Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (406)

Search Parameters:
Keywords = CaBP1

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2015 KiB  
Article
Origanum majorana Extracts: A Preliminary Comparative Study on Phytochemical Profiles and Bioactive Properties of Valuable Fraction and By-Product
by Simone Bianchi, Rosaria Acquaviva, Claudia Di Giacomo, Laura Siracusa, Leeyah Issop-Merlen, Roberto Motterlini, Roberta Foresti, Donata Condorelli and Giuseppe Antonio Malfa
Plants 2025, 14(15), 2264; https://doi.org/10.3390/plants14152264 - 23 Jul 2025
Viewed by 287
Abstract
Origanum majorana L. (O. majorana) (Lamiaceae) is an aromatic Mediterranean plant widely used in food, cosmetics, and traditional medicine due to its aroma and rich content of bioactive compounds. While its leaves and flowers are commonly utilized, lignified stems are often [...] Read more.
Origanum majorana L. (O. majorana) (Lamiaceae) is an aromatic Mediterranean plant widely used in food, cosmetics, and traditional medicine due to its aroma and rich content of bioactive compounds. While its leaves and flowers are commonly utilized, lignified stems are often discarded. This study compared hydroalcoholic extracts from the leaves and flowers (valuable fraction, VF) and stems (by-product, BP). Phytochemical analysis revealed qualitatively similar profiles, identifying 20 phenolic compounds, with Rosmarinic acid and Salvianolic acid B as the most and second most abundant, respectively. Antioxidant activity was evaluated in vitro using DPPH (IC50 [µg/mL]: VF 30.11 ± 3.46; BP 31.72 ± 1.46), H2O2 (IC50 [µg/mL]: VF 103.09 ± 4.97; BP 119.55 ± 10.58), and O2•− (IC50 [µg/mL]: VF 0.71 ± 0.062; BP 0.79 ± 0.070). Both extracts (20 µg/mL) fully restored oxidative balance in hemin-stressed AC16 cardiomyocytes, without altering the expression of catalase, heme-oxygenase 1, superoxide dismutase 2, or ferritin. Anti-inflammatory activity in LPS-stimulated RAW 264.7 macrophages showed that VF (IC50 400 µg/mL) reduced NO release to control levels, while BP achieved a ~60% reduction. Cytotoxicity was assessed on cancer cell lines: CaCo-2 (IC50 [µg/mL]: VF 154.1 ± 6.22; BP 305.2 ± 15.94), MCF-7 (IC50 [µg/mL]: VF 624.6 ± 10.27; BP 917.9 ± 9.87), and A549 (IC50 [µg/mL]: VF 720.8 ± 13.66; BP 920.2 ± 16.79), with no cytotoxicity on normal fibroblasts HFF-1 (IC50 > 1000 µg/mL for both extracts). Finally, both extracts slightly inhibited only CYP1A2 (IC50 [µg/mL]: VF 497.45 ± 9.64; BP 719.72 ± 11.37) and CYP2D6 (IC50 [µg/mL]: VF 637.15 ± 14.78, BP 588.70 ± 11.01). These results support the potential reuse of O. majorana stems as a sustainable source of bioactive compounds for nutraceutical and health-related applications. Full article
Show Figures

Figure 1

16 pages, 11535 KiB  
Article
Sedimentary Stylolites Roughness Inversion Enables the Quantification of the Eroded Thickness of Deccan Trap Above the Bagh Group, Narmada Basin, India
by Dhiren Kumar Ruidas, Nicolas E. Beaudoin, Srabani Thakur, Aniruddha Musib and Gourab Dey
Minerals 2025, 15(8), 766; https://doi.org/10.3390/min15080766 - 22 Jul 2025
Viewed by 712
Abstract
Stylolites, common dissolution surfaces in carbonate rocks, form due to localized stress-induced pressure-solution during burial compaction or tectonic contraction. Their morphology and growth are influenced by dissolution kinetics, rock heterogeneity, clay content, burial depth, stress evolution, diagenesis, and pore fluid availability. This study [...] Read more.
Stylolites, common dissolution surfaces in carbonate rocks, form due to localized stress-induced pressure-solution during burial compaction or tectonic contraction. Their morphology and growth are influenced by dissolution kinetics, rock heterogeneity, clay content, burial depth, stress evolution, diagenesis, and pore fluid availability. This study applies the stylolite roughness inversion technique (SRIT), a proven paleopizometer that quantifies the principal vertical stress (σv = σ1) prevailing in strata in the last moments of bedding-parallel stylolites (BPS) formation, to the Late Cretaceous Bagh Group carbonates in the Narmada Basin, India, to estimate their burial paleo-depth. Using the Fourier Power Spectrum (FPS), we obtained 18 σ1 values from a collection of 30 samples, enabling us to estimate paleo-burial depths for the Bagh Group ranging from 660 to 1320 m. As the Bagh Group burial history is unknown, but as there is no subsequent sedimentary deposition above it, we relate this ca. 1.3 km burial depth to the now eroded thickness of the deposits related to Deccan volcanism at the end of the Cretaceous time, implying a quasi-instantaneous development of the BPS population in the strata. This research highlights the robustness of SRIT for reconstructing burial histories in carbonate sequences and that it can be a reliable way to reconstruct the thickness of eroded deposits in well-constrained geological history. Full article
Show Figures

