Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (12,019)

Search Parameters:
Keywords = Changchun

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 3693 KiB  
Article
Construction of pH-Responsive Drug Carrier Based on Molecularly Imprinted Polymers for Controlled Capecitabine Release
by Zimeng Guo, Tianxiao He, Yuqi Lou, Guoxing Xu and Qiong Jia
J. Compos. Sci. 2025, 9(8), 421; https://doi.org/10.3390/jcs9080421 (registering DOI) - 6 Aug 2025
Abstract
In this study, a pH-responsive molecularly imprinted polymer (MIP) drug carrier was developed utilizing boric acid-functionalized mesoporous silica nanoparticles (MSNs) as the substrate. The carrier was engineered for controlled drug release, with capecitabine (CAPE) being selected as the template molecule due to its [...] Read more.
In this study, a pH-responsive molecularly imprinted polymer (MIP) drug carrier was developed utilizing boric acid-functionalized mesoporous silica nanoparticles (MSNs) as the substrate. The carrier was engineered for controlled drug release, with capecitabine (CAPE) being selected as the template molecule due to its structural characteristics and clinical relevance. In vitro drug release studies demonstrated the pH-responsive release behaviors of the fabricated carrier, highlighting its promising applicability in the controlled release of pharmaceutical compounds containing cis-diols, particularly for site-specific therapy where pH variations serve as physiological triggers. Full article
(This article belongs to the Special Issue Functional Composites: Fabrication, Properties and Applications)
Show Figures

Figure 1

16 pages, 1541 KiB  
Article
A Ubiquitous Volatile in Noctuid Larval Frass Attracts a Parasitoid Species
by Chaowei Wang, Xingzhou Liu, Sylvestre T. O. Kelehoun, Kai Dong, Yueying Wang, Maozhu Yin, Jinbu Li, Yu Gao and Hao Xu
Biology 2025, 14(8), 1007; https://doi.org/10.3390/biology14081007 (registering DOI) - 6 Aug 2025
Abstract
Natural enemies commonly probe larval bodies and frass with their antennae for prey hunting. However, the attractants to natural enemies emitted directly from hosts and host-associated tissues remained largely unknown. Here, we used two generalist noctuid species, Helicoverpa armigera (Hübner) and Spodoptera frugiperda [...] Read more.
Natural enemies commonly probe larval bodies and frass with their antennae for prey hunting. However, the attractants to natural enemies emitted directly from hosts and host-associated tissues remained largely unknown. Here, we used two generalist noctuid species, Helicoverpa armigera (Hübner) and Spodoptera frugiperda (JE Smith), along with the larval endoparasitoid Microplitis mediator (Haliday) to address the question. Extracts of larval frass of both the noctuid species were strongly attractive to M. mediator females when hosts were fed either maize, cotton, soybean leaves, or an artificial diet without leaf tissues. By using a combination of electrophysiological measurements and behavioral tests, we found that the attractiveness of frass mainly relied on a volatile compound ethyl palmitate. The compound was likely to be a by-product of host digestion involving gut bacteria because an antibiotic supplement in diets reduced the production of the compound in frass and led to the decreased attractiveness of frass to the parasitoids. In contrast, extracts of the larval bodies of both the noctuid species appeared to be less attractive to the parasitoids than their respective fecal extracts, independently of types of food supplied to the larvae. Altogether, larval frass of the two noctuid species was likely to be more important than their bodies in attracting the endoparasitoid species, and the main attractant of frass was probably one of the common metabolites of digestion involving gut microbes, and its emission is likely to be independent of host plant species. Full article
(This article belongs to the Special Issue The Biology, Ecology, and Management of Plant Pests)
Show Figures

