Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = Chlorella pyrenoidosa extracts

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2565 KiB  
Article
Effects of Intracellular Polysaccharides and Proteins of Auxenochlorella pyrenoidosa on Water Quality, Floc Formation, and Microbial Composition in a Biofloc System
by Mengsha Lou, Yuhan Zhang, Manman Zhang, Hangxian Zhou, Yixiang Zhang, Qiang Sheng, Jianhua Zhao, Qiyou Xu and Rongfei Zhang
Microorganisms 2025, 13(7), 1704; https://doi.org/10.3390/microorganisms13071704 - 21 Jul 2025
Viewed by 165
Abstract
The use of Auxenochlorella pyrenoidosa (formerly Chlorella pyrenoidosa) and its intracellular substances (ISs) to promote biofloc development has been extensively studied. To identify the key components of the ISs of A. pyrenoidosa that drive biofloc formation, algal-extracted polysaccharides (AEPSs) and algal-extracted proteins [...] Read more.
The use of Auxenochlorella pyrenoidosa (formerly Chlorella pyrenoidosa) and its intracellular substances (ISs) to promote biofloc development has been extensively studied. To identify the key components of the ISs of A. pyrenoidosa that drive biofloc formation, algal-extracted polysaccharides (AEPSs) and algal-extracted proteins (AEPTs) were isolated from the ISs. In this study, we established four groups: ISs, AEPSs, AEPTs, and tap water (TW, control), to investigate the effects of AEPSs and AEPTs on biofloc formation dynamics, water quality parameters, and microbial community composition. The results indicated no significant differences were observed between the ISs and AEPSs groups during the cultivation period. AEPSs significantly enhanced flocculation efficiency, achieving a final floc volume of 60 mL/L. This enhancement was attributed to the selective promotion of floc-forming microbial taxa, such as Comamonas, which can secrete procoagulants like EPS, and Pseudomonas and Enterobacter, which have denitrification capabilities. Water quality monitoring revealed that both AEPSs and AEPTs achieved nitrogen removal efficiencies exceeding 50% in the biofloc system, with AEPSs outperforming AEPTs. This is closely related to the fact that the microorganisms with increased flocculation contain numerous nitrifying and denitrifying bacteria. So, the intracellular polysaccharides were the key component of the ISs of A. pyrenoidosa that drive biofloc formation. These findings provide critical insights into the functional roles of algal-derived macromolecules in biofloc dynamics and their potential applications in wastewater treatment. Full article
(This article belongs to the Special Issue Microbes, Society and Sustainable Solutions)
Show Figures

Figure 1

15 pages, 2014 KiB  
Article
Optimization of Protease Treatment Conditions for Chlorella pyrenoidosa Protein Extraction and Investigation of Its Potential as an Alternative Protein Source
by Kyung-Jin Cho, Min-Ung Kim, Geum-Jae Jeong, Fazlurrahman Khan, Du-Min Jo and Young-Mog Kim
Foods 2024, 13(3), 366; https://doi.org/10.3390/foods13030366 - 23 Jan 2024
Cited by 3 | Viewed by 2747
Abstract
This study aimed to determine enzymes that effectively extract Chlorella pyrenoidosa proteins and optimize the processing conditions using response surface methods. Furthermore, the potential of enzymatically hydrolyzed C. pyrenoidosa protein extract (CPE) as a substitute protein source was investigated. The enzymatic hydrolysis conditions [...] Read more.
This study aimed to determine enzymes that effectively extract Chlorella pyrenoidosa proteins and optimize the processing conditions using response surface methods. Furthermore, the potential of enzymatically hydrolyzed C. pyrenoidosa protein extract (CPE) as a substitute protein source was investigated. The enzymatic hydrolysis conditions for protein extraction were optimized using single-factor analysis and a response surface methodology–Box–Behnken design. The R2 value of the optimized model was 0.9270, indicating the reliability of the model, and the optimal conditions were as follows: a hydrolysis temperature of 45.56 °C, pH 9.1, and a hydrolysis time of 49.85 min. The amino acid composition of CPE was compared to that of C. pyrenoidosa powder (CP), which was found to have a higher content of essential amino acids (EAA). The electrophoretic profiles of CP and CPE confirmed that CPE has a low molecular weight. Furthermore, CPE showed higher antioxidant activity and phenol content than CP, with ABTS and DPPH radical scavenging abilities of 69.40 ± 1.61% and 19.27 ± 3.16%, respectively. CPE had high EAA content, antioxidant activity, and phenol content, indicating its potential as an alternative protein source. Overall, in this study, we developed an innovative, ecofriendly, and gentle enzymatic hydrolysis strategy for the extraction and refinement of Chlorella proteins. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
Show Figures