Figure 1

14 pages, 474 KiB  
Article
Calcium Metabolism, Immunity and Reproduction in Early Postpartum Dairy Cows
by Szilvia Kusza, Zoltán Bagi, Putri Kusuma Astuti, George Wanjala, Ottó Szenci and Árpád Csaba Bajcsy
Animals 2025, 15(14), 2103; https://doi.org/10.3390/ani15142103 - 16 Jul 2025
Viewed by 314
Abstract
Vitamin D is essential for calcium homeostasis, bone mineralization, immunity, and disease prevention. In a field study with Holstein-Friesian dairy cows, the impact of prepartum vitamin D3 treatment on early postpartum placental gene expression, focusing on calcium metabolism, feto-placental growth, and immune [...] Read more.
Vitamin D is essential for calcium homeostasis, bone mineralization, immunity, and disease prevention. In a field study with Holstein-Friesian dairy cows, the impact of prepartum vitamin D3 treatment on early postpartum placental gene expression, focusing on calcium metabolism, feto-placental growth, and immune response, had been investigated. Eight multiparous cows were treated with 10 mL vitamin D3 (1 million IU cholecalciferol/mL) intramuscularly on day 273 of pregnancy, while eight others remained untreated and served as controls. Placental tissues were collected post-calving, and gene expression was analyzed using quantitative real-time PCR. Among 23 genes, 5 showed significant downregulation in the treated group: CaBP-9k (reduced by 88.1% from 32.80 ± 91.50 to 3.90 ± 8.54), ESR1 (reduced by 95.7% from 7.89 ± 17.87 to 0.34 ± 0.34), LHR (reduced by 96.5% from 3.75 ± 5.45 to 0.13 ± 0.17), NOD1 (reduced by 94.1% from 4.21 ± 7.00 to 0.25 ± 0.30), and TLR1 (reduced by 99.7% from 24.80 ± 61.45 to 0.07 ± 0.08). These results suggest that vitamin D3 supplementation affects key pathways related to calcium transport, reproductive function, and immune response in the bovine placenta. These molecular changes may help to explain improved calcium homeostasis and reduced postpartum complications, offering insights into how targeted nutritional interventions can enhance reproductive efficiency in high-producing dairy cows. Full article
(This article belongs to the Special Issue Advances in Cattle Genetics and Breeding)
Show Figures

Figure 1

20 pages, 2642 KiB  
Article
Complete Genome and Characterization Analysis of a Bifidobacterium animalis Strain Isolated from Wild Pigs (Sus scrofa ussuricus)
by Tenggang Di, Huan Zhang, Cheng Zhang, Liming Tian, Menghan Chang, Wei Han, Ruiming Qiao, Ming Li, Shuhong Zhang and Guangli Yang
Microorganisms 2025, 13(7), 1666; https://doi.org/10.3390/microorganisms13071666 - 16 Jul 2025
Viewed by 311
Abstract
Bifidobacterium is a predominant probiotic in animals that is associated with host intestinal health. The protective mechanisms of the Bifidobacterium animalis (B. animalis) strain, specifically those related to functional gene–host interactions in intestinal homeostasis, remain poorly elucidated. This study reports the [...] Read more.
Bifidobacterium is a predominant probiotic in animals that is associated with host intestinal health. The protective mechanisms of the Bifidobacterium animalis (B. animalis) strain, specifically those related to functional gene–host interactions in intestinal homeostasis, remain poorly elucidated. This study reports the complete genome sequence and characterization of a B. animalis strain isolated from wild pig feces, which comprised a single circular chromosome (1,944,022 bp; GC content 60.49%) with 1567 protein-coding genes, and the B. animalis strain had certain acid resistance, bile salt resistance, gastrointestinal fluid tolerance, and antibacterial characteristics. Genomic annotation revealed three putative genomic islands and two CRISPR-Cas systems. Functional characterization identified genes encoding carbohydrate-active enzymes (CAZymes) and associated metabolic pathways, indicating that this strain can degrade complex dietary carbohydrates and synthesize bioactive metabolites for gut homeostasis. Although the antibiotic resistance genes were predicted, phenotypic assays demonstrated discordant resistance patterns, indicating complex regulatory networks. This study indicated the genomic basis of Bifidobacterium–host crosstalk in intestinal protection, providing a framework for developing novel probiotic interventions. Full article
Show Figures

