Assessing the Variation in Maize Water Footprint Under Different Tillage Practices: A Case Study from Jilin Province, China
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Methods
2.3.1. Extracting the Maize Planting Area
2.3.2. Extracting the CT Area
2.3.3. Estimating the Maize WF
2.3.4. Lindeman, Merenda, and Gold (LMG) Method
2.3.5. Verification Analysis
3. Results
3.1. Mapping the Spatial Distribution of CT and TT
3.2. Spatiotemporal Variations in WF Values Under TT and CT
3.2.1. Validation in Maize Yield
3.2.2. The Temporal Variation in the WF Values
3.2.3. The Spatial Variation in the WFtotal Values
3.3. Difference in WF Under Various CT Durations
4. Discussion
4.1. Effects of CT on Maize WF
4.2. Changes in WF Under Different CT Durations
4.3. Limitations and Uncertainties
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xu, Z.; Chen, X.; Liu, J.; Zhang, Y.; Chau, S.; Bhattarai, N.; Wang, Y.; Li, Y.; Connor, T.; Li, Y. Impacts of irrigated agriculture on food–energy–water–CO2 nexus across metacoupled systems. Nat. Commun. 2020, 11, 5837. [Google Scholar] [CrossRef]
- Hoekstra, A.; Chapagain, A.; Aldaya, M.; Mekonnen, M.M. The Water Footprint Assessment Manual: Setting the Global Standard; Earthscan: London, UK; Washington, DC, USA; Enschede, The Netherlands, 2011. [Google Scholar]
- Abdo, A.; Sun, D.; Shi, Z.; Abdel-Fattah, M.K.; Zhang, J.; Kuzyakov, Y. Conventional agriculture increases global warming while decreasing system sustainability. Nat. Clim. Change 2025, 15, 110–117. [Google Scholar] [CrossRef]
- Islam, S.F.U.; Sander, B.O.; Quilty, J.R.; de Neergaard, A.; van Groenigen, J.W.; Jensen, L.S. Mitigation of greenhouse gas emissions and reduced irrigation water use in rice production through water-saving irrigation scheduling, reduced tillage and fertiliser application strategies. Sci. Total Environ. 2020, 739, 140215. [Google Scholar] [CrossRef] [PubMed]
- Yadav, G.S.; Das, A.; Kandpal, B.K.; Babu, S.; Lal, R.; Datta, M.; Das, B.; Singh, R.; Singh, V.K.; Mohapatra, K.P.; et al. The food-energy-water-carbon nexus in a maize-maize-mustard cropping sequence of the Indian Himalayas: An impact of tillage-cum-live mulching. Renew. Sustain. Energy Rev. 2021, 151, 111602. [Google Scholar] [CrossRef]
- Nafi, E.; Webber, H.; Danso, I.; Naab, J.B.; Frei, M.; Gaiser, T. Interactive effects of conservation tillage, residue management, and nitrogen fertilizer application on soil properties under maize-cotton rotation system on highly weathered soils of West Africa. Soil Tillage Res. 2020, 196, 104473. [Google Scholar] [CrossRef]
- Das, A.; Layek, J.; Idapuganti, R.G.; Savita, A.; Rattan, A.; Krishnappa, R. Conservation tillage and residue management improves soil properties under a upland rice–rapeseed system in the subtropical eastern Himalayas. Land Degrad. Dev. 2020, 31, 1775–1791. [Google Scholar] [CrossRef]
- Ma, J.; Shi, P. Remotely sensed inter-field variation in soil organic carbon content as influenced by the cumulative effect of conservation tillage in northeast China. Soil Tillage Res. 2024, 243, 106170. [Google Scholar] [CrossRef]
- Tao, W.; Xie, Z.; Zhang, Y.; Li, J.; Xuan, F.; Huang, J.; Li, X.; Su, W.; Yin, D. Corn residue covered area mapping with a deep learning method using Chinese GF-1 B/D high resolution remote sensing Images. Remote Sens. 2021, 13, 2903. [Google Scholar] [CrossRef]