Figure 1

20 pages, 7451 KiB  
Article
A Comprehensive Study on DES Pretreatment Application to Microalgae for Enhanced Lipid Recovery Suitable for Biodiesel Production: Combined Experimental and Theoretical Investigations
by Michele Corneille Matchim Kamdem, Aymard Didier Tamafo Fouegue and Nanjun Lai
Energies 2023, 16(9), 3806; https://doi.org/10.3390/en16093806 - 28 Apr 2023
Cited by 10 | Viewed by 2293 | Correction
Abstract
Cell wall disturbance is an important step in the downstream process of improving the efficiency of lipid extraction from microalgae. Surfactants have been proven to be efficient alternatives to organic solvents in the extraction process. In this study, an effective approach involving deep [...] Read more.
Cell wall disturbance is an important step in the downstream process of improving the efficiency of lipid extraction from microalgae. Surfactants have been proven to be efficient alternatives to organic solvents in the extraction process. In this study, an effective approach involving deep eutectic solvent (DES) (choline chloride and carboxylic acids) treatment supplemented with surfactants has been developed to disrupt the cell walls of microalgae and increase the extraction of lipids suitable for biodiesel production. A combination of polar and non-polar solvents (ethyl acetate and n-butanol) was used for the lipid extraction process. Microalgae biomass pretreated with choline chloride malonic acid supplemented with the surfactant hexadecyl trimethylammonium chloride (HTAC) showed the best results, improving lipid extraction by 12.365%. Further elucidation of the detailed mechanism behind the cell disruption of the microalga wall by DES was achieved using density functional theory (DFT) methods. The DFT calculations revealed that hydrogen bonds between the chloride ion of the DES and hydrogen bond donor (HBD) molecules are key factors dominating the destruction of the cell wall structure of Chlorella pyrenoidosa. The optimization of lipid extraction was performed through a single-factor experiment, which included the effects of different variables (time, temperature, dosage of surfactant, and ratio of n-butanol to ethyl acetate). An extraction period of 60 min at 80 °C with a surfactant concentration of 0.5% at a 1:2 ratio of n-butanol to ethyl acetate was found to produce the maximum lipid yield (16.97%). Transesterification reactions were used to obtain fatty acid methyl esters from the optimized extracted lipids. Thus, it was determined that C16:0 (20.04%), C18:2 (29.95%), and C18:3 (21.21%) were the most prevalent fatty acids. The potential for producing biodiesel from C. pyrenoidosa was validated by the high yields of C18 fatty acid methyl esters, and the properties of biodiesel are within the European and US standards. Full article
Show Figures