Figure 1

18 pages, 1121 KiB  
Review
The Cellular and Mitochondrial Consequences of Mevalonate Pathway Inhibition by Nitrogen-Containing Bisphosphonates: A Narrative Review
by Adrianna Budzinska and Wieslawa Jarmuszkiewicz
Pharmaceuticals 2025, 18(7), 1029; https://doi.org/10.3390/ph18071029 - 11 Jul 2025
Viewed by 418
Abstract
Nitrogen-containing bisphosphonates (N-BPs) are commonly used drugs in the treatment of bone diseases due to their potent inhibition of the mevalonate pathway, leading to disrupted protein prenylation and reduced osteoclast activity. Although N-BPs are effective in reducing bone resorption, increasing evidence indicates their [...] Read more.
Nitrogen-containing bisphosphonates (N-BPs) are commonly used drugs in the treatment of bone diseases due to their potent inhibition of the mevalonate pathway, leading to disrupted protein prenylation and reduced osteoclast activity. Although N-BPs are effective in reducing bone resorption, increasing evidence indicates their side effects on various non-skeletal cells. The aim of this review is to synthesize the current knowledge on the cellular and molecular effects of N-BPs outside the skeletal system, with particular emphasis on their impact on mitochondrial function and energy metabolism. At the cellular level, N-BPs may reduce viability, modulate inflammatory responses, trigger apoptosis, disrupt cytoskeletal organization, and influence signaling and energy metabolism. N-BPs may also impair the prenylation of proteins essential for mitochondrial dynamics and quality control, and may disrupt Ca2+ homeostasis. As we have shown in endothelial cells, by inhibiting the mevalonate pathway, N-BPs may lead to a reduction in key components of the mitochondrial respiratory chain, such as coenzyme Q (CoQ) and a-heme. These effects can contribute to impaired mitochondrial respiratory function, increased oxidative stress, and mitochondria-dependent apoptosis, affecting cellular energy metabolism and viability. These findings underscore the multifaceted impact of N-BPs beyond bone, emphasizing the importance of mitochondrial health and energy metabolism in understanding their broader biological effects and potential adverse outcomes. Full article
(This article belongs to the Special Issue The Pharmacology of Bisphosphonates: New Advances)
Show Figures

Figure 1

13 pages, 339 KiB  
Article
The Burden of Hospitalization and Rehospitalization Among Patients Hospitalized with Severe Community-Acquired Bacterial Pneumonia in the United States, 2018–2022
by Marya D. Zilberberg, Mike Greenberg, Valentin Curt and Andrew F. Shorr
Antibiotics 2025, 14(7), 642; https://doi.org/10.3390/antibiotics14070642 - 25 Jun 2025
Viewed by 532
Abstract
Background: Community-acquired bacterial pneumonia (CABP) is a common and costly cause of hospitalization. Although severe CABP (sCABP) occurs in 10–25% of all pneumonia hospitalizations, little generalizable data examine its characteristics and outcomes or hospital resource utilization. Methods: We conducted a retrospective [...] Read more.
Background: Community-acquired bacterial pneumonia (CABP) is a common and costly cause of hospitalization. Although severe CABP (sCABP) occurs in 10–25% of all pneumonia hospitalizations, little generalizable data examine its characteristics and outcomes or hospital resource utilization. Methods: We conducted a retrospective single-group cohort study of adults within the IQVIA hospital Charge Data Master, 2018–2022. We identified CABP via an ICD-10 code algorithm and sCABP was defined as an episode requiring ICU care. We examined baseline characteristics and outcomes, including mortality, costs, and readmission rates. We developed models to identify risk factors associated with readmissions. Results: Among 24,149 patients with sCABP, 14,266 (58.4%) were ≥65 years old and 55.2% were male. The majority were hospitalized in large (300+ beds, 50.9%), urban (91.9%) teaching (62.7%) institutions in the US Southern region (52.3%). The mean (SD) Charlson Comorbidity Index was 1.35 (2.33). The most common comorbidities were hypertension (16.7%), diabetes mellitus (15.7%), and chronic obstructive pulmonary disease (COPD) (12.9%). Hospital mortality was 15.9%. The mean (SD) hospital length of stay (LOS) and costs were 13.6 (12.1) and USD 91,965 (USD 133,734), respectively. An amount of 20% required a readmission within 30 days. Readmission was most strongly associated with older age and the presence of select comorbidities (diabetes mellitus, congestive heart failure, and COPD), each with an odds ratio > 1.4 and 95% confidence intervals excluding 1.0. Conclusions: Patients with sCABP comprise a large population with high mortality and 30-day readmissions. The intrinsic factors related to the latter lend themselves to early recognition and aggressive efforts at reducing complications. Full article
Show Figures