Figure 1

23 pages, 4361 KiB  
Article
Novel Visible Light-Driven Ho2InSbO7/Ag3PO4 Photocatalyst for Efficient Oxytetracycline Contaminant Degradation
by Jingfei Luan and Tiannan Zhao
Molecules 2025, 30(15), 3289; https://doi.org/10.3390/molecules30153289 - 6 Aug 2025
Abstract
In this study, a Z-scheme Ho2InSbO7/Ag3PO4 (HAO) heterojunction photocatalyst was successfully fabricated for the first time by ultrasound-assisted solvothermal method. The structural features, compositional components and morphological characteristics of the synthesized materials were thoroughly characterized by [...] Read more.
In this study, a Z-scheme Ho2InSbO7/Ag3PO4 (HAO) heterojunction photocatalyst was successfully fabricated for the first time by ultrasound-assisted solvothermal method. The structural features, compositional components and morphological characteristics of the synthesized materials were thoroughly characterized by a series of techniques, including X-ray diffraction, Fourier transform infrared spectroscopy, Raman spectrum, X-ray photoelectron spectroscopy, transmission electron microscopy, scanning electron microscopy and energy-dispersive X-ray spectroscopy. A comprehensive array of analytical techniques, including ultraviolet-visible diffuse reflectance absorption spectra, photoluminescence spectroscopy, time-resolved photoluminescence spectroscopy, photocurrent testing, electrochemical impedance spectroscopy, electron paramagnetic resonance, and ultraviolet photoelectron spectroscopy, was employed to systematically investigate the optical, chemical, and photoelectronic properties of the materials. Using oxytetracycline (OTC), a representative tetracycline antibiotic, as the target substrate, the photocatalytic activity of the HAO composite was assessed under visible light irradiation. Comparative analyses demonstrated that the photocatalytic degradation capability of the HAO composite surpassed those of its individual components. Notably, during the degradation process, the application of the HAO composite resulted in an impressive removal efficiency of 99.89% for OTC within a span of 95 min, along with a total organic carbon mineralization rate of 98.35%. This outstanding photocatalytic performance could be ascribed to the efficient Z-scheme electron-hole separation system occurring between Ho2InSbO7 and Ag3PO4. Moreover, the adaptability and stability of the HAO heterojunction were thoroughly validated. Through experiments involving the capture of reactive species and electron paramagnetic resonance analysis, the active species generated by HAO were identified as hydroxyl radicals (•OH), superoxide anions (•O2), and holes (h+). This identification provides valuable insights into the mechanisms and pathways associated with the photodegradation of OTC. In conclusion, this research not only elucidates the potential of HAO as an efficient Z-scheme heterojunction photocatalyst but also marks a significant contribution to the advancement of sustainable remediation strategies for OTC contamination. Full article
(This article belongs to the Special Issue Nanomaterials in Photochemical Devices: Advances and Applications)
Show Figures

Figure 1

20 pages, 7016 KiB  
Article
Design, Analysis and Control of Tracked Mobile Robot with Passive Suspension on Rugged Terrain
by Junfeng Gao, Yi Li, Jingfu Jin, Zhicheng Jia and Chao Wei
Actuators 2025, 14(8), 389; https://doi.org/10.3390/act14080389 - 6 Aug 2025
Abstract
With the application of tracked mobile robots in detection and rescue, how to improve their stability and trafficability has become the research focus. In order to improve the driving ability and trafficability of tracked mobile robots in rugged terrain, this paper proposes a [...] Read more.
With the application of tracked mobile robots in detection and rescue, how to improve their stability and trafficability has become the research focus. In order to improve the driving ability and trafficability of tracked mobile robots in rugged terrain, this paper proposes a new type of tracked mobile robot using passive suspension. By adding a connecting rod differential mechanism between the left and right track mechanisms, the contact stability between the track and terrain is enhanced. The kinematics model and attitude relationship of the suspension are analyzed and established, and the rationality of the passive suspension scheme is verified by dynamic simulation. The simulation results show that the tracked robot with passive suspension shows good obstacle surmounting performance, but there will be a heading deflection problem. Therefore, a track drive speed of the driving state compensation control is proposed based on the driving scene, which can effectively solve the problem of slip and heading deflection. Through the field test of the robot prototype, the effectiveness of the suspension scheme and control system is verified, which provides a useful reference for the scheme design and performance improvement of the tracked mobile robot in complex field scenes. Full article
(This article belongs to the Section Actuators for Robotics)
Show Figures