Figure 1

16 pages, 4546 KiB  
Article
Efficacy Evaluation of Chlorella pyrenoidosa Extracts on Cytotoxicity Induced by Atmospheric Particulate Matter 2.5 Exposure Using Skin Cell Lines and Zebrafish Models
by Xiang Wang, Xin Li, Xufeng Jiang, Fengwei Xiang, Yuanliang Lai and Guanggang Xiang
Cosmetics 2023, 10(2), 63; https://doi.org/10.3390/cosmetics10020063 - 12 Apr 2023
Cited by 1 | Viewed by 3276
Abstract
The invention and use of chelating purification products directed at atmospheric particulate matter 2.5 (PM2.5) are beneficial in preventing cytotoxicity and bodily harm. However, natural plant active compounds that minimize the adverse effect of PM2.5 are rarely reported. Chlorella pyrenoidosa extracts (CPEs), a [...] Read more.
The invention and use of chelating purification products directed at atmospheric particulate matter 2.5 (PM2.5) are beneficial in preventing cytotoxicity and bodily harm. However, natural plant active compounds that minimize the adverse effect of PM2.5 are rarely reported. Chlorella pyrenoidosa extracts (CPEs), a nutritional supplement derived from Chlorella vulgaris, have been shown to have antioxidant and anti-inflammatory effects. Here, we discovered that CPEs extracted with crushing cell extraction technology can attenuate the negative impacts of PM2.5. Furthermore, CPE intervention can protect against DNA damage and unstable genomic structure due to PM2.5 exposure. Moreover, CPE intervention restored mRNA and protein expression of the DNA misincorporation repair mechanism gene, nudix hydrolase 1 (NUDT1), and 8-oxoguanine DNA glycosylase (OGG1). In vivo damage protection experiments revealed that CPEs reduced PM2.5-induced hepatotoxicity of zebrafish larvae and effectively prevented the death of adult zebrafish exposed to PM2.5. Briefly, CPEs can attenuate cytotoxicity, resist DNA damage, relieve PM2.5-induced hepatotoxicity, and improve cell purification activity, making them ideal for use as a protective factor or functional ingredient in the cosmetics and health food industries. Full article
Show Figures

Figure 1

10 pages, 605 KiB  
Brief Report
The Response of a Leaky Gut Cell Culture Model (Caco-2/THP-1 Co-Culture) to Administration of Alternative Protein Sources
by Massimo Marzorati, Pieter Van den Abbeele, Lynn Verstrepen, Jelle De Medts and Ricardo D. Ekmay
Nutraceuticals 2023, 3(1), 175-184; https://doi.org/10.3390/nutraceuticals3010013 - 9 Mar 2023
Cited by 6 | Viewed by 4484
Abstract
Several alternative proteins have emerged that may improve the environmental footprint of our food system. Evaluations into the impact of these protein sources on gastrointestinal health is limited. A study was performed to determine whether aqueous extracts from dietary protein sources, both traditional [...] Read more.
Several alternative proteins have emerged that may improve the environmental footprint of our food system. Evaluations into the impact of these protein sources on gastrointestinal health is limited. A study was performed to determine whether aqueous extracts from dietary protein sources, both traditional and alternative, had a differential impact on a leaky gut cell culture model. Aqueous extracts of soybean meal, fish meal, Cyberlindnera jadinii, Saccharomyces sp., Bio-Mos, Chlorella pyrenoidosa, Methylobacterium extorquens, Escherichia coli, and Hermetia illucens were administered onto a Caco-2/THP-1 co-culture and the transepithelial electrical resistance (TEER) and IL-1β, IL-6, IL-8, IL-10, TNF-α, CXCL10, and MCP-1 concentrations, and NF-κB activity were determined. Principal components analysis and K means clustering were performed. Three clusters were identified: one for soybean meal, one for bacterial meals, and one for the remaining sources. The bacterial meal cluster exhibited pro-inflammatory properties, i.e., correlated with TNF-α, IL-1β, IL-8, and NF-κB. The soybean meal cluster exhibited both pro- and anti-inflammatory properties, whereas the third cluster containing the remaining proteins exhibited anti-inflammatory properties (correlated with TEER and IL-10). These results suggest that aqueous extracts from yeast proteins contribute more positively, and bacterial proteins contribute the least positively, towards intestinal health in a leaky gut model. Full article
Show Figures