Figure 1

13 pages, 2813 KiB  
Article
Paleoenvironmental Analysis and Rice Farming at the Huangshan Site, Central China
by Hao Lu, Jun Chai, Jun-Cai Ma and Kun Liang
Heritage 2025, 8(6), 232; https://doi.org/10.3390/heritage8060232 - 18 Jun 2025
Viewed by 301
Abstract
The Huangshan site in Nanyang, situated at the junction of the Nanyang Basin and the Jianghan Plain, represents a critical region for understanding the northward expansion of rice farming in China. Due to the scarcity of suitable organic material, the dating of the [...] Read more.
The Huangshan site in Nanyang, situated at the junction of the Nanyang Basin and the Jianghan Plain, represents a critical region for understanding the northward expansion of rice farming in China. Due to the scarcity of suitable organic material, the dating of the channel section at Huangshan relies primarily on cultural relics. By employing grain-size analysis, pollen analysis, and phytolith analysis on sediment samples from the site’s river section, we established a comprehensive framework of hydrology, climate, vegetation, and agricultural activities during the Yangshao to Qujialing periods (ca. 7000–4600 BP). The findings indicate a relative decline in temperature during the Yangshao period, followed by a return to warm and humid conditions during the Qujialing period, which coincided with the peak intensity of rice farming. The continuous expansion of rice farming at the Huangshan site during prehistoric times is likely linked to the northward spread of Qujialing culture. The large-scale production of rice not only provided an economic foundation for the growth of the Huangshan settlement but also facilitated its development into a regional hub for jade production and trade. This study offers new environmental archaeological insights into the interactions between the middle Yangtze River region and the Central Plains during the late Neolithic period. Full article
(This article belongs to the Section Archaeological Heritage)
Show Figures

Figure 1

17 pages, 11231 KiB  
Article
Biopolymer/Suture Polymer Interaction: Is It a Key of Bioprosthetic Calcification?
by Irina Yu. Zhuravleva, Anna A. Dokuchaeva, Andrey A. Vaver, Ludmila V. Kreiker, Elena V. Kuznetsova and Rostislav I. Grek
Polymers 2025, 17(11), 1576; https://doi.org/10.3390/polym17111576 - 5 Jun 2025
Viewed by 495
Abstract
The aim of this study was to evaluate the effect of suture material made of polyester (PET), polypropylene (PP), and polytetrafluoroethylene (PTFE) on the calcification of a bovine pericardium (BP) consisting of collagen biopolymer preserved with an epoxy compound. Non-porous film made of [...] Read more.
The aim of this study was to evaluate the effect of suture material made of polyester (PET), polypropylene (PP), and polytetrafluoroethylene (PTFE) on the calcification of a bovine pericardium (BP) consisting of collagen biopolymer preserved with an epoxy compound. Non-porous film made of the synthetic reinforced polymer REPEREN® was chosen as a control material. Samples of the material (sutured or non-sutured with each of the three types of surgical sutures) were implanted subcutaneously in 45 young rats for 30, 60, and 90 days. The calcium content of the explants was quantified using atomic absorption spectrometry, a histological examination was performed using hematoxylin and eosin and von Kossa staining, and the structure of the calcium phosphate deposits was studied using scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS) with color field mapping. The results demonstrated the absence of calcification in the non-sutured BP and in all the REPEREN® groups. In the sutured BP samples, a dynamic increase in the Ca content and the Ca/P ratio to 1.67–1.7 (crystalline hydroxyapatite) was observed by the 90th day. The minimum Ca content among the sutured BP groups was detected in samples where the PET thread was used. The cellular reaction to BP was significantly more pronounced than the reaction to REPEREN® throughout the entire observation period; collagen homogenization was noted near the sutures. It can be concluded that all the studied suture materials provoke BP calcification. PET has the minimal negative effect. Full article
(This article belongs to the Special Issue Polymer-Based Materials for Drug Delivery and Biomedical Applications)
Show Figures