Figure 1

39 pages, 1121 KiB  
Article
Digital Finance, Financing Constraints, and Green Innovation in Chinese Firms: The Roles of Management Power and CSR
by Qiong Zhang and Zhihong Mao
Sustainability 2025, 17(15), 7110; https://doi.org/10.3390/su17157110 - 6 Aug 2025
Abstract
With the increasing global emphasis on sustainable development goals, and in the context of pursuing high-quality sustainable development of the economy and enterprises, this study empirically examines the effect of digital finance on corporate financing constraints and the impact on corporate green innovation [...] Read more.
With the increasing global emphasis on sustainable development goals, and in the context of pursuing high-quality sustainable development of the economy and enterprises, this study empirically examines the effect of digital finance on corporate financing constraints and the impact on corporate green innovation with a sample of China’s A-share-listed companies in the period of 2011–2020 and explores the issue from the perspectives of management power and corporate social responsibility (CSR) at the micro level of enterprises. The empirical results show that digital finance can indeed alleviate corporate financing constraints. Still, the synergistic effect of the two on corporate green innovation produces a “quantitative and qualitative separation” effect, which only promotes the enhancement of iconic green innovation, and the effect on substantive green innovation is not obvious. The power of management and CSR performanceshave different moderating roles in the alleviation of financing constraints by the empowerment of digital finance. Management power and corporate social responsibility have different moderating effects on digital financial empowerment to alleviate financing constraints. The findings of this study enrich the research in related fields and provide more basis for the promotion of digital financial policies and more solutions for the high-quality development of enterprises. Full article
(This article belongs to the Special Issue Advances in Economic Development and Business Management)
Show Figures

Figure 1

19 pages, 1551 KiB  
Article
Genome-Wide Association Study Reveals Key Genetic Loci Controlling Oil Content in Soybean Seeds
by Xueyang Wang, Min Zhang, Fuxin Li, Xiulin Liu, Chunlei Zhang, Fengyi Zhang, Kezhen Zhao, Rongqiang Yuan, Sobhi F. Lamlom, Honglei Ren, Hongmei Qiu and Bixian Zhang
Agronomy 2025, 15(8), 1889; https://doi.org/10.3390/agronomy15081889 - 5 Aug 2025
Abstract
Seed oil represents a key trait in soybeans, which holds substantial economic significance, contributing to roughly 60% of global oilseed production. This research employed genome-wide association mapping to identify genetic loci associated with oil content in soybean seeds. A panel comprising 341 soybean [...] Read more.
Seed oil represents a key trait in soybeans, which holds substantial economic significance, contributing to roughly 60% of global oilseed production. This research employed genome-wide association mapping to identify genetic loci associated with oil content in soybean seeds. A panel comprising 341 soybean accessions, primarily sourced from Northeast China, was assessed for seed oil content at Heilongjiang Province in three replications over two growing seasons (2021 and 2023) and underwent genotyping via whole-genome resequencing, resulting in 1,048,576 high-quality SNP markers. Phenotypic analysis indicated notable variation in oil content, ranging from 11.00% to 21.77%, with an average increase of 1.73% to 2.28% across all growing regions between 2021 and 2023. A genome-wide association study (GWAS) analysis revealed 119 significant single-nucleotide polymorphism (SNP) loci associated with oil content, with a prominent cluster of 77 SNPs located on chromosome 8. Candidate gene analysis identified four key genes potentially implicated in oil content regulation, selected based on proximity to significant SNPs (≤10 kb) and functional annotation related to lipid metabolism and signal transduction. Notably, Glyma.08G123500, encoding a receptor-like kinase involved in signal transduction, contained multiple significant SNPs with PROVEAN scores ranging from deleterious (−1.633) to neutral (0.933), indicating complex functional impacts on protein function. Additional candidate genes include Glyma.08G110000 (hydroxycinnamoyl-CoA transferase), Glyma.08G117400 (PPR repeat protein), and Glyma.08G117600 (WD40 repeat protein), each showing distinct expression patterns and functional roles. Some SNP clusters were associated with increased oil content, while others correlated with decreased oil content, indicating complex genetic regulation of this trait. The findings provide molecular markers with potential for marker-assisted selection (MAS) in breeding programs aimed at increasing soybean oil content and enhancing our understanding of the genetic architecture governing this critical agricultural trait. Full article
Show Figures

