461. [Google Scholar] [CrossRef]
- Akpulat, H.A.; Tepe, B.; Sokmen, A.; Daferera, D.; Polissiou, M. Composition of the Essential Oils of Tanacetum argyrophyllum (C. Koch) Tvzel. Var. Argyrophyllum and Tanacetum parthenium (L.) Schultz Bip. (Asteraceae) from Turkey. Biochem. Syst. Ecol. 2005, 33, 511–516. [Google Scholar] [CrossRef]
- Saranitzky, E.; White, C.M.; Baker, E.L.; Baker, W.L.; Coleman, C.I. Feverfew for Migraine Prophylaxis: A Systematic Review. J. Diet. Suppl. 2009, 6, 91–103. [Google Scholar] [CrossRef] [PubMed]
- Rajapakse, T.; Davenport, W.J. Phytomedicines in the Treatment of Migraine. CNS Drugs 2019, 33, 399–415. [Google Scholar] [CrossRef] [PubMed]
- Cady, R.K.; Goldstein, J.; Nett, R.; Mitchell, R.; Beach, M.E.; Browning, R. A Double-Blind Placebo-Controlled Pilot Study of Sublingual Feverfew and Ginger (LipiGesic™M) in the Treatment of Migraine. Headache J. Head Face Pain 2011, 51, 1078–1086. [Google Scholar] [CrossRef] [PubMed]
- Moscano, F.; Guiducci, M.; Maltoni, L.; Striano, P.; Ledda, M.G.; Zoroddu, F.; Raucci, U.; Villa, M.P.; Parisi, P. An Observational Study of Fixed-Dose Tanacetum parthenium Nutraceutical Preparation for Prophylaxis of Pediatric Headache. Ital. J. Pediatr. 2019, 45, 36. [Google Scholar] [CrossRef] [PubMed]
- Volta, G.D.; Zavarise, P.; Perego, L.; Savi, L.; Pezzini, A. Comparison of the Effect of Tanacethum Parthenium, 5-Hydroxy Tryptophan, and Magnesium (Aurastop) versus Magnesium Alone on Aura Phenomenon and Its Evolution. Pain Res. Manag. 2019, 2019, 6320163. [Google Scholar] [CrossRef] [PubMed]
- Lukova, P.; Apostolova, E.; Baldzhieva, A.; Murdjeva, M.; Kokova, V. Fucoidan from Ericaria Crinita Alleviates Inflammation in Rat Paw Edema, Downregulates Pro-Inflammatory Cytokine Levels, and Shows Antioxidant Activity. Biomedicines 2023, 11, 2511. [Google Scholar] [CrossRef] [PubMed]
- Herrera-Calderon, O.; Bulege-Gutiérrez, W.; Javier-Silva, L.A.; Iparraguirre-Meza, M.; Sanchez-Araujo, V.G.; Melgar-Merino, E.J.; Tinco-Jayo, J.A.; Almeida-Galindo, J.S.; Bertha Pari-Olarte, J. Tanacetum parthenium (L.) Sch Bip From Peru: Antioxidant Profile and The Antinociceptive Effect in An Experimental Model. Pharmacogn. J. 2023, 15, 435–437. [Google Scholar] [CrossRef]
- Mannelli, L.D.-C.; Tenci, B.; Zanardelli, M.; Maidecchi, A.; Lugli, A.; Mattoli, L.; Ghelardini, C. Widespread Pain Reliever Profile of a Flower Extract of Tanacetum parthenium. Phytomedicine 2015, 22, 752–758. [Google Scholar] [CrossRef] [PubMed]
- Asgari, A.; Parvin, N. The Analgesic Effect of Ethanolic Extract of Tanacetum parthenium in Acetic Acid Model. Zahedan J. Res. Med. Sci. 2013, 15, 22–25. [Google Scholar]
- Wu, C.; Chen, F.; Wang, X.; Kim, H.-J.; He, G.; Haley-Zitlin, V.; Huang, G. Antioxidant Constituents in Feverfew (Tanacetum parthenium) Extract and Their Chromatographic Quantification. Food Chem. 2006, 96, 220–227. [Google Scholar] [CrossRef]
- Nikolova, M.; Dzhurmanski, A. Evaluation of Free Radical Scavenging Capacity of Extracts from Cultivated Plants. Biotechnol. Biotechnol. Equip. 2009, 23, 109–111. [Google Scholar] [CrossRef]
- Hanganu, D.; Benedec, D.; Vlase, L.; Popica, I.; Bele, C.; Raita, O.; Gheldiu, A.-M.; Valentin, C. Polyphenolic Content and Antioxidant Activity of Chrysanthemum parthenium Extract. Farmacia 2016, 64, 498–501. [Google Scholar]
- Shahhoseini, R.; Azizi, M.; Asili, J.; Moshtaghi, N.; Samiei, L. Comprehensive Assessment of Phytochemical Potential of Tanacetum parthenium (L.): Phenolic Compounds, Antioxidant Activity, Essential Oil and Parthenolide. J. Essent. Oil Bear. Plants 2019, 22, 614–629. [Google Scholar] [CrossRef]
- Fa, Z.; Jianyun, Z.; Yiqun, S.; Ken, K. Identification of Antioxidative Ingredients from Feverfew (Tanacetum parthenium) Extract Substantially Free of Parthenolide and Other Alpha-Unsaturated Gamma-Lactones. Open J. Anal. Bioanal. Chem. 2019, 3, 076–082. [Google Scholar] [CrossRef]
- Zengin, G.; Cvetanović, A.; Gašić, U.; Stupar, A.; Bulut, G.; Şenkardes, I.; Dogan, A.; Ibrahime Sinan, K.; Uysal, S.; Aumeeruddy-Elalfi, Z.; et al. Modern and Traditional Extraction Techniques Affect Chemical Composition and Bioactivity of Tanacetum parthenium (L.) Sch. Bip. Ind. Crops Prod. 2020, 146, 112202. [Google Scholar] [CrossRef]
- Shiferaw, Z.; Jagathala Mahalingam, S.; Kebede, A.; Teju, E. Antibacterial Effects of Extracts from Tanacetum parthenium L. Leaves. Bact. Emp. 2022, 5, e394. [Google Scholar] [CrossRef]
- Pavela, R.; Sajfrtová, M.; Sovová, H.; Bárnet, M.; Karban, J. The Insecticidal Activity of Tanacetum parthenium (L.) Schultz Bip. Extracts Obtained by Supercritical Fluid Extraction and Hydrodistillation. Ind. Crops Prod. 2010, 31, 449–454. [Google Scholar] [CrossRef]
- Recinella, L.; Chiavaroli, A.; di Giacomo, V.; Antolini, M.D.; Acquaviva, A.; Leone, S.; Brunetti, L.; Menghini, L.; Ak, G.; Zengin, G.; et al. Anti-Inflammatory and Neuromodulatory Effects Induced by Tanacetum parthenium Water Extract: Results from In Silico, In Vitro and Ex Vivo Studies. Molecules 2020, 26, 22. [Google Scholar] [CrossRef] [PubMed]
- Rateb, M.E.M.; El-Gendy, A.-N.A.M.; El-Hawary, S.S.; El-Shamy, M. Phytochemical and Biological Investigation of Tanacetum parthenium (L.) Cultivated in Egypt. J. Med. Plants Res. 2007, 1, 18–26. [Google Scholar]
- Shafaghat, A.; Larijani, K.; Salimi, F. Composition and Antibacterial Activity of the Essential Oil of Chrysanthemum Parthenium Flower from Iran. J. Essent. Oil Bear. Plants 2009, 12, 708–713. [Google Scholar] [CrossRef]
- Izadi, Z.; Esna-Ashari, M.; Piri, K.; Davoodi, P. Chemical Composition and Antimicrobial Activity of Feverfew (Tanacetum parthenium) Essential Oil. Int. J. Agric. Biol. 2010, 12, 1560–8530. [Google Scholar]
- Izadi, Z.; Aghaalikhani, M.; Esna-Ashari, M.; Davoodi, P. Determining Chemical Composition and Antimicrobial Activity of Feverfew (Tanacetum parthenium L.) Essential Oil on Some Microbial Strains. Zahedan J. Res. Med. Sci. 2013, 15, 8–13. [Google Scholar]
- Mohsenzadeh, F.; Chehregani, A.; Amiri, H. Chemical Composition, Antibacterial Activity and Cytotoxicity of Essential Oils of Tanacetum parthenium in Different Developmental Stages. Pharm. Biol. 2011, 49, 920–926. [Google Scholar] [CrossRef]
- Polatoglu, K.; Demirci, F.; Demirci, B.; Gören, N.; Baser, K.H.C. Antibacterial Activity and the Variation of Tanacetum parthenium (L.) Schultz Bip. Essential Oils from Turkey. J. Oleo Sci. 2010, 59, 177–184. [Google Scholar] [CrossRef]
- Abad, M.J.; Bedoya, L.M.; Bermejo, P. Essential Oils from the Asteraceae Family Active against Multidrug-Resistant Bacteria. In Fighting Multidrug Resistance with Herbal Extracts, Essential Oils and Their Components; Elsevier: Amsterdam, The Netherlands, 2013; pp. 205–221. ISBN 978-0-12-398539-2. [Google Scholar]
- Rezaei, F.; Jamei, R.; Heidari, R. Evaluation of the Phytochemical and Antioxidant Potential of Aerial Parts of Iranian Tanacetum parthenium. Pharm. Sci. 2017, 23, 136–142. [Google Scholar] [CrossRef]