Figure 1

14 pages, 2171 KiB  
Brief Report
Pulsatile Myofilament Activity in Myotrem Myopathy Associated with Myogenic Tremor
by Jennifer Megan Mariano, Laurin M. Hanft, Suhan Cho, Christopher W. Ward, Kerry S. McDonald and Aikaterini Kontrogianni-Konstantopoulos
Int. J. Mol. Sci. 2025, 26(11), 5252; https://doi.org/10.3390/ijms26115252 - 30 May 2025
Viewed by 490
Abstract
Myosin-binding protein C (MyBP-C) comprises a family of myofilament proteins that maintain sarcomeric structure and regulate actomyosin crossbridge cycling. Pathogenic variants in MYBPC1, the gene encoding the slow skeletal isoform (sMyBP-C), lead to a dominant congenital myopathy, termed Myotrem, characterized by muscle [...] Read more.
Myosin-binding protein C (MyBP-C) comprises a family of myofilament proteins that maintain sarcomeric structure and regulate actomyosin crossbridge cycling. Pathogenic variants in MYBPC1, the gene encoding the slow skeletal isoform (sMyBP-C), lead to a dominant congenital myopathy, termed Myotrem, characterized by muscle weakness, hypotonia, and a distinctive tremor of myogenic origin, in the absence of neuropathy. However, the molecular mechanism(s) of myogenic tremorgenesis is largely unknown. One potential mechanism is aberrant myofilament stretch activation, which is defined as a delayed increase in force after a rapid stretch. We utilized the Myotrem murine model harboring the pathogenic MYBPC1 E248K variant to test the hypothesis that stretch activation is augmented in permeabilized Myotrem E248K soleus fibers. We found that stretch activation was significantly increased in E248K soleus muscle fibers. Interestingly, once submaximally Ca2+ activated, a subpopulation of slow-twitch E248K fibers exhibited spontaneous pulsatile sarcomere oscillations. This pulsing behavior generated a sinusoidal waveform pattern in sarcomere length, which often persisted on a timescale of minutes. These results align with sMyBP-C as key regulator of the synchronous activation of myofilaments by dampening both spontaneous oscillatory activity and stretch-dependent activation. We propose that the presence of sMyBP-C-E248K disrupts this regulation, thereby driving pathogenic myogenic tremors. Full article
(This article belongs to the Special Issue Sarcomeric Proteins in Health and Disease: 3rd Edition)
Show Figures

Figure 1

20 pages, 2416 KiB  
Article
Examination of Runs of Homozygosity Distribution Patterns and Relevant Candidate Genes of Potential Economic Interest in Russian Goat Breeds Using Whole-Genome Sequencing
by Tatiana E. Deniskova, Arsen V. Dotsev, Olga A. Koshkina, Anastasia D. Solovieva, Nadezhda A. Churbakova, Sergey N. Petrov, Alexey N. Frolov, Stanislav A. Platonov, Alexandra S. Abdelmanova, Maxim A. Vladimirov, Elena A. Gladyr, Igor V. Gusev, Svyatoslav V. Lebedev, Darren K. Griffin, Michael N. Romanov and Natalia A. Zinovieva
Genes 2025, 16(6), 631; https://doi.org/10.3390/genes16060631 - 24 May 2025
Viewed by 562
Abstract
Background/Objectives: Whole-genome sequencing (WGS) data provide valuable information about the genetic architecture of local livestock but have not yet been applied to Russian native goats, in particular, the Orenburg and Karachay breeds. A preliminary search for selection signatures based on single nucleotide polymorphism [...] Read more.
Background/Objectives: Whole-genome sequencing (WGS) data provide valuable information about the genetic architecture of local livestock but have not yet been applied to Russian native goats, in particular, the Orenburg and Karachay breeds. A preliminary search for selection signatures based on single nucleotide polymorphism (SNP) genotype data in these breeds was not informative. Therefore, in this study, we aimed to address runs of homozygosity (ROHs) patterns and find the respective signatures of selection overlapping candidate genes in Orenburg and Karachay goats using the WGS approach. Methods: Paired-end libraries (150 bp reads) were constructed for each animal. Next-generation sequencing was performed using a NovaSeq 6000 sequencer (Illumina, Inc., San Diego, CA, USA), with ~20X genome coverage. ROHs were identified in sliding windows, and ROH segments shared by at least 50% of the samples were considered as ROH islands. Results: ROH islands were identified on chromosomes CHI3, CHI5, CHI7, CHI12, CHI13, and CHI15 in Karachay goats; and CHI3, CHI11, CHI12, CHI15, and CHI16 in Orenburg goats. Shared ROH islands were found on CHI12 (containing the PARP4 and MPHOSPH8 candidate genes) and on CHI15 (harboring STIM1 and RRM1). The Karachay breed had greater ROH length and higher ROH number compared to the Orenburg breed (134.13 Mb and 695 vs. 78.43 Mb and 438, respectively). The genomic inbreeding coefficient (FROH) varied from 0.032 in the Orenburg breed to 0.054 in the Karachay breed. Candidate genes associated with reproduction, milk production, immunity-related traits, embryogenesis, growth, and development were identified in ROH islands in the studied breeds. Conclusions: Here, we present the first attempt of elucidating the ROH landscape and signatures of selection in Russian local goat breeds using WGS analysis. Our findings will pave the way for further insights into the genetic mechanisms underlying adaption and economically important traits in native goats. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