Figure 1

14 pages, 4290 KiB  
Article
Investigation of Chlorella pyrenoidosa Protein as a Source of Novel Angiotensin I-Converting Enzyme (ACE) and Dipeptidyl Peptidase-IV (DPP-IV) Inhibitory Peptides
by Yuchen Li, Gilda Aiello, Enrico Mario Alessandro Fassi, Giovanna Boschin, Martina Bartolomei, Carlotta Bollati, Gabriella Roda, Anna Arnoldi, Giovanni Grazioso and Carmen Lammi
Nutrients 2021, 13(5), 1624; https://doi.org/10.3390/nu13051624 - 12 May 2021
Cited by 37 | Viewed by 4930
Abstract
Chlorella pyrenoidosa (C. pyrenoidosa) is a microalgae species with a remarkably high protein content that may potentially become a source of hypotensive and hypoglycemic peptides. In this study, C. pyrenoidosa proteins were extracted and hydrolyzed overnight with pepsin and trypsin with [...] Read more.
Chlorella pyrenoidosa (C. pyrenoidosa) is a microalgae species with a remarkably high protein content that may potentially become a source of hypotensive and hypoglycemic peptides. In this study, C. pyrenoidosa proteins were extracted and hydrolyzed overnight with pepsin and trypsin with final degrees of hydrolysis of 18.7% and 35.5%, respectively. By LC-MS/MS, 47 valid peptides were identified in the peptic hydrolysate (CP) and 66 in the tryptic one (CT). At the concentration of 1.0 mg/mL, CP and CT hydrolysates inhibit in vitro the angiotensin-converting enzyme (ACE) activity by 84.2 ± 0.37% and 78.6 ± 1.7%, respectively, whereas, tested at cellular level at the concentration of 5.0 mg/mL, they reduce the ACE activity by 61.5 ± 7.7% and 69.9 ± 0.8%, respectively. At the concentration of 5.0 mg/mL, they decrease in vitro the DPP-IV activity by 63.7% and 69.6% and in Caco-2 cells by 38.4% and 42.5%, respectively. Short peptides (≤10 amino acids) were selected for investigating the potential interaction with ACE and DPP-IV by using molecular modeling approaches and four peptides were predicted to block both enzymes. Finally, the stability of these peptides was investigated against gastrointestinal digestion. Full article
(This article belongs to the Special Issue Bioactive Peptides)
Show Figures

Figure 1

13 pages, 1541 KiB  
Article
Development of 2,3-Butanediol Production Process from Klebsiella aerogenes ATCC 29007 Using Extracted Sugars of Chlorella pyrenoidosa and Biodiesel-Derived Crude Glycerol
by Ju Hun Lee, Do Yoon Lee, Soo Kweon Lee, Hyeong Ryeol Kim, Youngsang Chun, Hah Young Yoo, Ho Seok Kwak, Chulhwan Park, Ja Hyun Lee and Seung Wook Kim
Processes 2021, 9(3), 517; https://doi.org/10.3390/pr9030517 - 12 Mar 2021
Cited by 6 | Viewed by 2998
Abstract
Expectation for renewable energy is increasing due to environmental pollution such as fossil fuel depletion, CO2 emission, and harmful gases. Therefore, in this study, extracted sugars of microalgae, which cause algal blooms and crude glycerol, a biodiesel industry byproduct, were used simultaneously [...] Read more.
Expectation for renewable energy is increasing due to environmental pollution such as fossil fuel depletion, CO2 emission, and harmful gases. Therefore, in this study, extracted sugars of microalgae, which cause algal blooms and crude glycerol, a biodiesel industry byproduct, were used simultaneously to produce 2,3-BDO. The 2,3-BDO production using only extracted algal sugars was about 4.8 g/L at 18 h, and the production of 2,3-BDO using both extracted algal sugar and crude glycerol was about 7 g/L at 18 h. It was confirmed that the main culture with crude glycerol was increased 1.5-fold compared to the case of using only extracted algal sugars. In addition, four components of the main medium (ammonium sulfate, casein hydrolysate, yeast extract, and crude glycerol) were statistically optimized and the concentrations of the medium were 12, 16, 12, and 13 g/L, respectively. In addition, the final 2,3-BDO production was about 11g/L, which 1.6-fold higher than before the optimization process. As a result, it was confirmed that 2,3-BDO production is possible through the simultaneous use of algal sugars and crude glycerol, which can greatly contribute to the development of zero-waste processes. Full article
(This article belongs to the Section Environmental and Green Processes)
Show Figures