- Lazarević, J.; Kostić, I.; Milanović, S.; Šešlija Jovanović, D.; Krnjajić, S.; Ćalić, D.; Stanković, S.; Kostić, M. Repellent Activity of Tanacetum parthenium (L.) and Tanacetum vulgare (L.) Essential Oils against Leptinotarsa decemlineata (Say). Bull. Entomol. Res. 2021, 111, 190–199. [Google Scholar] [CrossRef] [PubMed]
- Sharopov, F.S.; Setzer, W.N.; Isupov, S.J.; Wink, M. Composition and Bioactivity of the Essential Oil of Tanacetum parthenium from a Wild Population Growing in Tajikistan. Am. J. Essent. Oils Nat. Prod. 2015, 2, 32–34. [Google Scholar]
- Fukuda, K.; Hibiya, Y.; Mutoh, M.; Ohno, Y.; Yamashita, K.; Akao, S.; Fujiwara, H. Inhibition by Parthenolide of Phorbol Ester-Induced Transcriptional Activation of Inducible Nitric Oxide Synthase Gene in a Human Monocyte Cell Line THP-1. Biochem. Pharmacol. 2000, 60, 595–600. [Google Scholar] [CrossRef] [PubMed]
- Sobota, R.; Szwed, M.; Kasza, A.; Bugno, M.; Kordula, T. Parthenolide Inhibits Activation of Signal Transducers and Activators of Transcription (STATs) Induced by Cytokines of the IL-6 Family. Biochem. Biophys. Res. Commun. 2000, 267, 329–333. [Google Scholar] [CrossRef] [PubMed]
- Kang, B.Y.; Chung, S.W.; Kim, T.S. Inhibition of Interleukin-12 Production in Lipopolysaccharide-Activated Mouse Macrophages by Parthenolide, a Predominant Sesquiterpene Lactone in Tanacetum parthenium: Involvement of Nuclear Factor-κB. Immunol. Lett. 2001, 77, 159–163. [Google Scholar] [CrossRef]
- Kwok, B.H.B.; Koh, B.; Ndubuisi, M.I.; Elofsson, M.; Crews, C.M. The Anti-Inflammatory Natural Product Parthenolide from the Medicinal Herb Feverfew Directly Binds to and Inhibits IκB Kinase. Chem. Biol. 2001, 8, 759–766. [Google Scholar] [CrossRef]
- Li-Weber, M.; Giaisi, M.; Treiber, M.; Krammer, P. The Anti-Inflammatory Sesquiterpene Lactone Parthenolide Suppresses IL-4 Gene Expression in Peripheral Blood T Cells. Eur. J. Immunol. 2002, 32, 3587–3597. [Google Scholar] [CrossRef] [PubMed]
- Kiuchi, H.; Takao, T.; Yamamoto, K.; Nakayama, J.; Miyagawa, Y.; Tsujimura, A.; Nonomura, N.; Okuyama, A. Sesquiterpene Lactone Parthenolide Ameliorates Bladder Inflammation and Bladder Overactivity in Cyclophosphamide Induced Rat Cystitis Model by Inhibiting Nuclear Factor-κB Phosphorylation. J. Urol. 2009, 181, 2339–2348. [Google Scholar] [CrossRef] [PubMed]
- Rummel, C.; Gerstberger, R.; Roth, J.; Hübschle, T. Parthenolide Attenuates LPS-Induced Fever, Circulating Cytokines and Markers of Brain Inflammation in Rats. Cytokine 2011, 56, 739–748. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Fan, C.; Xiao, Y.; Mao, X. Anti-Inflammatory and Antiosteoclastogenic Activities of Parthenolide on Human Periodontal Ligament Cells In Vitro. Evid. Based Complement. Altern. Med. 2014, 2014, 546097. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Li, Q. Parthenolide Could Become a Promising and Stable Drug with Anti-Inflammatory Effects. Nat. Prod. Res. 2015, 29, 1092–1101. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Zhang, K.; Zhang, M.; Zhang, X.; Zhang, R. Parthenolide Suppresses T Helper 17 and Alleviates Experimental Autoimmune Encephalomyelitis. Front. Immunol. 2022, 13, 856694. [Google Scholar] [CrossRef] [PubMed]
- Shou, D.-W.; Li, Y.-R.; Xu, X.-J.; Dai, M.-H.; Zhang, W.; Yang, X.; Tu, Y.-X. Parthenolide Attenuates Sepsis-Induced Acute Kidney Injury in Rats by Reducing Inflammation. Evid. Based Complement. Altern. Med. 2023, 2023, 8759766. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhang, L.; Shi, L.; Zhao, Z.; Xu, H.; Liang, F.; Li, H.-B.; Zhao, Y.; Xu, X.; Yang, K.; et al. Parthenolide Attenuates Cerebral Ischemia/Reperfusion Injury via Akt/GSK-3β Pathway in PC12 Cells. Biomed. Pharmacother. 2017, 89, 1159–1165. [Google Scholar] [CrossRef] [PubMed]
- Diekmann, H.; Fischer, D. Parthenolide: A Novel Pharmacological Approach to Promote Nerve Regeneration. Neural Regen. Res. 2016, 11, 1566. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Liang, B.; Zeng, J.; Meng, J.; Shi, L.; Yang, S.; Chang, J.; Wang, C.; Hu, X.; Wang, X.; et al. First Discovery of Cholesterol-Lowering Activity of Parthenolide as NPC1L1 Inhibitor. Molecules 2022, 27, 6270. [Google Scholar] [CrossRef] [PubMed]
- Benassi-Zanqueta, É.; Marques, C.F.; Nocchi, S.R.; Dias Filho, B.P.; Nakamura, C.V.; Ueda-Nakamura, T. Parthenolide Influences Herpes Simplex Virus 1 Replication in Vitro. Intervirology 2018, 61, 14–22. [Google Scholar] [CrossRef] [PubMed]
- Tiuman, T.S.; Ueda-Nakamura, T.; Garcia Cortez, D.A.; Dias Filho, B.P.; Morgado-Díaz, J.A.; De Souza, W.; Nakamura, C.V. Antileishmanial Activity of Parthenolide, a Sesquiterpene Lactone Isolated from Tanacetum parthenium. Antimicrob. Agents Chemother. 2005, 49, 176–182. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Yuan, W.; Wen, G.; Yu, B.; Xu, F.; Gan, X.; Tang, J.; Zeng, Q.; Zhu, L.; Chen, C.; et al. Parthenolide Inhibits Human Lung Cancer Cell Growth by Modulating the IGF-1R/PI3K/Akt Signaling Pathway. Oncol. Rep. 2020, 44, 1184–1193. [Google Scholar] [CrossRef] [PubMed]
- Tian, B.; Xiao, Y.; Ma, J.; Ou, W.; Wang, H.; Wu, J.; Tang, J.; Zhang, B.; Liao, X.; Yang, D.; et al. Parthenolide Inhibits Angiogenesis in Esophageal Squamous Cell Carcinoma Through Suppression of VEGF. OncoTargets Ther. 2020, 13, 7447–7458. [Google Scholar] [CrossRef] [PubMed]
- Sufian, H.B.; Santos, J.M.; Khan, Z.S.; Munir, M.T.; Zahid, M.K.; Al-Harrasi, A.; Gollahon, L.S.; Hussain, F.; Rahman, S.M. Parthenolide Inhibits Migration and Reverses the EMT Process in Breast Cancer Cells by Suppressing TGFβ and TWIST1. Res. Sq. 2021. in review. [Google Scholar] [CrossRef]
- Karam, L.; Abou Staiteieh, S.; Chaaban, R.; Hayar, B.; Ismail, B.; Neipel, F.; Darwiche, N.; Abou Merhi, R. Anticancer Activities of Parthenolide in Primary Effusion Lymphoma Preclinical Models. Mol. Carcinog. 2021, 60, 567–581. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Xu, H.; Tan, X.; Cui, Q.; Gu, W.; Pan, Z.; Yang, L.; Wu, S.; Wang, X.; Li, D. Parthenolide Inhibits Proliferation of Cells Infected with Kaposi’s Sarcoma-Associated Herpesvirus by Suppression of the NF-κB Signaling Pathway. Arch. Virol. 2023, 168, 39. [Google Scholar] [CrossRef] [PubMed]
- Cui, M.; Wang, Z.; Huang, L.-T.; Wang, J.-H. Parthenolide Leads to Proteomic Differences in Thyroid Cancer Cells and Promotes Apoptosis. BMC Complement. Med. Ther. 2022, 22, 99. [Google Scholar] [CrossRef] [PubMed]
- Tossetta, G.; Fantone, S.; Marzioni, D.; Mazzucchelli, R. Role of Natural and Synthetic Compounds in Modulating NRF2/KEAP1 Signaling Pathway in Prostate Cancer. Cancers 2023, 15, 3037. [Google Scholar] [CrossRef] [PubMed]
- Lakhera, S.; Devlal, K.; Ghosh, A.; Chowdhury, P.; Rana, M. Modelling the DFT Structural and Reactivity Study of Feverfew and Evaluation of Its Potential Antiviral Activity against COVID-19 Using Molecular Docking and MD Simulations. Chem. Pap. 2022, 76, 2759–2776. [Google Scholar] [CrossRef] [PubMed]