19 pages, 2260 KiB  
Article
Distribution of NECAB1-Positive Neurons in Normal and Epileptic Brain—Expression Changes in Temporal Lobe Epilepsy and Modulation by Levetiracetam and Brivaracetam
by Krisztina Kelemen, Károly Orbán-Kis, Ádám Szentes, Zsolt András Nagy, Hanga Kelemen, Anna Fehér, László-István Bába, Zsolt Gáll, Eszter Horváth, István Katona, Szabolcs Szatmári, József Attila Szász and Tibor Szilágyi
Int. J. Mol. Sci. 2025, 26(10), 4906; https://doi.org/10.3390/ijms26104906 - 20 May 2025
Viewed by 568
Abstract
Calcium-binding proteins (CaBPs) are known to modulate neuronal excitability and calcium signaling, and they may play a role in the imbalances of excitation and inhibition of temporal lobe epilepsy (TLE). While parvalbumin and calretinin are well-characterized CaBPs, N-Terminal EF-Hand Calcium-Binding Protein 1 (NECAB1) [...] Read more.
Calcium-binding proteins (CaBPs) are known to modulate neuronal excitability and calcium signaling, and they may play a role in the imbalances of excitation and inhibition of temporal lobe epilepsy (TLE). While parvalbumin and calretinin are well-characterized CaBPs, N-Terminal EF-Hand Calcium-Binding Protein 1 (NECAB1) remains understudied in epilepsy, despite its association with neurodegenerative conditions. In this study, we used fluorescent immunolabeling to determine the distribution of NECAB1, as well as its co-expression with parvalbumin and calretinin, in brain regions associated with the epileptic circuitry using a kainic acid-induced TLE model. Additionally, we examined the impact of levetiracetam and brivaracetam on NECAB1 expression. In our study, NECAB1-positive cells were prominently localized to the paraventricular nucleus of the thalamus (PVT), endopiriform nucleus (EPN), and amygdala in healthy brain regions involved in epileptic circuitry. A NECAB1–calretinin co-expressing subpopulation was detected in the amygdala, PVT, and hippocampus but was nearly absent in the EPN. In chronic epilepsy, NECAB1 expression was significantly upregulated in the PVT and bilaterally in the amygdala. These findings suggest that NECAB1 upregulation may compensate for epileptic hyperexcitability, potentially contributing to circuit remodeling via thalamocortical regulation and interneuron diversity. Levetiracetam and brivaracetam treatments partially reduced the NECAB1 density increase in TLE, indicating a modulatory effect on NECAB1 expression. Full article
(This article belongs to the Special Issue Molecular and Cellular Mechanisms of Epilepsy—3rd Edition)
Show Figures