Figure 1

28 pages, 1146 KiB  
Article
Uncovering Hidden Risks: Non-Targeted Screening and Health Risk Assessment of Aromatic Compounds in Summer Metro Carriages
by Han Wang, Guangming Li, Cuifen Dong, Youyan Chi, Kwok Wai Tham, Mengsi Deng and Chunhui Li
Buildings 2025, 15(15), 2761; https://doi.org/10.3390/buildings15152761 - 5 Aug 2025
Abstract
Metro carriages, as enclosed transport microenvironments, have been understudied regarding pollution characteristics and health risks from ACs, especially during high-temperature summers that amplify exposure. This study applied NTS techniques for the first time across three major Chengdu metro lines, systematically identifying sixteen ACs, [...] Read more.
Metro carriages, as enclosed transport microenvironments, have been understudied regarding pollution characteristics and health risks from ACs, especially during high-temperature summers that amplify exposure. This study applied NTS techniques for the first time across three major Chengdu metro lines, systematically identifying sixteen ACs, including hazardous species such as acetophenone, benzonitrile, and benzoic acid that are often overlooked in conventional BTEX-focused monitoring. The TAC concentration reached 41.40 ± 5.20 µg/m3, with half of the compounds exhibiting significant increases during peak commuting periods. Source apportionment using diagnostic ratios and PMF identified five major contributors: carriage material emissions (36.62%), human sources (22.50%), traffic exhaust infiltration (16.67%), organic solvents (16.55%), and industrial emissions (7.66%). Although both non-cancer (HI) and cancer (TCR) risks for all population groups were below international thresholds, summer tourists experienced higher exposure than daily commuters. Notably, child tourists showed the greatest vulnerability, with a TCR of 5.83 × 10−7, far exceeding that of commuting children (1.88 × 10−7). Benzene was the dominant contributor, accounting for over 50% of HI and 70% of TCR. This study presents the first integrated NTS and quantitative risk assessment to characterise ACs in summer metro environments, revealing a broader range of hazardous compounds beyond BTEX. It quantifies population-specific risks, highlights children’s heightened vulnerability. The findings fill critical gaps in ACs exposure and provide a scientific basis for improved air quality management and pollution mitigation strategies in urban rail transit systems. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

16 pages, 4423 KiB  
Article
Assessing the Variation in Maize Water Footprint Under Different Tillage Practices: A Case Study from Jilin Province, China
by Bo Li, Lijie Qin, Mingzhu Lv, Yongcai Dang and Hang Qi
Agriculture 2025, 15(15), 1691; https://doi.org/10.3390/agriculture15151691 - 5 Aug 2025
Abstract
Studying the impact of different tillage practices on crop water consumption can help us identify optimal tillage practice choices. The traditional tillage (TT) and conservation tillage (CT) methods are the dominant practices in Jilin Province, China. Few studies have explored the differences in [...] Read more.
Studying the impact of different tillage practices on crop water consumption can help us identify optimal tillage practice choices. The traditional tillage (TT) and conservation tillage (CT) methods are the dominant practices in Jilin Province, China. Few studies have explored the differences in crop water consumption between TT and CT. To address this knowledge gap, this study utilized maize as its research object and employed the water footprint (WF) as the indicator to assess crop water consumption under TT and CT. This study aimed to investigate when differences in water consumption between TT and CT appear and whether the differences are significant. The results of this study demonstrated that the total WF under CT (339.65 m3 t−1) was less than that under TT (378.19 m3 t−1), and the spatial difference was distinct. The total WF exhibited a clear change under different CT durations. At the initial stage of CT implementation, the total WF decreased slightly compared to that under TT. With an increase in CT duration, the total WF was significantly reduced. The findings of this study demonstrate that CT is an effective measure to ensure sustainable crop production and that it could lead policymakers to choose CT to reduce water consumption. Full article
(This article belongs to the Section Agricultural Water Management)
Show Figures