- Xiang, X.; Du, J.; Jacinthe, P.-A.; Zhao, B.; Zhou, H.; Liu, H.; Song, K. Integration of tillage indices and textural features of Sentinel-2A multispectral images for maize residue cover estimation. Soil Tillage Res. 2022, 221, 105405. [Google Scholar] [CrossRef]
- Najafi, P.; Navid, H.; Feizizadeh, B.; Eskandari, I. Object-based satellite image analysis applied for crop residue estimating using Landsat OLI imagery. Int. J. Remote Sens. 2018, 39, 6117–6136. [Google Scholar] [CrossRef]
- Jiang, D.; Du, J.; Song, K.; Zhao, B.; Zhang, Y.; Zhang, W. Classification of Conservation Tillage Using Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model. Remote Sens. 2023, 15, 508. [Google Scholar] [CrossRef]
- Namik Kemal, S.; Brian, S. Measuring Intensity of Tillage and Plant Residue Cover Using Remote Sensing. Eur. J. Remote Sens. 2016, 49, 121–135. [Google Scholar]
- Beeson, P.C.; Daughtry, C.S.T.; Wallander, S.A. Estimates of Conservation Tillage Practices Using Landsat Archive. Remote Sens. 2020, 12, 2665. [Google Scholar] [CrossRef]
- Papadavid, G.; Toulios, L. The use of earth observation methods for estimating regional crop evapotranspiration and yield for water footprint accounting. J. Agric. Sci. 2017, 156, 599–617. [Google Scholar] [CrossRef]
- Li, B.; Qin, L.; Wang, J.; Dang, Y.; He, H. Multi-source data-based spatial variations of blue and green water footprints for rice production in Jilin Province, China. Environ. Sci. Pollut. Res. 2021, 28, 38106–38116. [Google Scholar] [CrossRef]
- Li, B.; Qin, L.; Qi, H.; Wang, J.; Dang, Y.; Lv, M.; He, H. Assessing the effects of drought on rainfed maize water footprints based on remote sensing approaches. J. Sci. Food Agric. 2024, 104, 1154–1165. [Google Scholar] [CrossRef]
- Zhang, Y.; Du, J. Improving maize residue cover estimation with the combined use of optical and SAR remote sensing images. Int. Soil Water Conserv. Res. 2024, 12, 578–588. [Google Scholar] [CrossRef]
- Gao, R.; Zhao, D.; Zhang, P.; Li, M.; Huang, H.; Zhuo, L.; Wu, P. Driving factor analysis of spatial and temporal variations in the gray water footprint of crop production via multiple methods: A case for west China. Front. Environ. Sci. 2023, 10, 1104797. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, F.; Zhang, W. China Agrochemical Service: Handbook of Fertilizer and Fertilization; China Agricultural Press: Beijing, China, 2013. [Google Scholar]
- Sun, D.; Wang, Y.; Li, H.; Zhou, D. Spatializing regional fertilizer input based on MODIS NDVI time series. Trans. CSAE 2010, 26, 175–180. [Google Scholar]
- Yang, Q.; Zhang, P.; Li, J.; Liu, W.; He, X. Development Level and Spatio-temporal Evolution of Agricultural Modernization in Northeast China. Sci. Geogr. Sin. 2022, 42, 1588–1599. [Google Scholar]
- Guan, Y. “Lishu Model” for the conservation and utilization of black soil in Northeast China. China Rural. Sci. Technol. 2021, 4, 18–21. [Google Scholar]
- CTIC. Conservation Tillage Information Center, M.R. National Crop Residue Management Survey. West Lafayette: Conservation Technology Infortion Center. 2024. Available online: http://www.ctic.org/CRM/ (accessed on 20 November 2024).