Graphical abstract

18 pages, 2102 KiB  
Article
Quantitative Structure-Activity Relationship Model to Predict Antioxidant Effects of the Peptide Fraction Extracted from a Co-Culture System of Chlorella pyrenoidosa and Yarrowia lipolytica
by Huifan Liu, Sufen Li, Yuming Zhong, Jianliang Liu, Hui Liu, Jian Cheng, Lukai Ma, Yuqing Huang, Xuanyi Cai, Haijun Liu, Jiantong Zheng, Zhongai Su and Qin Wang
Mar. Drugs 2019, 17(11), 633; https://doi.org/10.3390/md17110633 - 8 Nov 2019
Cited by 7 | Viewed by 3120
Abstract
In this study, the antioxidant components in co-culture of Chlorella pyrenoidosa and Yarrowia lipolytica (3:1 ratio) were confirmed as trypsin-hydrolyzed peptides (EHPs). The EHPs were composed of 836 different peptides with molecular weights ranging from 639 to 3531 Da and were mainly composed [...] Read more.
In this study, the antioxidant components in co-culture of Chlorella pyrenoidosa and Yarrowia lipolytica (3:1 ratio) were confirmed as trypsin-hydrolyzed peptides (EHPs). The EHPs were composed of 836 different peptides with molecular weights ranging from 639 to 3531 Da and were mainly composed of hydrophobic amino acids (48.1%). These peptides showed remarkable protective effects against oxidative stress in HepG2, which may be attributed to their structures. Furthermore, the mRNA and protein levels of nuclear factor erythroid 2-related factor 2 (Nrf2) were significantly lower in the peptide-treated group than in the control group, suggesting that the antioxidant enzyme-coding genes were not activated. The EC50 value of three peptides in the EHPs were in the order of AGYSPIGFVR (0.04 ± 0.002 mg/mL) > VLDELTLAR (0.09 ± 0.001 mg/mL) > LFDPVYLFDQG (0.41 ± 0.03 mg/mL); these results agreed with the prediction of the model (R2 > 0.9, Q2 > 0.5). Thus, EHPs show potential as potent new antioxidant agents. Full article
(This article belongs to the Special Issue Strategies for Enhancing the Metabolome of Marine-Derived Fungi)
Show Figures

Figure 1

14 pages, 3132 KiB  
Article
Anti-Inflammatory and Anti-Aging Evaluation of Pigment–Protein Complex Extracted from Chlorella Pyrenoidosa
by Ruilin Zhang, Jian Chen, Xinwu Mao, Ping Qi and Xuewu Zhang
Mar. Drugs 2019, 17(10), 586; https://doi.org/10.3390/md17100586 - 16 Oct 2019
Cited by 33 | Viewed by 6556
Abstract
Oxidative stress contributes to chronic inflammatory processes implicated in aging, referred to as “inflamm-aging.” In this study, the potential anti-inflammatory and anti-aging effects of a pigment–protein complex (PPC) from Chlorella pyrenoidosa were investigated using lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages and D-galactose (D-gal)-induced aging [...] Read more.
Oxidative stress contributes to chronic inflammatory processes implicated in aging, referred to as “inflamm-aging.” In this study, the potential anti-inflammatory and anti-aging effects of a pigment–protein complex (PPC) from Chlorella pyrenoidosa were investigated using lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages and D-galactose (D-gal)-induced aging in a murine model. Results indicated that PPC inhibits the production of the inflammatory cytokines TNF-α and IL-6, and the inflammatory mediator nitric oxide (NO) in LPS-stimulated RAW 264.7 cells. It also protected mice from D-gal induced informatory aging by increasing the activity of the antioxidant enzyme, such as superoxide dismutase (SOD), inhibiting D-gal-induced NF-κB upregulation, and increasing PPARs expression in the brain and gut. The findings indicated that PPC has favorable anti-inflammatory and anti-aging properties, and could be useful in the treatment of acute inflammation and senescence diseases. Full article
(This article belongs to the Collection Marine Polysaccharides)
Show Figures