Figure 1

14 pages, 2315 KiB  
Article
A Portable and Thermally Degradable Hydrogel Sensor Based on Eu-Doped Carbon Dots for Visual and Ultrasensitive Detection of Ferric Ion
by Hongyuan Zhang, Qian Zhang, Juan Tang, Huanxin Yang, Xiaona Ji, Jieqiong Wang and Ce Han
Molecules 2025, 30(15), 3280; https://doi.org/10.3390/molecules30153280 (registering DOI) - 5 Aug 2025
Abstract
Degradable fluorescent sensors present a promising portable approach for heavy metal ion detection, aiming to prevent secondary environmental pollution. Additionally, the excessive intake of ferric ions (Fe3+), an essential trace element for human health, poses critical health risks that urgently require [...] Read more.
Degradable fluorescent sensors present a promising portable approach for heavy metal ion detection, aiming to prevent secondary environmental pollution. Additionally, the excessive intake of ferric ions (Fe3+), an essential trace element for human health, poses critical health risks that urgently require effective monitoring. In this study, we developed a thermally degradable fluorescent hydrogel sensor (Eu-CDs@DPPG) based on europium-doped carbon dots (Eu-CDs). The Eu-CDs, synthesized via a hydrothermal method, exhibited selective fluorescence quenching by Fe3+ through the inner filter effect (IFE). Embedding Eu-CDs into the hydrogel significantly enhanced their stability and dispersibility in aqueous environments, effectively resolving issues related to aggregation and matrix interference in traditional sensing methods. The developed sensor demonstrated a broad linear detection range (0–2.5 µM), an extremely low detection limit (1.25 nM), and rapid response (<40 s). Furthermore, a smartphone-assisted LAB color analysis allowed portable, visual quantification of Fe3+ with a practical LOD of 6.588 nM. Importantly, the hydrogel was thermally degradable at 80 °C, thus minimizing environmental impact. The sensor’s practical applicability was validated by accurately detecting Fe3+ in spinach and human urine samples, achieving recoveries of 98.7–108.0% with low relative standard deviations. This work provides an efficient, portable, and sustainable sensing platform that overcomes the limitations inherent in conventional analytical methods. Full article
(This article belongs to the Section Photochemistry)
Show Figures

Figure 1

16 pages, 3174 KiB  
Article
Efficient Particle Aggregation Through SSAW Phase Modulation
by Yiming Li, Zekai Li, Zuozhi Wei, Yiran Wang, Xudong Niu and Dongfang Liang
Micromachines 2025, 16(8), 910; https://doi.org/10.3390/mi16080910 (registering DOI) - 5 Aug 2025
Abstract
In recent years, various devices utilizing surface acoustic waves (SAW) have emerged as powerful tools for manipulating particles and fluids in microchannels. Although they demonstrate a wide range of functionalities across diverse applications, existing devices still face limitations in flexibility, manipulation efficiency, and [...] Read more.
In recent years, various devices utilizing surface acoustic waves (SAW) have emerged as powerful tools for manipulating particles and fluids in microchannels. Although they demonstrate a wide range of functionalities across diverse applications, existing devices still face limitations in flexibility, manipulation efficiency, and spatial resolution. In this study, we developed a dual-sided standing surface acoustic wave (SSAW) device that simultaneously excites acoustic waves through two piezoelectric substrates positioned at the top and bottom of a microchannel. By fully exploiting the degrees of freedom offered by two pairs of interdigital transducers (IDTs) on each substrate, the system enables highly flexible control of microparticles. To explore its capability on particle aggregation, we developed a two-dimensional numerical model to investigate the influence of the SAW phase modulation on the established acoustic fields within the microchannel. Single-particle motion was first examined under the influence of the phase-modulated acoustic fields to form a reference for identifying effective phase modulation strategies. Key parameters, such as the phase changes and the duration of each phase modulation step, were determined to maximize the lateral motion while minimizing undesired vertical motion of the particle. Our dual-sided SSAW configuration, combined with novel dynamic phase modulation strategy, leads to rapid and precise aggregation of microparticles towards a single focal point. This study sheds new light on the design of acoustofluidic devices for efficient spatiotemporal particle concentration. Full article
(This article belongs to the Special Issue Surface and Bulk Acoustic Wave Devices, 2nd Edition)
Show Figures