- Vicente-Gonzalez, L.; Frutos-Bernal, E.; Vicente-Villardon, J.L. Partial Least Squares Regression for Binary Data. Mathematics 2025, 13, 458. [Google Scholar] [CrossRef]
- Guo, E.; Liu, X.; Zhang, J.; Wang, Y.; Wang, C.; Wang, R.; Li, D. Assessing spatiotemporal variation of drought and its impact on maize yield in Northeast China. J. Hydrol. 2017, 553, 231–247. [Google Scholar] [CrossRef]
- Qin, L.; Jin, Y.; Duan, P.; He, H. Field-based experimental water footprint study of sunflower growth in a semi-arid region of China. J. Sci. Food Agric. 2016, 96, 3266–3273. [Google Scholar] [CrossRef] [PubMed]
- Dang, Y.; Qin, L.; Huang, L.; Wang, J.; Li, B.; He, H. Water footprint of rain-fed maize in different growth stages and associated climatic driving forces in Northeast China. Agric. Water Manag. 2022, 263, 107463. [Google Scholar] [CrossRef]
- Smith, M. CROPWAT: A Computer Program for Irrigation Planning and Management; Food & Agriculture Org: Rome, Italy, 1992. [Google Scholar]
- Schlesinger, W.H.; Bernhardt, E.S. Biogeochemistry: An Analysis of Global Change; Academic Press: San Diego, CA, USA, 2013. [Google Scholar]
- Yao, F.; Tang, Y.; Wang, P.; Zhang, J. Estimation of maize yield by using a process-based model and remote sensing data in the Northeast China Plain. Phys. Chem. Earth Parts A/B/C 2015, 87–88, 142–152. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, X.; Huang, L.; Yang, G.; Fan, L.; Wei, P.; Chen, G. An Improved CASA Model for Estimating Winter Wheat Yield from Remote Sensing Images. Remote Sens. 2019, 11, 1088. [Google Scholar] [CrossRef]
- Groemping, U. Relative Importance for Linear Regression in R: The Package relaimpo. J. Stat. Softw. 2006, 17, 1–27. [Google Scholar]
- Ding, Y.; Gong, X.; Xing, Z.; Cai, H.; Zhou, Z.; Zhang, D.; Sun, P.; Shi, H. Attribution of meteorological, hydrological and agricultural drought propagation in different climatic regions of China. Agric. Water Manag. 2021, 255, 106996. [Google Scholar] [CrossRef]
- Zheng, T.; Zhai, K.; Zou, S. A survey of corn conservation tillage in Jilin Province of China. Agric. Mach. Technol. Ext. 2016, 4, 7–9. [Google Scholar]
- Liu, Z.; Liu, Z.; Wan, W.; Huang, J. Estimation of maize residue cover on the basis of SAR and optical remote sensing image. Natl. Remote Sens. Bull. 2021, 25, 1308–1323. [Google Scholar] [CrossRef]
- An, Q.; Chen, S. Remote sensing yield estimation of maize based on light use efficiency model. Geospat. Inf. 2019, 17, 71–75. [Google Scholar]
- Lu, F.; Wang, X.; Han, B.; Ouyang, Z. Soil carbon sequestrations by nitrogen fertilizer application, straw return and no-tillage in China’s cropland. Glob. Change Biol. 2009, 15, 281–305. [Google Scholar] [CrossRef]
- He, C.; Niu, J.R.; Xu, C.T.; Han, S.W.; Bai, W.; Song, Q.L.; Dang, Y.P.; Zhang, H.L. Effect of conservation tillage on crop yield and soil organic carbon in Northeast China: A meta-Analysis. Soil Use Manag. 2022, 38, 1146–1161. [Google Scholar] [CrossRef]
- Lv, L.; Gao, Z.; Liao, K.; Zhu, Q.; Zhu, J. Impact of conservation tillage on the distribution of soil nutrients with depth. Soil Tillage Res. 2023, 225, 105527. [Google Scholar] [CrossRef]
- Deines, J.M.; Wang, S.; Lobell, D.B. Satellites reveal a small positive yield effect from conservation tillage across the US Corn Belt. Environ. Res. Lett. 2019, 14, 124038. [Google Scholar] [CrossRef]
- Nouri, H.; Stokvis, B.; Galindo, A.; Blatchford, M.; Hoekstra, A.Y. Water scarcity alleviation through water footprint reduction in agriculture: The effect of soil mulching and drip irrigation. Sci. Total Environ. 2019, 653, 241–252. [Google Scholar] [CrossRef]