- Khatib, S.; Sobeh, M.; Faraloni, C.; Bouissane, L. Tanacetum Species: Bridging Empirical Knowledge, Phytochemistry, Nutritional Value, Health Benefits and Clinical Evidence. Front. Pharmacol. 2023, 14, 1169629. [Google Scholar] [CrossRef] [PubMed]
- Mohammadhosseini, M.; JeszkaSkowron, M. A Systematic Review on the Ethnobotany Essential Oils Bioactive Compounds and Biological Activities of Tanacetum Species. Trends Phytochem. Res. 2023, 7, 1–29. [Google Scholar] [CrossRef]
- Abad, M.J.; Bermejo, P.; Villar, A. An Approach to the genus Tanacetum L. (Compositae): Phytochemical and Pharmacological Review. Phytother. Res. 1995, 9, 79–92. [Google Scholar] [CrossRef]
- Hordiei, K.; Gontova, T.; Trumbeckaite, S.; Yaremenko, M.; Raudone, L. Phenolic Composition and Antioxidant Activity of Tanacetum parthenium Cultivated in Different Regions of Ukraine: Insights into the Flavonoids and Hydroxycinnamic Acids Profile. Plants 2023, 12, 2940. [Google Scholar] [CrossRef] [PubMed]
- Sadgrove, N.; Padilla-González, G.; Phumthum, M. Fundamental Chemistry of Essential Oils and Volatile Organic Compounds, Methods of Analysis and Authentication. Plants 2022, 11, 789. [Google Scholar] [CrossRef] [PubMed]
- Hyldgaard, M.; Mygind, T.; Meyer, R.L. Essential Oils in Food Preservation: Mode of Action, Synergies, and Interactions with Food Matrix Components. Front. Microbiol. 2012, 3, 12. [Google Scholar] [CrossRef]
- Zhelev, I.; Petkova, Z.; Kostova, I.; Damyanova, S.; Stoyanova, A.; Dimitrova-Dyulgerova, I.; Antova, G.; Ercisli, S.; Assouguem, A.; Kara, M.; et al. Chemical Composition and Antimicrobial Activity of Essential Oil of Fruits from Vitex Agnus-Castus L., Growing in Two Regions in Bulgaria. Plants 2022, 11, 896. [Google Scholar] [CrossRef] [PubMed]
- De Sousa, D.P.; Damasceno, R.O.S.; Amorati, R.; Elshabrawy, H.A.; De Castro, R.D.; Bezerra, D.P.; Nunes, V.R.V.; Gomes, R.C.; Lima, T.C. Essential Oils: Chemistry and Pharmacological Activities. Biomolecules 2023, 13, 1144. [Google Scholar] [CrossRef]
- Chouhan, S.; Sharma, K.; Guleria, S. Antimicrobial Activity of Some Essential Oils—Present Status and Future Perspectives. Medicines 2017, 4, 58. [Google Scholar] [CrossRef] [PubMed]
- Andonova, T.; Dimitrova-Dyulgerova, I.; Slavov, I.; Muhovski, Y.; Stoyanova, A. A Comparative Study of Koelreuteria Paniculata Laxm. Aerial Parts Essential Oil Composition. J. Essent. Oil Bear. Plants 2020, 23, 1363–1370. [Google Scholar] [CrossRef]
- Bassolé, I.H.N.; Juliani, H.R. Essential Oils in Combination and Their Antimicrobial Properties. Molecules 2012, 17, 3989–4006. [Google Scholar] [CrossRef] [PubMed]
- Zouari, M. Essential Oils Chemotypes: A Less Known Side. Med. Aromat. Plants 2013, 2, 1000e145. [Google Scholar] [CrossRef]
- Guzmán, E.; Lucia, A. Essential Oils and Their Individual Components in Cosmetic Products. Cosmetics 2021, 8, 114. [Google Scholar] [CrossRef]
- Goranova-Marinova, V.; Grekova, D.; Georgieva, V.; Andreevska, K.; Gvozdeva, Y.; Kassarova, M.; Grudeva-Popova, Z. Analysis of the Pharmacotherapeutic Effectiveness of the Tyrosine Kinase Inhibitors Therapy in Patients with Chronic Myeloid Leukemia in a Single Hematology Center in Plovdiv, Bulgaria. Pharmacia 2023, 70, 1355–1362. [Google Scholar] [CrossRef]
- Matera, R.; Lucchi, E.; Valgimigli, L. Plant Essential Oils as Healthy Functional Ingredients of Nutraceuticals and Diet Supplements: A Review. Molecules 2023, 28, 901. [Google Scholar] [CrossRef] [PubMed]
- Pinto, G.B.; Dos Reis Corrêa, A.; Da Silva, G.N.C.; Da Costa, J.S.; Figueiredo, P.L.B. Drug Development from Essential Oils: New Discoveries and Perspectives. In Drug Discovery and Design Using Natural Products; Cruz, J.N., Ed.; Springer Nature: Cham, Switzerland, 2023; pp. 79–101. ISBN 978-3-031-35204-1. [Google Scholar]
- Masyita, A.; Mustika Sari, R.; Dwi Astuti, A.; Yasir, B.; Rahma Rumata, N.; Emran, T.B.; Nainu, F.; Simal-Gandara, J. Terpenes and Terpenoids as Main Bioactive Compounds of Essential Oils, Their Roles in Human Health and Potential Application as Natural Food Preservatives. Food Chem. X 2022, 13, 100217. [Google Scholar] [CrossRef] [PubMed]
- Staynova, R.; Yanachkova, V. Weight Management Strategies and Food Supplement Intake among Bulgarian Adults: Results of a National Survey. Pharmacia 2023, 70, 1119–1126. [Google Scholar] [CrossRef]
- Sadgrove, N.J.; Padilla-González, G.F.; Leuner, O.; Melnikovova, I.; Fernandez-Cusimamani, E. Pharmacology of Natural Volatiles and Essential Oils in Food, Therapy, and Disease Prophylaxis. Front. Pharmacol. 2021, 12, 740302. [Google Scholar] [CrossRef] [PubMed]
- Ali, B.; Al-Wabel, N.A.; Shams, S.; Ahamad, A.; Khan, S.A.; Anwar, F. Essential Oils Used in Aromatherapy: A Systemic Review. Asian Pac. J. Trop. Biomed. 2015, 5, 601–611. [Google Scholar] [CrossRef]
- Ramsey, J.T.; Shropshire, B.C.; Nagy, T.R.; Chambers, K.D.; Li, Y.; Korach, K.S. Essential Oils and Health. Yale J. Biol. Med. 2020, 93, 291–305. [Google Scholar] [PubMed]
- Sahu, A.; Parai, D.; Choudhary, H.R.; Singh, D.D. Essential Oils as Alternative Antimicrobials: Current Status. Recent Adv. Anti-Infect. Drug Discov. 2024, 19, 56–72. [Google Scholar] [CrossRef]
- Jayasena, D.D.; Jo, C. Essential Oils as Potential Antimicrobial Agents in Meat and Meat Products: A Review. Trends Food Sci. Technol. 2013, 34, 96–108. [Google Scholar] [CrossRef]
- Tsitlakidou, P.; Tasopoulos, N.; Chatzopoulou, P.; Mourtzinos, I. Current Status, Technology, Regulation and Future Perspectives of Essential Oils Usage in the Food and Drink Industry. J. Sci. Food Agric. 2023, 103, 6727–6751. [Google Scholar] [CrossRef] [PubMed]
- Zubair, M.; Shahzad, S.; Hussain, A.; Pradhan, R.A.; Arshad, M.; Ullah, A. Current Trends in the Utilization of Essential Oils for Polysaccharide- and Protein-Derived Food Packaging Materials. Polymers 2022, 14, 1146. [Google Scholar] [CrossRef] [PubMed]
- Raveau, R.; Fontaine, J.; Lounès-Hadj Sahraoui, A. Essential Oils as Potential Alternative Biocontrol Products against Plant Pathogens and Weeds: A Review. Foods 2020, 9, 365. [Google Scholar] [CrossRef] [PubMed]
- Casas, J.L.; Sagarduy-Cabrera, A.; López Santos-Olmo, M.; Marcos-García, M.Á. Essential Oils from Selected Mediterranean Aromatic Plants—Characterization and Biological Activity as Aphid Biopesticides. Life 2023, 13, 1621. [Google Scholar] [CrossRef] [PubMed]
- Fornari, T.; Vicente, G.; Vázquez, E.; García-Risco, M.R.; Reglero, G. Isolation of Essential Oil from Different Plants and Herbs by Supercritical Fluid Extraction. J. Chromatogr. A 2012, 1250, 34–48. [Google Scholar] [CrossRef] [PubMed]
- Vlachou, G.; Papafotiou, M.; Daferera, D.J.; Tarantilis, P.A. Yield and Composition of the Essential Oil of Clinopodium Nepeta Subsp. Spruneri as Affected by Harvest Season and Cultivation Method, i.e., Outdoor, Greenhouse and In Vitro Culture. Plants 2023, 12, 4098. [Google Scholar] [CrossRef] [PubMed]