Figure 1

23 pages, 5064 KiB  
Article
Study on Reasonable Well Spacing for Geothermal Development of Sandstone Geothermal Reservoir—A Case Study of Dezhou, Shandong Province, China
by Shuai Liu, Yan Yan, Lanxin Zhang, Weihua Song, Ying Feng, Guanhong Feng and Jingpeng Chen
Energies 2025, 18(15), 4149; https://doi.org/10.3390/en18154149 - 5 Aug 2025
Abstract
Shandong Province is rich in geothermal resources, mainly stored in sandstone reservoirs. The setting of reasonable well spacing in the early stage of large-scale recharge has not attracted enough attention. The problem of small well spacing in geothermal engineering is particularly prominent in [...] Read more.
Shandong Province is rich in geothermal resources, mainly stored in sandstone reservoirs. The setting of reasonable well spacing in the early stage of large-scale recharge has not attracted enough attention. The problem of small well spacing in geothermal engineering is particularly prominent in the sandstone thermal reservoir production area represented by Dezhou. Based on the measured data of temperature, flow, and water level, this paper constructs a typical engineering numerical model by using TOUGH2 software. It is found that when the distance between production and recharge wells is 180 m, the amount of production and recharge is 60 m3/h, and the temperature of reinjection is 30 °C, the temperature of the production well will decrease rapidly after 10 years of production and recharge. In order to solve the problem of thermal breakthrough, three optimization schemes are assumed: reducing the reinjection temperature to reduce the amount of re-injection when the amount of heat is the same, reducing the amount of production and injection when the temperature of production and injection is constant, and stopping production after the temperature of the production well decreases. However, the results show that the three schemes cannot solve the problem of thermal breakthrough or meet production demand. Therefore, it is necessary to set reasonable well spacing. Therefore, based on the strata near the Hydrological Homeland in Decheng District, the reasonable spacing of production and recharge wells is achieved by numerical simulation. Under a volumetric flux scenario ranging from 60 to 80 m3/h, the well spacing should exceed 400 m. For a volumetric flux between 80 and 140 m3/h, it is recommended that the well spacing be greater than 600 m. Full article
Show Figures