- Parihar, C.M.; Nayak, H.S.; Rai, V.K.; Jat, S.L.; Parihar, N.; Aggarwal, P.; Mishra, A.K. Soil water dynamics, water productivity and radiation use efficiency of maize under multi-year conservation agriculture during contrasting rainfall events. Field Crops Res. 2019, 241, 107570. [Google Scholar] [CrossRef]
- Sun, S.; Wu, P.; Wang, Y.; Zhao, X.; Liu, J.; Zhang, X. The impacts of interannual climate variability and agricultural inputs on water footprint of crop production in an irrigation district of China. Sci. Total Environ. 2013, 444, 498–507. [Google Scholar] [CrossRef]
- Zheng, X.; Qin, L.; He, H. Impacts of Climatic and Agricultural Input Factors on the Water Footprint of Crop Production in Jilin Province, China. Sustainability 2020, 12, 6904. [Google Scholar] [CrossRef]
- Han, L.; Yang, G.; Yang, X.; Song, X.; Xu, B.; Li, Z.; Wu, J.; Yang, H.; Wu, J. An explainable XGBoost model improved by SMOTE-ENN technique for maize lodging detection based on multi-source unmanned aerial vehicle images. Comput. Electron. Agric. 2022, 194, 106804. [Google Scholar] [CrossRef]
- Elham, F.; Hojat, E.; Majid, F. Effects of tillage systems on soil organic carbon and some soil physical properties. Land Degrad. Dev. 2022, 33, 1307–1320. [Google Scholar] [CrossRef]
- Zhu, M.; Yuan, L.; Zhou, F.; Ma, S.; Zhang, W.; Miltner, A.; He, H.; Zhang, X. Time-dependent regulation of soil aggregates on fertilizer N retention and the influence of straw mulching. Soil Biol. Biochem. 2024, 198, 109551. [Google Scholar] [CrossRef]
- Lu, J.; Wang, Z.; Yang, H.; Shen, Y. Ecological stoichiometric characteristics of soil carbon, nitrogen and phosphorus after 10 years conservation tillage in a rotation system. Bull. Soil Water Conserv. 2015, 35, 96–101. [Google Scholar]
- Deng, Z.; Huang, M.; Zhang, W.; Wang, G. Effects of Conservation Tillage on Soil Structure and Bulk Density under Dryland. Chin. J. Soil Sci. 2023, 54, 46–55. [Google Scholar]
- Gao, J.; Zhuo, L.; Duan, X.; Wu, P. Agricultural water-saving potentials with water footprint benchmarking under different tillage practices for crop production in an irrigation district. Agric. Water Manag. 2023, 282, 108274. [Google Scholar] [CrossRef]
- Marshall, M.; Tu, K.; Brown, J. Optimizing a remote sensing production efficiency model for macro-scale GPP and yield estimation in agroecosystems. Remote Sens. Environ. 2018, 217, 258–271. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, B.; Qin, L.; Lv, M.; Dang, Y.; Qi, H. Assessing the Variation in Maize Water Footprint Under Different Tillage Practices: A Case Study from Jilin Province, China. Agriculture 2025, 15, 1691. https://doi.org/10.3390/agriculture15151691
Li B, Qin L, Lv M, Dang Y, Qi H. Assessing the Variation in Maize Water Footprint Under Different Tillage Practices: A Case Study from Jilin Province, China. Agriculture. 2025; 15(15):1691. https://doi.org/10.3390/agriculture15151691
Chicago/Turabian StyleLi, Bo, Lijie Qin, Mingzhu Lv, Yongcai Dang, and Hang Qi. 2025. "Assessing the Variation in Maize Water Footprint Under Different Tillage Practices: A Case Study from Jilin Province, China" Agriculture 15, no. 15: 1691. https://doi.org/10.3390/agriculture15151691
APA StyleLi, B., Qin, L., Lv, M., Dang, Y., & Qi, H. (2025). Assessing the Variation in Maize Water Footprint Under Different Tillage Practices: A Case Study from Jilin Province, China. Agriculture, 15(15), 1691. https://doi.org/10.3390/agriculture15151691