- Politeo, O.; Popović, M.; Veršić Bratinčević, M.; Koceić, P.; Ninčević Runjić, T.; Mekinić, I.G. Conventional vs. Microwave-Assisted Hydrodistillation: Influence on the Chemistry of Sea Fennel Essential Oil and Its By-Products. Plants 2023, 12, 1466. [Google Scholar] [CrossRef]
- Kumar, V.; Tyagi, D. Chemical Composition and Biological Activities of Essential Oils of Genus Tanacetum—A Review. J. Pharmacogn. Phytochem. 2013, 2, 155–159. [Google Scholar]
- Petkov, V.H.; Ardasheva, R.G.; Prissadova, N.A.; Kristev, A.D.; Stoyanov, P.S.; Argirova, M.D. Receptor-Mediated Biological Effects of Extracts Obtained from Three Asplenium Species. Z. Naturforschung C 2021, 76, 367–373. [Google Scholar] [CrossRef] [PubMed]
- Mocan, A.; Babotă, M.; Pop, A.; Fizeșan, I.; Diuzheva, A.; Locatelli, M.; Carradori, S.; Campestre, C.; Menghini, L.; Sisea, C.R.; et al. Chemical Constituents and Biologic Activities of Sage Species: A Comparison between Salvia officinalis L., S. glutinosa L. and S. transsylvanica (Schur ex Griseb. & Schenk) Schur. Antioxidants 2020, 9, 480. [Google Scholar] [CrossRef]
- Hristov, B.; Filcheva, E. Soil Organic Matter Content and Composition in Different Pedoclimatic Zones of Bulgaria. Eurasian J. Soil Sci. EJSS 2017, 6, 65. [Google Scholar] [CrossRef]
- Lazarova, M.; Tonkov, S.; Marinova, E.; Ivanov, D.; Bozilova, E. Western Rhodopes Mountains (Bulgaria): Peat Bog Beliya Kanton. Grana 2011, 50, 162–164. [Google Scholar] [CrossRef]
- Malcheva, K.; Bocheva, L.; Marinova, T. Mapping Temperature and Precipitation Climate Normals over Bulgaria by Using ArcGIS Pro 2.4. Bulg. J. Meteorol. Hydrol. 2020, 2, 61–77. [Google Scholar]
- Pospíšilová, Ľ.; Uhlík, P.; Menšík, L.; Hlisnikovský, L.; Eichmeier, A.; Horáková, E.; Vlček, V. Clay Mineralogical Composition and Chemical Properties of Haplic Luvisol Developed on Loess in the Protected Landscape Area Litovelské Pomoraví. Eur. J. Soil Sci. 2021, 72, 1128–1142. [Google Scholar] [CrossRef]
- Zuccarini, P.; Soldani, G. Camphor: Benefits and Risks of a Widely Used Natural Product. Acta Biol. Szeged. 2009, 53, 77–82. [Google Scholar] [CrossRef]
- Dos Santos, E.; Leitão, M.M.; Aguero Ito, C.N.; Silva-Filho, S.E.; Arena, A.C.; Silva-Comar, F.M.D.S.; Nakamura Cuman, R.K.; Oliveira, R.J.; Nazari Formagio, A.S.; Leite Kassuya, C.A. Analgesic and Anti-Inflammatory Articular Effects of Essential Oil and Camphor Isolated from Ocimum Kilimandscharicum Gürke Leaves. J. Ethnopharmacol. 2021, 269, 113697. [Google Scholar] [CrossRef] [PubMed]
- Sriramavaratharajan, V.; Stephan, J.; Sudha, V.; Murugan, R. Leaf Essential Oil of Cinnamomum Agasthyamalayanum from the Western Ghats, India—A New Source of Camphor. Ind. Crops Prod. 2016, 86, 259–261. [Google Scholar] [CrossRef]
- Chagonda, L.S.; Makanda, C.D.; Chalchat, J.-C. The Essential Oils of Ocimum Canum Sims (Basilic Camphor) and Ocimum Urticifolia Roth from Zimbabwe. Flavour Fragr. J. 2000, 15, 23–26. [Google Scholar] [CrossRef]
- Raal, A.; Orav, A.; Arak, E. Composition of the Essential Oil of Salvia Officinalis L. from Various European Countries. Nat. Prod. Res. 2007, 21, 406–411. [Google Scholar] [CrossRef] [PubMed]
- Karaca, N.; Şener, G.; Demirci, B.; Demirci, F. Synergistic Antibacterial Combination of Lavandula Latifolia Medik. Essential Oil with Camphor. Z. Naturforschung C 2021, 76, 169–173. [Google Scholar] [CrossRef]
- Diass, K.; Brahmi, F.; Mokhtari, O.; Abdellaoui, S.; Hammouti, B. Biological and Pharmaceutical Properties of Essential Oils of Rosmarinus officinalis L. and Lavandula officinalis L. Mater. Today Proc. 2021, 45, 7768–7773. [Google Scholar] [CrossRef]
- Singh, R.; Jawaid, T. Cinnamomum Camphora (Kapur): Review. Pharmacogn. J. 2012, 4, 1–5. [Google Scholar] [CrossRef]
- Chen, W.; Vermaak, I.; Viljoen, A. Camphor—A Fumigant during the Black Death and a Coveted Fragrant Wood in Ancient Egypt and Babylon—A Review. Molecules 2013, 18, 5434. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Gan, Y.; Kang, T.; Zhao, Y.; Huang, T.; Chen, Y.; Liu, J.; Ke, B. Camphor Attenuates Hyperalgesia in Neuropathic Pain Models in Mice. J. Pain Res. 2023, 16, 785–795. [Google Scholar] [CrossRef] [PubMed]
- Mahdy, A.-H.S.; Zayed, S.E.; Abo-Bakr, A.M.; Hassan, E.A. Camphor: Synthesis, Reactions and Uses as a Potential Moiety in the Development of Complexes and Organocatalysts. Tetrahedron 2022, 121, 132913. [Google Scholar] [CrossRef]
- Salama, A.; Mahmoud, H.A.-A.; Kandeil, M.A.; Khalaf, M.M. Neuroprotective Role of Camphor against Ciprofloxacin Induced Depression in Rats: Modulation of Nrf-2 and TLR4. Immunopharmacol. Immunotoxicol. 2021, 43, 309–318. [Google Scholar] [CrossRef] [PubMed]
- Obeng-Ofori, D.; Reichmuth, C.H.; Bekele, A.J.; Hassanali, A. Toxicity and Protectant Potential of Camphor, a Major Component of Essential Oil of Ocimum Kilimandscharicum, against Four Stored Product Beetles. Int. J. Pest Manag. 1998, 44, 203–209. [Google Scholar] [CrossRef]
- Xie, F.; Chai, J.; Hu, Q.; Yu, Y.; Ma, L.; Liu, L.; Zhang, X.; Li, B.; Zhang, D. Transdermal Permeation of Drugs with Differing Lipophilicity: Effect of Penetration Enhancer Camphor. Int. J. Pharm. 2016, 507, 90–101. [Google Scholar] [CrossRef] [PubMed]
- Patra, C.; Sarkar, S.; Dasgupta, M.K.; Das, A. Camphor Poisoning: An Unusual Cause of Seizure in Children. J. Pediatr. Neurosci. 2015, 10, 78–79. [Google Scholar] [CrossRef] [PubMed]
- Khine, H.; Weiss, D.; Graber, N.; Hoffman, R.S.; Esteban-Cruciani, N.; Avner, J.R. A Cluster of Children With Seizures Caused by Camphor Poisoning. Pediatrics 2009, 123, 1269–1272. [Google Scholar] [CrossRef] [PubMed]
- Bazzano, A.N.; Var, C.; Grossman, F.; Oberhelman, R.A. Use of Camphor and Essential Oil Balms for Infants in Cambodia. J. Trop. Pediatr. 2017, 63, 65–69. [Google Scholar] [CrossRef] [PubMed]
- Hachlafi, N.E.; Aanniz, T.; Menyiy, N.E.; Baaboua, A.E.; Omari, N.E.; Balahbib, A.; Shariati, M.A.; Zengin, G.; Fikri-Benbrahim, K.; Bouyahya, A. In Vitro and in Vivo Biological Investigations of Camphene and Its Mechanism Insights: A Review. Food Rev. Int. 2023, 39, 1799–1826. [Google Scholar] [CrossRef]
- Tiwari, M.; Kakkar, P. Plant Derived Antioxidants—Geraniol and Camphene Protect Rat Alveolar Macrophages against t-BHP Induced Oxidative Stress. Toxicol. In Vitro 2009, 23, 295–301. [Google Scholar] [CrossRef] [PubMed]
- Quintans-Júnior, L.; Moreira, J.C.F.; Pasquali, M.A.B.; Rabie, S.M.S.; Pires, A.S.; Schröder, R.; Rabelo, T.K.; Santos, J.P.A.; Lima, P.S.S.; Cavalcanti, S.C.H.; et al. Antinociceptive Activity and Redox Profile of the Monoterpenes (+)-Camphene, p-Cymene, and Geranyl Acetate in Experimental Models. ISRN Toxicol. 2013, 2013, 459530. [Google Scholar] [CrossRef] [PubMed]
- Baek, S.; Kim, J.; Moon, B.S.; Park, S.M.; Jung, D.E.; Kang, S.Y.; Lee, S.J.; Oh, S.J.; Kwon, S.H.; Nam, M.H.; et al. Camphene Attenuates Skeletal Muscle Atrophy by Regulating Oxidative Stress and Lipid Metabolism in Rats. Nutrients 2020, 12, 3731. [Google Scholar] [CrossRef] [PubMed]