Figure 1

18 pages, 5256 KiB  
Article
Impact of Alginate Oligosaccharides on Ovarian Performance and the Gut Microbial Community in Mice with D-Galactose-Induced Premature Ovarian Insufficiency
by Yan Zhang, Hongda Pan, Dao Xiang, Hexuan Qu and Shuang Liang
Antioxidants 2025, 14(8), 962; https://doi.org/10.3390/antiox14080962 (registering DOI) - 5 Aug 2025
Abstract
Premature ovarian insufficiency (POI) is an important factor in female infertility and is often associated with oxidative stress. Alginate oligosaccharides (AOSs), derived from the degradation of alginate, have been demonstrated to have protective effects against various oxidative stress-related diseases. However, the impact of [...] Read more.
Premature ovarian insufficiency (POI) is an important factor in female infertility and is often associated with oxidative stress. Alginate oligosaccharides (AOSs), derived from the degradation of alginate, have been demonstrated to have protective effects against various oxidative stress-related diseases. However, the impact of AOSs on POI has not been previously explored. The current study explored the effects of AOSs on ovarian dysfunction in a mouse model of POI induced by D-galactose (D-gal). Female C57BL/6 mice were randomly divided into five groups: the control (CON), POI model (D-gal), and low-, medium-, and high-dose AOS groups (AOS-L, 100 mg/kg/day; AOS-M, 150 mg/kg/day; AOS-H, 200 mg/kg/day). For 42 consecutive days, mice in the D-gal, AOS-L, AOS-M, and AOS-H groups received daily intraperitoneal injections of D-gal (200 mg/kg/day), whereas those in the CON group received equivalent volumes of sterile saline. Following D-gal injection, AOSs were administered via gavage at the specified doses; mice in the CON and D-gal groups received sterile saline instead. AOS treatment markedly improved estrous cycle irregularities, normalized serum hormone levels, reduced granulosa cell apoptosis, and increased follicle counts in POI mice. Moreover, AOSs significantly reduced ovarian oxidative stress and senescence in POI mice, as indicated by lower levels of malondialdehyde (MDA), higher activities of catalase (CAT) and superoxide dismutase (SOD), and decreased protein expression of 4-hydroxynonenal (4-HNE), nitrotyrosine (NTY), 8-hydroxydeoxyguanosine (8-OHdG), and p16 in ovarian tissue. Analysis of the gut microbiota through 16S rRNA gene sequencing and short-chain fatty acid (SCFA) analysis revealed significant differences in gut microbiota composition and SCFA levels (acetic acid and total SCFAs) between control and D-gal-induced POI mice. These differences were largely alleviated by AOS treatment. AOSs changed the gut microbiota by increasing the abundance of Ligilactobacillus and decreasing the abundance of Clostridiales, Clostridiaceae, Marinifilaceae, and Clostridium_T. Additionally, AOSs mitigated the decline in acetic acid and total SCFA levels observed in POI mice. Notably, the total SCFA level was significantly correlated with the abundance of Ligilactobacillus, Marinifilaceae, and Clostridium_T. In conclusion, AOS intervention effectively mitigates ovarian oxidative stress, restores gut microbiota homeostasis, and regulates the microbiota–SCFA axis, collectively improving D-gal-induced POI. Therefore, AOSs represent a promising therapeutic strategy for POI management. Full article
(This article belongs to the Section Health Outcomes of Antioxidants and Oxidative Stress)
Show Figures

Figure 1

17 pages, 1653 KiB  
Article
Corner Case Dataset for Autonomous Vehicle Testing Based on Naturalistic Driving Data
by Jian Zhao, Wenxu Li, Bing Zhu, Peixing Zhang, Zhaozheng Hu and Jie Meng
Smart Cities 2025, 8(4), 129; https://doi.org/10.3390/smartcities8040129 - 5 Aug 2025
Abstract
The safe and reliable operation of autonomous vehicles is contingent on comprehensive testing. However, the operational scenarios are inexhaustible. Corner cases, which critically influence autonomous vehicle safety, occur at an extremely low probability and follow a long-tail distribution. Corner cases can be defined [...] Read more.
The safe and reliable operation of autonomous vehicles is contingent on comprehensive testing. However, the operational scenarios are inexhaustible. Corner cases, which critically influence autonomous vehicle safety, occur at an extremely low probability and follow a long-tail distribution. Corner cases can be defined as combinations of driving task and scenario elements. These scenarios are characterized by low probability, high risk, and a tendency to reveal functional limitations inherent to autonomous driving systems, triggering anomalous behavior. This study constructs a novel corner case dataset using naturalistic driving data, specifically tailored for autonomous vehicle testing. A scenario marginality quantification method is designed to analyze multi-source naturalistic driving data, enabling efficient extraction of corner cases. Heterogeneous scenarios are systematically transformed, resulting in a dataset characterized by diverse interaction behaviors and standardized formatting. The results indicate that the scenario marginality of the dataset constructed in this study is 2.78 times that of mainstream naturalistic driving datasets, and the scenarios exhibit considerable diversity. The trajectory and velocity fluctuations, quantified at 0.013 m and 0.021 m/s, respectively, are consistent with the kinematic characteristics of real-world driving scenarios. These results collectively demonstrate the dataset’s high marginality, diversity, and applicability. Full article
Show Figures