Figure 1

20 pages, 2450 KiB  
Article
Gene Silencing of Sarco/Endoplasmic Reticulum Ca2+-ATPase and NADPH–Cytochrome P450 Reductase as a Novel Approach to Leptinotarsa decemlineata Management
by Maribel Mendoza-Alatorre, Tania Samanta Siqueiros-Cendón, Jorge Ariel Torres-Castillo, Sugey Ramona Sinagawa-García, Blanca Flor Iglesias-Figueroa, María Jazmín Abraham-Juárez, Carmen Daniela González-Barriga, Quintín Rascón-Cruz, Luis Ignacio Siañez-Estrada and Edward Alexander Espinoza-Sánchez
Agronomy 2025, 15(5), 1151; https://doi.org/10.3390/agronomy15051151 - 8 May 2025
Cited by 1 | Viewed by 1088
Abstract
The Colorado Potato Beetle (CPB, Leptinotarsa decemlineata Say, Coleoptera: Chrysomelidae) remains a destructive agricultural pest worldwide that continually overcomes conventional control methods. In recent years, RNA interference (RNAi) has emerged as an alternative for its management; however, although promising results have been reported, [...] Read more.
The Colorado Potato Beetle (CPB, Leptinotarsa decemlineata Say, Coleoptera: Chrysomelidae) remains a destructive agricultural pest worldwide that continually overcomes conventional control methods. In recent years, RNA interference (RNAi) has emerged as an alternative for its management; however, although promising results have been reported, its effectiveness has been influenced by several factors, including the length of double-stranded RNA (dsRNA), the delivery method, stability, and especially the selection of the target gene. In this study, we designed and synthesized 290 bp dsRNAs targeting the SERCA and CPR genes from L. decemlineata, which encode the Sarco/Endoplasmic Reticulum Ca2⁺-ATPase and NADPH–Cytochrome P450 Reductase, respectively. Both dsRNAs successfully reduced transcript levels in larvae, with dsSERCA achieving ~60% knockdown by day 3 and dsCPR achieving ~50% knockdown by day 7. Furthermore, both treatments affected the larval growth and survival rate. However, while the dsCPR-treated larvae showed a 59% reduction in weight gain, the administration of dsSERCA had a strong phenotypic effect on the larvae, leading to decreased feeding, a 50.4% reduction in weight gain, and ultimately, 100% mortality. These results suggest that the SERCA and CPR genes could be promising targets for L. decemlineata control and emphasize the importance of appropriate target gene selection for RNAi silencing, as well as the need to explore and validate new genes for RNAi-mediated pest management. Full article
(This article belongs to the Section Pest and Disease Management)
Show Figures

Figure 1

17 pages, 3527 KiB  
Article
Subclinical Cardiac Involvement in Asymptomatic ATTR Mutation Carriers: Insights from Cardiac MRI, Myocardial Strain, and Mapping Techniques
by Luca Conia, Daria Filatova, Giacomo Pambianchi, Livia Marchitelli, Giulia Cundari, Giuseppe Stancanelli, Maria Alfarano, Giulia Marchionni, Cristina Chimenti, Carlo Catalano and Nicola Galea
J. Cardiovasc. Dev. Dis. 2025, 12(5), 172; https://doi.org/10.3390/jcdd12050172 - 1 May 2025
Viewed by 473
Abstract
Transthyretin cardiac amyloidosis (ATTR-CA) leads to myocardial infiltration, affecting prognosis and survival. Diagnosing early-stage ATTR-CA remains challenging due to its subtle manifestations. This study investigates subclinical myocardial alterations in asymptomatic ATTR mutation carriers (ATTR-MC) using advanced cardiac magnetic resonance (CMR) techniques, including T1 [...] Read more.
Transthyretin cardiac amyloidosis (ATTR-CA) leads to myocardial infiltration, affecting prognosis and survival. Diagnosing early-stage ATTR-CA remains challenging due to its subtle manifestations. This study investigates subclinical myocardial alterations in asymptomatic ATTR mutation carriers (ATTR-MC) using advanced cardiac magnetic resonance (CMR) techniques, including T1 mapping and myocardial strain analysis. A retrospective cohort of 60 subjects was analyzed, comprising 20 ATTR-CA patients, 20 asymptomatic ATTR-MC, and 20 controls. Standard CMR parameters were compared alongside myocardial strain analysis. Results indicated that despite preserved ejection fraction and myocardial morphology, ATTR-MC exhibited significantly impaired left ventricular global longitudinal strain (LV GLS), left atrial reservoir, conduit, and booster pump strain (LA RS, CS, and BPS) compared to controls. However, native T1 and extracellular volume (ECV) values remained within normal ranges, distinguishing early dysfunction from overt amyloid deposition seen in ATTR-CA. These findings suggest that myocardial strain analysis could serve as an early biomarker for subclinical ATTR-CA, offering a potential target for selecting patients who may benefit from early intervention. Implementing CMR-derived strain parameters in clinical practice may improve risk stratification and timely therapeutic decisions in ATTR-MC. Full article
Show Figures