- Vallianou, I.; Hadzopoulou-Cladaras, M. Camphene, a Plant Derived Monoterpene, Exerts Its Hypolipidemic Action by Affecting SREBP-1 and MTP Expression. PLoS ONE 2016, 11, e0147117. [Google Scholar] [CrossRef] [PubMed]
- Vallianou, I.; Peroulis, N.; Pantazis, P.; Hadzopoulou-Cladaras, M. Camphene, a Plant-Derived Monoterpene, Reduces Plasma Cholesterol and Triglycerides in Hyperlipidemic Rats Independently of HMG-CoA Reductase Activity. PLoS ONE 2011, 6, e20516. [Google Scholar] [CrossRef] [PubMed]
- Gadotti, V.M.; Huang, S.; Zamponi, G.W. The Terpenes Camphene and Alpha-Bisabolol Inhibit Inflammatory and Neuropathic Pain via Cav3.2 T-Type Calcium Channels. Mol. Brain 2021, 14, 166. [Google Scholar] [CrossRef] [PubMed]
- Mulyaningsih, S.; Youns, M.; El-Readi, M.Z.; Ashour, M.L.; Nibret, E.; Sporer, F.; Herrmann, F.; Reichling, J.; Wink, M. Biological Activity of the Essential Oil of Kadsura longipedunculata (Schisandraceae) and Its Major Components. J. Pharm. Pharmacol. 2010, 62, 1037–1044. [Google Scholar] [CrossRef] [PubMed]
- Girola, N.; Figueiredo, C.R.; Farias, C.F.; Azevedo, R.A.; Ferreira, A.K.; Teixeira, S.F.; Capello, T.M.; Martins, E.G.A.; Matsuo, A.L.; Travassos, L.R.; et al. Camphene Isolated from Essential Oil of Piper Cernuum (Piperaceae) Induces Intrinsic Apoptosis in Melanoma Cells and Displays Antitumor Activity in Vivo. Biochem. Biophys. Res. Commun. 2015, 467, 928–934. [Google Scholar] [CrossRef]
- Kim, S.; Choi, Y.; Choi, S.; Choi, Y.; Park, T. Dietary Camphene Attenuates Hepatic Steatosis and Insulin Resistance in Mice: Camphene Prevents Hepatic Steatosis. Obesity 2014, 22, 408–417. [Google Scholar] [CrossRef] [PubMed]
- Benelli, G.; Govindarajan, M.; Rajeswary, M.; Vaseeharan, B.; Alyahya, S.A.; Alharbi, N.S.; Kadaikunnan, S.; Khaled, J.M.; Maggi, F. Insecticidal Activity of Camphene, Zerumbone and α-Humulene from Cheilocostus Speciosus Rhizome Essential Oil against the Old-World Bollworm, Helicoverpa Armigera. Ecotoxicol. Environ. Saf. 2018, 148, 781–786. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.-X.; Wang, Y.; Geng, Z.-F.; Zhang, D.; Almaz, B.; Du, S.-S. Contact Toxicity and Repellent Efficacy of Valerianaceae Spp. to Three Stored-Product Insects and Synergistic Interactions between Two Major Compounds Camphene and Bornyl Acetate. Ecotoxicol. Environ. Saf. 2020, 190, 110106. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.-X.; Wang, Y.; Chen, Z.-Y.; Guo, S.-S.; You, C.-X.; Du, S.-S. Efficacy of Bornyl Acetate and Camphene from Valeriana Officinalis Essential Oil against Two Storage Insects. Environ. Sci. Pollut. Res. 2019, 26, 16157–16165. [Google Scholar] [CrossRef] [PubMed]
- Souza, M.R.P.; Coelho, N.P.; Baldin, V.P.; Scodro, R.B.L.; Cardoso, R.F.; Da Silva, C.C.; Vandresen, F. Synthesis of Novel (-)-Camphene-Based Thiosemicarbazones and Evaluation of Anti-Mycobacterium tuberculosis Activity. Nat. Prod. Res. 2019, 33, 3372–3377. [Google Scholar] [CrossRef] [PubMed]
- De Freitas, B.C.; Queiroz, P.A.; Baldin, V.P.; Do Amaral, P.H.; Rodrigues, L.L.; Vandresen, F.; R Caleffi-Ferracioli, K.; De L Scodro, R.B.; Cardoso, R.F.; Siqueira, V.L. (-)-Camphene-Based Derivatives as Potential Antibacterial Agents against Staphylococcus aureus and Enterococcus Spp. Future Microbiol. 2020, 15, 1527–1534. [Google Scholar] [CrossRef] [PubMed]
- Sokolova, A.S.; Putilova, V.P.; Yarovaya, O.I.; Zybkina, A.V.; Mordvinova, E.D.; Zaykovskaya, A.V.; Shcherbakov, D.N.; Orshanskaya, I.R.; Sinegubova, E.O.; Esaulkova, I.L.; et al. Synthesis and Antiviral Activity of Camphene Derivatives against Different Types of Viruses. Molecules 2021, 26, 2235. [Google Scholar] [CrossRef] [PubMed]
- Di Napoli, M.; Maresca, V.; Varcamonti, M.; Bruno, M.; Badalamenti, N.; Basile, A.; Zanfardino, A. (+)-(E)-Chrysanthenyl Acetate: A Molecule with Interesting Biological Properties Contained in the Anthemis secundiramea (Asteraceae) Flowers. Appl. Sci. 2020, 10, 6808. [Google Scholar] [CrossRef]
- Raal, A.; Orav, A.; Gretchushnikova, T. Essential Oil Content and Composition in Tanacetum Vulgare L. Herbs Growing Wild in Estonia. J. Essent. Oil Bear. Plants 2014, 17, 670–675. [Google Scholar] [CrossRef]
- Dajić Stevanović, Z.P.; Nastovski, T.L.; Ristić, M.S.; Radanović, D.S. Variability of Essential Oil Composition of Cultivated Feverfew (Tanacetum parthenium (L.) Schultz Bip.) Populations. J. Essent. Oil Res. 2009, 21, 292–294. [Google Scholar] [CrossRef]
- Javidnia, K.; Miri, R.; Soltani, M.; Khosravi, A.R. Composition of the Essential Oil of Tanacetum polycephalum Schultz Bip. Subsp. Farsicum Podl. from Iran. J. Essent. Oil Res. 2008, 20, 209–211. [Google Scholar] [CrossRef]
- Habibi, Z.; Yousefi, M.; Shahriari, F.; Khalafi, J.; As’habi, M.A. Chemical Composition of the Essential Oil of Tanacetum turcomanicum and T. canescens from Iran. Chem. Nat. Compd. 2009, 45, 93–95. [Google Scholar] [CrossRef]
- El-Shazly, A.; Dorai, G.; Wink, M. Composition and Antimicrobial Activity of Essential Oil and HexaneÐEther Extract of Tanacetum santolinoides (DC.) Feinbr. and Fertig. Z. Naturforschung C 2002, 57, 620–623. [Google Scholar] [CrossRef] [PubMed]
- Darriet, F.; Desjobert, J.; Costa, J.; Muselli, A. Identification of Chrysanthenyl Esters from the Essential Oil of Anthemis maritima L. Investigated by GC/RI, GC-MS (EI and CI) and 13C-NMR Spectroscopy: Chemical Composition and Variability. Phytochem. Anal. 2009, 20, 279–292. [Google Scholar] [CrossRef] [PubMed]
- Flamini, G.; Cioni, P.L.; Morelli, I. Composition of the Essential Oils and in Vivo Emission of Volatiles of Four Lamium Species from Italy: L. purpureum, L. hybridum, L. bifidum and L. amplexicaule. Food Chem. 2005, 91, 63–68. [Google Scholar] [CrossRef]
- Flynn, T.M.; Southwell, I.A. Essential Oil Constituents of the Genus Zieria. Phytochemistry 1987, 26, 1673–1686. [Google Scholar] [CrossRef]
- Casiglia, S.; Bruno, M.; Senatore, F.; Senatore, F. Composition of the Essential Oil of Allium neapolitanum Cirillo Growing Wild in Sicily and Its Activity on Microorganisms Affecting Historical Art Crafts. J. Oleo Sci. 2015, 64, 1315–1320. [Google Scholar] [CrossRef]
- Karakaya, S.; Koca, M.; Simsek, D.; Bostanlik, F.D.; Özbek, H.; Kiliç, C.S.; Güvenalp, Z.; Demirci, B.; Altanlar, N. Antioxidant, Antimicrobial and Anticholinesterase Activities of Ferulago pauciradiata Boiss. & Heldr. Growing in Turkey. J. Biol. Act. Prod. Nat. 2018, 8, 364–375. [Google Scholar] [CrossRef]
- Abd-ElGawad, A.M.; El Gendy, A.E.-N.G.; Assaeed, A.M.; Al-Rowaily, S.L.; Omer, E.A.; Dar, B.A.; Al-Taisan, W.A.; Elshamy, A.I. Essential Oil Enriched with Oxygenated Constituents from Invasive Plant Argemone Ochroleuca Exhibited Potent Phytotoxic Effects. Plants 2020, 9, 998. [Google Scholar] [CrossRef]
- HekmatSorush, I.; Kalkhorani, N.M.; Rezaee, M.B.; HeroAbadi, F.; Hamisi, M. Phytochemical Analysis of Essential Oil of Tanacetum parthenium L. with Hydro-Distillation and Steam Distillation. J. Med. Plants Prod. 2014, 1, 53–57. [Google Scholar]