Figure 1

14 pages, 1299 KiB  
Article
Biorefining and the Functional Properties of Proteins from Lipid and Pigment Extract Residue of Chlorella pyrenoidosa
by Kongyong Lu, Xurui Zhao, Shih-Hsin Ho, Ruijuan Ma, Youping Xie and Jianfeng Chen
Mar. Drugs 2019, 17(8), 454; https://doi.org/10.3390/md17080454 - 1 Aug 2019
Cited by 25 | Viewed by 4417
Abstract
Microalgae are considered as excellent candidates for bioactive compounds, yet microalgal residues remaining after the extraction of one or two compounds are usually discarded, which is not economical. This study demonstrates the alkaline extraction of proteins from Chlorella pyrenoidosa residue after lipid and [...] Read more.
Microalgae are considered as excellent candidates for bioactive compounds, yet microalgal residues remaining after the extraction of one or two compounds are usually discarded, which is not economical. This study demonstrates the alkaline extraction of proteins from Chlorella pyrenoidosa residue after lipid and pigment extractions, and their functional properties. Single-factor experiments and response surface methodology were used to obtain the optimal conditions for protein extraction. Based on our results, a maximum protein yield of 722.70 mg/g, was obtained under the following extraction conditions: sodium hydroxide concentration 7.90%, extraction temperature 70.00 °C, extraction time 34.80 min, and microalgal residue concentration 8.20 mg/mL. The molecular weight of microalgal residue protein isolate (MRPI) was mainly distributed at the regions of 0.18–0.50 kDa, 0.50–1.50 kDa, and 1.50–5.00 kDa. The essential amino acid content was greater than the values recommended by FAO/WHO standards; a high essential amino acid index value (1.49) was another good indication that MRPI is suitable for human consumption. Moreover, MRPI exhibited excellent emulsifying properties and antioxidant activity, which suggests it may be useful as an emulsifying agent and antioxidant. These findings could improve the extraction methods of functional protein from microalgal residue and add value to microalgae-based bioactive compound production processes. Full article
(This article belongs to the Special Issue Bioactive Compounds Derived from Marine Microalgae)
Show Figures