Figure 1

21 pages, 12541 KiB  
Article
ATIP1 Is a Suppressor of Cardiac Hypertrophy and Modulates AT2-Dependent Signaling in Cardiac Myocytes
by Tobias Fischer, Sina Gredy, Nadine Scheel, Peter M. Benz, Benjamin Fissler, Melanie Ullrich, Marco Abeßer, Adam G. Rokita, Jochen Reichle, Lars S. Maier, Oliver Ritter, Hideo A. Baba and Kai Schuh
Cells 2025, 14(9), 645; https://doi.org/10.3390/cells14090645 - 28 Apr 2025
Viewed by 465
Abstract
So far, the molecular functions of the angiotensin-type-2 receptor (AT2) interacting protein (ATIP1) have remained unclear, although expression studies have revealed high levels of ATIP1 in the heart. To unravel its physiological function, we investigated ATIP1-KO mice. They develop a spontaneous cardiac hypertrophy [...] Read more.
So far, the molecular functions of the angiotensin-type-2 receptor (AT2) interacting protein (ATIP1) have remained unclear, although expression studies have revealed high levels of ATIP1 in the heart. To unravel its physiological function, we investigated ATIP1-KO mice. They develop a spontaneous cardiac hypertrophy with a significantly increased heart/bodyweight ratio, enlarged cardiomyocyte diameters, and augmented myocardial fibrosis. Hemodynamic measurements revealed an increased ejection fraction (EF) in untreated ATIP1-KO mice, and reduced end-systolic and end-diastolic volumes (ESV and EDV), which, in sum, reflect a compensated concentric cardiac hypertrophy. Importantly, no significant differences in blood pressure (BP) were observed. Chronic angiotensin II (AngII) infusion resulted in increases in BP and EF in ATIP1-KO and WT mice. Reductions in ESV and EDV occurred in both ATIP1-KO and WT but to a lesser extent in ATIP1-KOs. Isolated cardiomyocytes exhibited a significantly increased contractility in ATIP1-KO and accelerated Ca2+ decay. AngII treatment resulted in increased fractional shortening in WT but decreased shortening in ATIP1-KO, accompanied by accelerated cell relaxation in WT but absent effects on relaxation in ATIP1-KO cells. The AT2 agonist CGP42112A increased shortening in WT cardiomyocytes but, again, did not affect shortening in ATIP1-KO cells. Relaxation was accelerated by CGP42112A in WT but was unaffected in ATIP1-KO cells. We show that ATIP1 deficiency results in spontaneous cardiac hypertrophy in vivo and that ATIP1 is a downstream signal in the AT2 pathway regulating cell contractility. We hypothesize that the latter effect is because of a disinhibition of the AT1 pathway by impaired AT2 signaling. Full article
(This article belongs to the Special Issue The Cell Biology of Heart Disease)
Show Figures

Figure 1

16 pages, 2458 KiB  
Article
Mitogenomic and Phylogenetic Analyses of Lysmata lipkei (Crustacea: Decapoda: Lysmatidae)
by Xixi Zhang, Zhihuang Zhu, Jianxin Wang, Ge Shi and Qi Lin
Fishes 2025, 10(4), 177; https://doi.org/10.3390/fishes10040177 - 14 Apr 2025
Viewed by 430
Abstract
This study aims to elucidate the characteristics of the mitogenome of Lysmata lipkei and investigate its phylogenetic relationships. Using both the Illumina NovaSeq 6000 (Illumina, Inc., San Diego, CA, USA) and PacBio Sequel II (Pacific Biosciences of California, Inc., Menlo Park, CA, USA) [...] Read more.
This study aims to elucidate the characteristics of the mitogenome of Lysmata lipkei and investigate its phylogenetic relationships. Using both the Illumina NovaSeq 6000 (Illumina, Inc., San Diego, CA, USA) and PacBio Sequel II (Pacific Biosciences of California, Inc., Menlo Park, CA, USA) platforms, the complete mitogenome sequence of L. lipkei was determined. The mitogenome of L. lipkei was annotated, measuring 17,497 bp in length and comprising 13 protein-coding genes (PCGs), 2 ribosomal RNA genes (rRNAs), and 22 transfer RNA genes (tRNAs). The nucleotide composition of the genome exhibited an AT bias of 63.4%. Among the PCGs, the most frequently used codon was UUA. All tRNAs, except for trnD, which lacks the TψC loop, were capable of forming the typical cloverleaf structure. Phylogenetic trees for Caridea were constructed using Bayesian Inference (BI) and Maximum Likelihood (ML) methods based on the nucleotide sequences of the 13 PCGs. Both methods yielded consistent topological structures, with L. lipkei showing the closest phylogenetic relationship to L. kuekenthali. Additionally, Lysmatidae, Thoridae, and Hippolytidae formed a monophyletic clade. This research not only filled the gap in mitogenome data for Lysmatidae but also provided novel molecular insights into Caridean phylogenetics. Full article
(This article belongs to the Section Genetics and Biotechnology)
Show Figures

Figure 1

Back to TopTop