- Pålsson, K.; Jaenson, T.G.T.; Bæckström, P.; Borg-Karlson, A.-K. Tick Repellent Substances in the Essential Oil of Tanacetum vulgare. J. Med. Entomol. 2008, 45, 88–93. [Google Scholar] [CrossRef] [PubMed]
- Soleimani-Ahmadi, M.; Sanei-Dehkordi, A.; Turki, H.; Madani, A.; Abadi, Y.S.; Paksa, A.; Gorouhi, M.A.; Rashid, G. Phytochemical Properties and Insecticidal Potential of Volatile Oils from Tanacetum persicum and Achillea kellalensis against Two Medically Important Mosquitoes. J. Essent. Oil Bear. Plants 2017, 20, 1254–1265. [Google Scholar] [CrossRef]
- Nishino, C.; Takayanagi, H. Sex Pheromonal Activity of (+)-Trans-Verbenyl Acetate and Related Compounds to the American Cockroach, Periplaneta Americana L. J. Chem. Ecol. 1981, 7, 853–865. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Sun, Y.; Ruan, X. Bornyl Acetate: A Promising Agent in Phytomedicine for Inflammation and Immune Modulation. Phytomedicine 2023, 114, 154781. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Liu, J.; Li, Y.; Qi, G. Bornyl Acetate Suppresses Ox-LDL-Induced Attachment of THP-1 Monocytes to Endothelial Cells. Biomed. Pharmacother. 2018, 103, 234–239. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Zhao, R.; Chen, H.; Jia, P.; Bao, L.; Tang, H. Bornyl Acetate Has an Anti-inflammatory Effect in Human Chondrocytes via Induction of IL-11. IUBMB Life 2014, 66, 854–859. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-I.; Choi, J.-H.; Kwon, T.-W.; Jo, H.-S.; Kim, D.-G.; Ko, S.-G.; Song, G.J.; Cho, I.-H. Neuroprotective Effects of Bornyl Acetate on Experimental Autoimmune Encephalomyelitis via Anti-Inflammatory Effects and Maintaining Blood-Brain-Barrier Integrity. Phytomedicine 2023, 112, 154569. [Google Scholar] [CrossRef] [PubMed]
- Alipour, H.-R.; Yaghmaei, P.; Ahmadian, S.; Ghobeh, M.; Ebrahim-Habibi, A. The Effect of Bornyl Acetate on Male Alzheimer’s Disease Wistar Rats and In Vitro Amyloid Fibrils and Investigating the Immobility Stress. J. Anim. Biol. 2022, 15, 205–220. [Google Scholar] [CrossRef]
- Song, H.-J.; Yong, S.-H.; Kim, H.-G.; Kim, D.-H.; Park, K.-B.; Shin, K.-C.; Choi, M.-S. Insecticidal Activity against Myzus Persicae of Terpinyl Acetate and Bornyl Acetate in Thuja Occidentalis Essential Oil. Horticulturae 2022, 8, 969. [Google Scholar] [CrossRef]
- Matsubara, E.; Fukagawa, M.; Okamoto, T.; Ohnuki, K.; Shimizu, K.; Kondo, R. (-)-Bornyl Acetate Induces Autonomic Relaxation and Reduces Arousal Level after Visual Display Terminal Work without Any Influences of Task Performance in Low-Dose Condition. Biomed. Res. 2011, 32, 151–157. [Google Scholar] [CrossRef] [PubMed]
- Lim, D.-Y.; Ki, Y.-W.; Na, G.-M.; Kang, M.-J.; Kim, B.-C.; Kim, O.-M.; Hong, S.-P. Influence of Bornyl Acetate on Blood Pressure and Aortic Strips Contractility of the Rat. Biomol. Ther. 2003, 11, 119–125. [Google Scholar]
- Wu, X.; Li, X.; Xiao, F.; Zhang, Z.; Xu, Z.; Wang, H. Studies on the analgesic and anti-inflammatory effect of bornyl acetate in volatile oil from Amomum villosum. Zhong Yao Cai Zhongyaocai J. Chin. Med. Mater. 2004, 27, 438–439. [Google Scholar]
- Wu, X.; Xiao, F.; Zhang, Z.; Li, X.; Xu, Z. Research on the analgesic effect and mechanism of bornyl acetate in volatile oil from Amomum villosum. Zhong Yao Cai Zhongyaocai J. Chin. Med. Mater. 2005, 28, 505–507. [Google Scholar]
- Li, X.; Duan, Z.; Yue, J.; Zhang, Y.; Li, Y.; Liu, S.; Nie, Q.; Yang, D.; Zhang, L. Bornyl Acetate Extracted from Sharen (Fructus Amomi) Inhibits Proliferation, Invasion and Induces Apoptosis by Suppressing Phosphatidylinositol-3-Kinase/Protein Kinase B Signaling in Colorectal Cancer. J. Tradit. Chin. Med. 2023, 43, 1081–1091. [Google Scholar] [CrossRef]
- Karan, T.; Yildiz, I.; Aydin, A.; Erenler, R. Inhibition of Various Cancer Cells Proliferation of Bornyl Acetate and Essential Oil from Inula graveolens (Linnaeus) Desf. Rec. Nat. Prod. 2018, 12, 273–283. [Google Scholar] [CrossRef]
- Zhao, Y.T.; Wang, X.D.; Shi, W.Y.; Zhong, X.H. Anti-Abortive Effect of Quercetin and Bornyl Acetate on Macrophages and IL-10 in Uterus of Mice. Afr. J. Biotechnol. 2011, 10, 8675–8682. [Google Scholar] [CrossRef]
- Kordali, S.; Cakir, A.; Ozer, H.; Cakmakci, R.; Kesdek, M.; Mete, E. Antifungal, Phytotoxic and Insecticidal Properties of Essential Oil Isolated from Turkish Origanum Acutidens and Its Three Components, Carvacrol, Thymol and p-Cymene. Bioresour. Technol. 2008, 99, 8788–8795. [Google Scholar] [CrossRef] [PubMed]
- Santana, M.F.; Quintans-Júnior, L.J.; Cavalcanti, S.C.H.; Oliveira, M.G.B.; Guimarães, A.G.; Cunha, E.S.; Melo, M.S.; Santos, M.R.V.; Araújo, A.A.S.; Bonjardim, L.R. P-Cymene Reduces Orofacial Nociceptive Response in Mice. Rev. Bras. Farmacogn. 2011, 21, 1138–1143. [Google Scholar] [CrossRef]
- Xie, G.; Chen, N.; Soromou, L.W.; Liu, F.; Xiong, Y.; Wu, Q.; Li, H.; Feng, H.; Liu, G. P-Cymene Protects Mice Against Lipopolysaccharide-Induced Acute Lung Injury by Inhibiting Inflammatory Cell Activation. Molecules 2012, 17, 8159–8173. [Google Scholar] [CrossRef] [PubMed]
- Balahbib, A.; El Omari, N.; Hachlafi, N.E.; Lakhdar, F.; El Menyiy, N.; Salhi, N.; Mrabti, H.N.; Bakrim, S.; Zengin, G.; Bouyahya, A. Health Beneficial and Pharmacological Properties of P-Cymene. Food Chem. Toxicol. 2021, 153, 112259. [Google Scholar] [CrossRef] [PubMed]
- De Santana, M.F.; Guimarães, A.G.; Chaves, D.O.; Silva, J.C.; Bonjardim, L.R.; Lucca Júnior, W.D.; Ferro, J.N.D.S.; Barreto, E.D.O.; Santos, F.E.D.; Soares, M.B.P.; et al. The Anti-Hyperalgesic and Anti-Inflammatory Profiles of p-Cymene: Evidence for the Involvement of Opioid System and Cytokines. Pharm. Biol. 2015, 53, 1583–1590. [Google Scholar] [CrossRef] [PubMed]
- De Souza Siqueira Quintans, J.; Menezes, P.P.; Santos, M.R.V.; Bonjardim, L.R.; Almeida, J.R.G.S.; Gelain, D.P.; Araújo, A.A.D.S.; Quintans-Júnior, L.J. Improvement of P-Cymene Antinociceptive and Anti-Inflammatory Effects by Inclusion in β-Cyclodextrin. Phytomedicine 2013, 20, 436–440. [Google Scholar] [CrossRef] [PubMed]
- Lasekan, O.; Khatib, A.; Juhari, H.; Patiram, P.; Lasekan, S. Headspace Solid-Phase Microextraction Gas Chromatography–Mass Spectrometry Determination of Volatile Compounds in Different Varieties of African Star Apple Fruit (Chrysophillum albidum). Food Chem. 2013, 141, 2089–2097. [Google Scholar] [CrossRef] [PubMed]
- Pal Singh, H.; Kaur, S.; Mittal, S.; Batish, D.R.; Kohli, R.K. Phytotoxicity of Major Constituents of the Volatile Oil from Leaves of Artemisia scoparia Waldst. & Kit. Z. Naturforschung C 2008, 63, 663–666. [Google Scholar] [CrossRef] [PubMed]
- Bonjardim, L.R.; Cunha, E.S.; Guimarães, A.G.; Santana, M.F.; Oliveira, M.G.B.; Serafini, M.R.; Araújo, A.A.S.; Antoniolli, Â.R.; Cavalcanti, S.C.H.; Santos, M.R.V.; et al. Evaluation of the Anti-Inflammatory and Antinociceptive Properties of p-Cymene in Mice. Z. Naturforschung C 2012, 67, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Zhong, W.; Chi, G.; Jiang, L.; Soromou, L.W.; Chen, N.; Huo, M.; Guo, W.; Deng, X.; Feng, H. P-Cymene Modulates In Vitro and In Vivo Cytokine Production by Inhibiting MAPK and NF-κB Activation. Inflammation 2013, 36, 529–537. [Google Scholar] [CrossRef] [PubMed]