Figure 1

15 pages, 4075 KiB  
Article
Biological Characteristics and Domestication of a Wild Hericium coralloides
by Ji-Ling Song, Ya Xin, Zu-Fa Zhou, Xue-Ping Kang, Yang Zhang, Wei-Dong Yuan and Bin Yu
Horticulturae 2025, 11(8), 917; https://doi.org/10.3390/horticulturae11080917 (registering DOI) - 5 Aug 2025
Abstract
Hericium coralloides is a highly valued gourmet and medicinal species with growing market demand across East Asia, though industrial production remains limited by cultivation challenges. This study investigated the molecular characteristics, biological traits, domestication potential, and cultivation protocols of Hericium coralloides strains collected [...] Read more.
Hericium coralloides is a highly valued gourmet and medicinal species with growing market demand across East Asia, though industrial production remains limited by cultivation challenges. This study investigated the molecular characteristics, biological traits, domestication potential, and cultivation protocols of Hericium coralloides strains collected from the Changbaishan Nature Reserve (Jiling, China). Optimal conditions for mycelial growth included mannose as the preferred carbon source, peptone as the nitrogen source, 30 °C incubation temperature, pH 5.5, and magnesium sulfate as the essential inorganic salt. The fruiting bodies had a protein content of 2.43% g/100 g (fresh sample meter). Total amino acids comprised 53.3% of the total amino acid profile, while essential amino acids accounted for 114.11% relative to non-essential amino acids, indicating high nutritional value. Under optimized domestication conditions—70% hardwood chips, 20% cottonseed hulls, 8% bran, 1% malic acid, and 1% gypsum—bags reached full colonization in 28 days, with a 15-day maturation phase and initial fruiting occurring after 12–14 days. The interval between flushes was 10–12 days. The average yield reached 318.65 ± 31.74 g per bag, with a biological conversion rate of 63.73%. These findings demonstrate that Hericium coralloides possesses significant potential for edible and commercial applications. This study provides a robust theoretical foundation and resource reference for its artificial cultivation, supporting its broader industrial and economic utilization. Full article
(This article belongs to the Special Issue Advances in Propagation and Cultivation of Mushroom)
Show Figures

Figure 1

19 pages, 1492 KiB  
Review
Ginseng Nanosizing: The Second Spring of Ginseng Therapeutic Applications
by Jian Wang, Huan Liu, Xinshuo Ding, Tianqi Liu, Qianyuan Li, Runyuan Li, Yuan Yuan, Xiaoyu Yan and Jing Su
Antioxidants 2025, 14(8), 961; https://doi.org/10.3390/antiox14080961 (registering DOI) - 5 Aug 2025
Abstract
Plant-derived vesicles offer several advantages, including high yield, low cost, ethical compatibility, safety, and potential health benefits. These advantages enable them to overcome technological limitations associated with vesicles of mammalian origin. Ginseng, a prominent example of a natural botanical plant, is known for [...] Read more.
Plant-derived vesicles offer several advantages, including high yield, low cost, ethical compatibility, safety, and potential health benefits. These advantages enable them to overcome technological limitations associated with vesicles of mammalian origin. Ginseng, a prominent example of a natural botanical plant, is known for its abundant bioactive components. Recent studies confirmed that ginseng-derived vesicles offer significant advantages in the treatment of human diseases. Therefore, this study reviews the extraction and purification processes of ginseng-derived vesicle-like nanoparticles (GDVLNs), their therapeutic potential, and the active ingredients in GDVLNs that may exert pharmacological activities. Furthermore, this study evaluates the research and applications of nanosized ginseng extracts, with a primary focus on ginsenosides. Full article
(This article belongs to the Special Issue Antioxidant and Protective Effects of Plant Extracts—2nd Edition)
Show Figures

Figure 1

Back to TopTop