Figure 1

14 pages, 3366 KiB  
Article
Effect of Marine Microalga Chlorella pyrenoidosa Ethanol Extract on Lipid Metabolism and Gut Microbiota Composition in High-Fat Diet-Fed Rats
by Xuzhi Wan, Tiantian Li, Dan Liu, Yihan Chen, Yuanyuan Liu, Bin Liu, Huiying Zhang and Chao Zhao
Mar. Drugs 2018, 16(12), 498; https://doi.org/10.3390/md16120498 - 9 Dec 2018
Cited by 60 | Viewed by 6482
Abstract
Effects of marine microalga Chlorella pyrenoidosa 55% ethanol extract (CPE55) on lipid metabolism, gut microbiota and regulation mechanism in high fat diet-fed induced hyperlipidaemia rats were investigated. Structure characterizations of major compounds in CPE55 were determined by ultra-performance liquid chromatography-quadrupole/time of flight mass [...] Read more.
Effects of marine microalga Chlorella pyrenoidosa 55% ethanol extract (CPE55) on lipid metabolism, gut microbiota and regulation mechanism in high fat diet-fed induced hyperlipidaemia rats were investigated. Structure characterizations of major compounds in CPE55 were determined by ultra-performance liquid chromatography-quadrupole/time of flight mass spectrometry (UPLC-Q-TOF-MS/MS). The compositions of gut microbiota in rats were analyzed by high-throughput next-generation 16S rRNA gene sequencing. Oral administration with CPE55 markedly alleviated dyslipidemia through improving adverse blood lipid profile and inhibiting hepatic lipid accumulation and steatosis. CPE55 has downregulated the gene expression levels of acetyl CoA carboxylase, sterol regulatory element-binding transcription factor-1c, and 3-hydroxy-3-methyl glutaryl coenzyme A reductase and upregulated adenosine 5′-monophosphate-activated protein kinase-α. It has also improved the abundance of bacteria Alistipes, Prevotella, Alloprevotella, and Ruminococcus1 and decreased the abundances of Turicibacter and Lachnospira. Turicibacter and Lachnospira were both positive correlations of metabolic phenotypes. The findings above illustrated that CPE55 might be developed as food ingredients to ameliorate lipid metabolic disorders and hyperlipidaemia. Full article
(This article belongs to the Collection Marine Drugs in the Management of Metabolic Diseases)
Show Figures

Figure 1

17 pages, 325 KiB  
Article
Influence of Extractive Solvents on Lipid and Fatty Acids Content of Edible Freshwater Algal and Seaweed Products, the Green Microalga Chlorella kessleri and the Cyanobacterium Spirulina platensis
by Jarmila Vavra Ambrozova, Ladislava Misurcova, Robert Vicha, Ludmila Machu, Dusan Samek, Mojmir Baron, Jiri Mlcek, Jiri Sochor and Tunde Jurikova
Molecules 2014, 19(2), 2344-2360; https://doi.org/10.3390/molecules19022344 - 21 Feb 2014
Cited by 47 | Viewed by 11749
Abstract
Total lipid contents of green (Chlorella pyrenoidosa, C), red (Porphyra tenera, N; Palmaria palmata, D), and brown (Laminaria japonica, K; Eisenia bicyclis, A; Undaria pinnatifida, W, WI; Hizikia fusiformis, H) commercial edible algal [...] Read more.
Total lipid contents of green (Chlorella pyrenoidosa, C), red (Porphyra tenera, N; Palmaria palmata, D), and brown (Laminaria japonica, K; Eisenia bicyclis, A; Undaria pinnatifida, W, WI; Hizikia fusiformis, H) commercial edible algal and cyanobacterial (Spirulina platensis, S) products, and autotrophically cultivated samples of the green microalga Chlorella kessleri (CK) and the cyanobacterium Spirulina platensis (SP) were determined using a solvent mixture of methanol/chloroform/water (1:2:1, v/v/v, solvent I) and n-hexane (solvent II). Total lipid contents ranged from 0.64% (II) to 18.02% (I) by dry weight and the highest total lipid content was observed in the autotrophically cultivated cyanobacterium Spirulina platensis. Solvent mixture I was found to be more effective than solvent II. Fatty acids were determined by gas chromatography of their methyl esters (% of total FAMEs). Generally, the predominant fatty acids (all results for extractions with solvent mixture I) were saturated palmitic acid (C16:0; 24.64%–65.49%), monounsaturated oleic acid (C18:1(n-9); 2.79%–26.45%), polyunsaturated linoleic acid (C18:2(n-6); 0.71%–36.38%), α-linolenic acid (C18:3(n-3); 0.00%–21.29%), γ-linolenic acid (C18:3(n-6); 1.94%–17.36%), and arachidonic acid (C20:4(n-6); 0.00%–15.37%). The highest content of ω-3 fatty acids (21.29%) was determined in Chlorella pyrenoidosa using solvent I, while conversely, the highest content of ω-6 fatty acids (41.42%) was observed in Chlorella kessleri using the same solvent. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Figure 1

Back to TopTop