- De Oliveira, T.M.; De Carvalho, R.B.F.; Da Costa, I.H.F.; De Oliveira, G.A.L.; De Souza, A.A.; De Lima, S.G.; De Freitas, R.M. Evaluation of p -Cymene, a Natural Antioxidant. Pharm. Biol. 2015, 53, 423–428. [Google Scholar] [CrossRef] [PubMed]
- Shareef, S.H.; Al-Medhtiy, M.H.; Ibrahim, I.A.A.; Alzahrani, A.R.; Jabbar, A.A.; Galali, Y.; Agha, N.F.S.; Aziz, P.Y.; Thabit, M.A.; Agha, D.N.F.; et al. Gastroprophylactic Effects of P-Cymene in Ethanol-Induced Gastric Ulcer in Rats. Processes 2022, 10, 1314. [Google Scholar] [CrossRef]
- Kazemi, S.; Safari, S.; Komaki, S.; Karimi, S.A.; Golipoor, Z.; Komaki, A. The Effects of Carvacrol and P-cymene on Aβ 1-42 -induced Long-term Potentiation Deficit in Male Rats. CNS Neurosci. Ther. 2023, 30, e14459. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, R.L.; Santos, J.H.; Cunha, P.S.; Quintans-Júnior, L.J.; Bonjardim, L.R.; De Souza Araújo, A.A. Vasorelaxant Activity of P-cymene in Superior Mesenteric Artery of Rats. FASEB J. 2013, 27, lb599. [Google Scholar] [CrossRef]
- Silva, M.T.M.; Ribeiro, F.P.R.A.; Medeiros, M.A.M.B.; Sampaio, P.A.; Silva, Y.M.S.; Silva, M.T.A.; Quintans, J.S.S.; Quintans-Júnior, L.J.; Ribeiro, L.A.A. The Vasorelaxant Effect of p -Cymene in Rat Aorta Involves Potassium Channels. Sci. World J. 2015, 2015, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Pujante-Galián, M.A.; Pérez, S.A.; Montalbán, M.G.; Carissimi, G.; Fuster, M.G.; Víllora, G.; García, G. P-Cymene Complexes of Ruthenium(II) as Antitumor Agents. Molecules 2020, 25, 5063. [Google Scholar] [CrossRef] [PubMed]
- Păunescu, E.; Nowak-Sliwinska, P.; Clavel, C.M.; Scopelliti, R.; Griffioen, A.W.; Dyson, P.J. Anticancer Organometallic Osmium(II)-p-cymene Complexes. ChemMedChem 2015, 10, 1539–1547. [Google Scholar] [CrossRef] [PubMed]
- Kiskó, G.; Roller, S. Carvacrol and P-Cymene Inactivate Escherichia Coli O157:H7 in Apple Juice. BMC Microbiol. 2005, 5, 36. [Google Scholar] [CrossRef] [PubMed]
- Marchese, A.; Arciola, C.; Barbieri, R.; Silva, A.; Nabavi, S.; Tsetegho Sokeng, A.; Izadi, M.; Jafari, N.; Suntar, I.; Daglia, M.; et al. Update on Monoterpenes as Antimicrobial Agents: A Particular Focus on p-Cymene. Materials 2017, 10, 947. [Google Scholar] [CrossRef] [PubMed]
- Nurzyńska-Wierdak, R.; Sałata, A.; Kniaziewicz, M. Tansy (Tanacetum vulgare L.)—A Wild-Growing Aromatic Medicinal Plant with a Variable Essential Oil Composition. Agronomy 2022, 12, 277. [Google Scholar] [CrossRef]
- Estell, R.E.; Fredrickson, E.L.; James, D.K. Effect of Light Intensity and Wavelength on Concentration of Plant Secondary Metabolites in the Leaves of Flourensia cernua. Biochem. Syst. Ecol. 2016, 65, 108–114. [Google Scholar] [CrossRef]
- Goyal, S.; Pathak, R.; Pandey, H.K.; Kumari, A.; Tewari, G.; Bhandari, N.S.; Bala, M. Comparative Study of the Volatile Constituents of Thymus serpyllum L. Grown at Different Altitudes of Western Himalayas. SN Appl. Sci. 2020, 2, 1208. [Google Scholar] [CrossRef]
- Shafaghat, A.; Ghorban-Dadras, O.; Mohammadhosseini, M.; Akhavan, M.; Shafaghatlonbar, M.; Panahi, A. A Comparative Study on Chemical Composition and Antimicrobial Activity of Essential Oils from Tanacetum parthenium (L.) Schultz. Bip. and Tanacetum punctatum (Desr.) Grierson. Leaves from Iran. J. Essent. Oil Bear. Plants 2017, 20, 1143–1150. [Google Scholar] [CrossRef]
- Mirjalili, M.H.; Salehi, P.; Sonboli, A.; Mohammadi Vala, M. Essential Oil Composition of Feverfew (Tanacetum parthenium) in Wild and Cultivated Populations from Iran. Chem. Nat. Compd. 2007, 43, 218–220. [Google Scholar] [CrossRef]
- Omidbaigi, R.; Kabudani, M.; Tabibzadeh, Z. Effect of Drying Methods on the Essential Oil Content and Composition of Tanacetum parthenium (L.) Schultz Bip Cv. Zardband. J. Essent. Oil Bear. Plants 2007, 10, 26–30. [Google Scholar] [CrossRef]
- Giuliani, C.; Bottoni, M.; Milani, F.; Spada, A.; Falsini, S.; Papini, A.; Santagostini, L.; Fico, G. An Integrative Approach to Selected Species of Tanacetum L. (Asteraceae): Insights into Morphology and Phytochemistry. Plants 2024, 13, 155. [Google Scholar] [CrossRef] [PubMed]
- Végh, K.; Riethmüller, E.; Tóth, A.; Alberti, Á.; Béni, S.; Balla, J.; Kéry, Á. Convergence Chromatographic Determination of Camphor in the Essential Oil of Tanacetum parthenium L. Biomed. Chromatogr. 2016, 30, 2031–2037. [Google Scholar] [CrossRef] [PubMed]
- Chua, L.Y.W.; Chong, C.H.; Chua, B.L.; Figiel, A. Influence of Drying Methods on the Antibacterial, Antioxidant and Essential Oil Volatile Composition of Herbs: A Review. Food Bioprocess Technol. 2019, 12, 450–476. [Google Scholar] [CrossRef]
- Shahhoseini, R.; Daneshvar, H. Phytochemical and Physiological Reactions of Feverfew (Tanacetum parthenium (L.) Schultz Bip) to TiO2 Nanoparticles. Plant Physiol. Biochem. 2023, 194, 674–684. [Google Scholar] [CrossRef] [PubMed]
- Leal Filho, W.; Azeiteiro, U.M.; Setti, A.F.F. (Eds.) Sustainability in Natural Resources Management and Land Planning; World Sustainability Series; Springer International Publishing: Cham, Switzerland, 2021; ISBN 978-3-030-76623-8. [Google Scholar]
- Council of Europe. European Pharmacopoeia; Council of Europe: Strasburg, France, 2019. [Google Scholar]
Region | Altitude | Climate | Soil Type | Main Soil Characteristics | Ref. |
---|---|---|---|---|---|
RM | 1100 m | Middle Mountain region Average annual temperature: 5–10 °C. Mean annual precipitation: 600–800 mm. | Dystric Cambisols | Rich in humus (up to 12%). pH 5.5–6. Colour: brown to reddish. | [92,93] |
BM | 500 m | Temperate Continental Region Average annual temperature: 10–11 °C. Mean annual precipitation: 750–800 mm. | Haplic Luvisols | Poor in humus (2–3%). Poor water permeability. pH: acidic. Poor in Nitrogen and Phosphorus. The clay content increases with the depth of the soil (13% in 2–10 cm depth, 18% in 10–20 cm depth). The sand content is about 20%. | [92,94,95] |
No | Compound | RI | Formula | Class of Compound | % of Total RM | % of Total BM |
---|---|---|---|---|---|---|
1 | Tricyclene | 924 | C10H16 | MH | 1.06 | 0.85 |
2 | α-Thujene | 927 | C10H16 | MH | 2.14 | 0.35 |
3 | α-Pinene | 932 | C10H16 | MH | 1.24 | 0.72 |
4 | Camphene | 947 | C10H16 | MH | 16.12 | 13.03 |
5 | Benzaldehyde | 954 | C7H6O | O | 0.17 | 0.06 |
6 | Sabinene | 965 | C10H16 | MH | 0.26 | 0.20 |
7 | β-Pinene | 968 | C10H16 | MH | 0.39 | 0.66 |
8 | p-Cymene | 1012 | C10H14 | MH | 3.89 | 1.63 |
9 | d-Limonene | 1015 | C10H16 | MH | 0.93 | 0.82 |
10 | γ-Terpinene | 1045 | C10H16 | MH | – | 0.26 |
11 | Chrysanthenone | 1110 | C10H14O | MO | 1.33 | – |
12 | trans-p-Mentha-2,8-dienol | 1116 | C10H16O | MO | – | 0.37 |
13 | Camphor | 1137 | C10H16O | MO | 50.90 | 45.54 |
14 | 1-(1,4-dimethyl-3-cyclohexen-1-yl)-ethanone | 1146 | C10H16O | MO | – | 0.09 |
15 | exo-2,7,7-trimethylbicyclo[2.2.1]heptan-2-ol | 1147 | C10H18O | MO | – | 0.21 |
16 | cis-Sabinol | 1162 | C10H16O | MO | 0.71 | – |
17 | Terpinen-4-ol | 1174 | C10H18O | MO | 1.55 | 0.52 |
18 | p-Cymen-8-ol | 1181 | C10H14O | MO | 0.58 | – |
19 | trans-p-Mentha-1(7),8-dien-2-ol | 1183 | C10H16O | MO | – | 0.26 |
20 | cis-Myrtenal | 1188 | C10H14O | MO | – | 0.21 |
21 | α-Terpineol | 1191 | C10H18O | MO | 0.19 | 0.59 |
22 | trans-Piperitol | 1204 | C10H18O | MO | 0.12 | 0.18 |
23 | trans-Carveol | 1208 | C10H16O | MO | 0.28 | – |
24 | trans-Chrysanthenyl acetate | 1232 | C12H18O2 | MO | - | 13.87 |
25 | Cuminaldehyde | 1238 | C10H12O | MO | 0.10 | – |
26 | Bornyl acetate | 1286 | C12H20O2 | MO | 6.05 | – |
27 | trans-Verbenyl acetate | 1287 | C12H18O2 | MO | – | 8.93 |
28 | Carvacrol | 1294 | C10H14O | MO | 0.48 | – |
29 | Myrtanol acetate | 1385 | C12H20O2 | MO | – | 0.16 |
30 | (Z)-Jasmone | 1390 | C11H16O | O | 0.09 | 0.08 |
31 | Caryophyllene | 1402 | C15H24 | SH | – | 0.13 |
32 | (E)-β-Farnesene | 1417 | C15H24 | SH | 0.05 | 0.89 |
33 | β-Copaene | 1425 | C15H24 | SH | – | 0.31 |
34 | 1,7,7-Trimethylbicyclo[2.2.1]heptan-2-yl (E)-2-methylbut-2-enoate | 1445 | C15H24O2 | MO | 1.48 | – |
35 | Z-spiroether | 1782 | C13H12O2 | O | 0.27 | 0.31 |
36 | E-spiroether | 1791 | C13H12O2 | O | 0.14 | 0.18 |
Terpene classes | ||||||
Monoterpene hydrocarbons (MH) | 26.03 | 18.52 | ||||
Oxygenated monoterpenes (MO) | 63.77 | 70.93 | ||||
Sesquiterpene hydrocarbons (SH) | 0.05 | 1.33 | ||||
Oxygenated sesquiterpenes (SO) | - | - | ||||
Others (O) | 0.67 | 0.63 | ||||
Total identified | 90.52 | 91.41 |
Region | Plant Material | Main Volatile Compounds | Other Volatile Compounds | Ref. |
---|---|---|---|---|
Bulgaria (RM) | Flowers | camphor (50.90%), camphene (16.12%), bornyl acetate (6.05%) | p-cymene (3.89%) | * |
Bulgaria (BM) | Flowers | camphor (45.54%), trans-chrysanthenyl acetate (13.87%), camphene (13.03%) | trans-verbenyl acetate (8.93%) | * |
Turkey | Aerial parts | camphor (56.9%), camphene (12.7%), p-cymene (5.2%) | bornyl acetate (4.6%), chrysanthenone (2.5%) | [6] |
Egypt | Flowers | camphor (48.4%), E-chrysanthenyl acetate (26.3%), camphene (8.76%) | bornyl angelate (1.81%), thymol (1.81%) | [25] |
Egypt | Leaves | camphor (37.7%), E-chrysanthenyl acetate (33.8%) | terpin-1-ol (5.14%), camphene (3.72%), terpinene (3.1%), bornyl angelate (2.17%) | [25] |
Iran | Leaves | camphor (53.8%), trans-β-farnesene (8.3%), camphene (6.9%), β-caryophyllene (5.9%) | 4-hydroxy-benzenepropanoic acid (3.7%), chrysanthenone (3.3%), bornyl acetate (3.1%), borneol (2.9%) | [180] |
Iran | Aerial parts (wild) | camphor (50.5%), germacrene-D (9.2%), camphene (7.7%) | E-sesquilavandulol (4.8%), E-myrtanol (4.7%) | [181] |
Iran | Aerial parts (cultivated) | camphor (57.6%), E-chrysanthenyl acetate (25.1%) | camphene (4.6%), bornyl angelate (2.2%) | [181] |
Iran | Flowers (shade-dried) | camphor (49.3%), chrysanthenyl acetate (25.8%), camphene (11.2%) | α-pinene (3.3%), bornyl acetate (1.6%), β-pinene (1.1%) | [182] |
Iran | Flowers (sun-dried) | camphor (48.5%), chrysanthenyl acetate (25.4%), camphene (11.0%), verbenone (9.0%), α-terpineol (8.0%), α-phellandrene (5.5%) | α-pinene (3.0%), p-cymene (1.8%), bornyl acetate (1.5%), β-pinene (1.1%) | [182] |
Iran | Flowers (oven-dried) | camphor (47.5%), chrysanthenyl acetate (23.8%), camphene (9.9%) | α-pinene (4.1%), bornyl acetate (1.5%), β-pinene (1.1%), limonene (0.8%) | [182] |
Iran | Flowers | camphor (61.1%), camphene (9.2%) | farnesol (4.6%), bornyl acetate (3.5%), chrysanthenon (3.1%), borneol (2.9%) | [26] |
Serbia | Aerial parts (cultivated, different seed origin) | camphor (46.4–47.2%), trans-chrysanthenyl acetate (22.4–27.3%), camphene (10.9–12.7%) | bornyl acetate (2.3–3.2%), p-cymene (1.6–2.9%), α-pinene (1.2–2.1%) | [131] |
Iran (Hamedan) | Aerial parts, stem/leaf, inflorescence | camphor (11.61–53.39%), trans-chrysanthenyl acetate (8.85–22.54%), camphene (5.11–10.45%) | p-cymene (4.15–4.18%), α-pinene (0.1–2.55%), bornyl acetate (0.48–2.05%) | [27] |
Iran (Tehran) | Aerial parts, stem/leaf, inflorescence | camphor (11.52–52.98%), trans-chrysanthenyl acetate (7.63–22.28%), camphene (5.46–10.26%) | limonene (0.89–1.04%) | [27] |
Iran | Aerial parts (three developmental stages) | camphor (12.65–18.94%), bornyl acetate (11.48–18.35%), camphene (9.5–13.74%), borneol (8.7–11.84%), juniper camphor (4.71–6.23%) | δ-cadinene (2.86–4.25%), bornyl isovalerate (2.26–3.26%), β-eudesmol (1.96–2.65%), p-cymene (1.96–2.29%) | [29] |
Turkey (Davutpasa- Istanbul) | Aerial parts | camphor (49%), trans-chrysanthenyl acetate (22.1%), camphene (9.4%) | bornyl acetate (2.9%), p-cymene (1%) | [30] |
Turkey (Savsat- Ardahan) | Aerial parts | camphor (60.8%), camphene (6.8%) | chrysanthenone (3.2%), bornyl acetate (3.7%), p-cymene (1.9%) | [30] |
Iran | Aerial parts | camphor (45%), chrysanthenyl acetate (21.5%), camphene (9.6%) | p-cymene (4.15%), α-pinene (3.55%), bornyl acetate (2.88%) | [28] |
Tajikistan | Aerial parts | camphor (69.7–94.0%), camphene (1.7–12.2%), bornyl acetate (4.2–8.7%) | β-farnesene (0–2.9%), germacrene D (0–1.9%) | [34] |
Italy | Aerial parts | camphor (56.83%), farnesol (28.83%) | caryophylladienol (2.19%) | [183] |
Iran | Aerial parts | camphor (27.75–29.1%), neryl acetate (8.94–11.05%), p-cymene (5.93–7.01%) | bornyl acetate (4.02–5.94%), neo-intermedeol (3.93–4.23%), camphene (3.45–4.01%) | [19] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lechkova, B.; Benbassat, N.; Karcheva-Bahchevanska, D.; Ivanov, K.; Peychev, L.; Peychev, Z.; Dyankov, S.; Georgieva-Dimova, Y.; Kraev, K.; Ivanova, S. A Comparison between Bulgarian Tanacetum parthenium Essential Oil from Two Different Locations. Molecules 2024, 29, 1969. https://doi.org/10.3390/molecules29091969
Lechkova B, Benbassat N, Karcheva-Bahchevanska D, Ivanov K, Peychev L, Peychev Z, Dyankov S, Georgieva-Dimova Y, Kraev K, Ivanova S. A Comparison between Bulgarian Tanacetum parthenium Essential Oil from Two Different Locations. Molecules. 2024; 29(9):1969. https://doi.org/10.3390/molecules29091969
Chicago/Turabian StyleLechkova, Borislava, Niko Benbassat, Diana Karcheva-Bahchevanska, Kalin Ivanov, Lyudmil Peychev, Zhivko Peychev, Stanislav Dyankov, Yoana Georgieva-Dimova, Krasimir Kraev, and Stanislava Ivanova. 2024. "A Comparison between Bulgarian Tanacetum parthenium Essential Oil from Two Different Locations" Molecules 29, no. 9: 1969. https://doi.org/10.3390/molecules29091969
APA StyleLechkova, B., Benbassat, N., Karcheva-Bahchevanska, D., Ivanov, K., Peychev, L., Peychev, Z., Dyankov, S., Georgieva-Dimova, Y., Kraev, K., & Ivanova, S. (2024). A Comparison between Bulgarian Tanacetum parthenium Essential Oil from Two Different Locations. Molecules, 29(9), 1969. https://doi.org/10.3390/molecules29091969