ATIP1 Is a Suppressor of Cardiac Hypertrophy and Modulates AT2-Dependent Signaling in Cardiac Myocytes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Generation of ATIP1-KO Mice
2.2. Cloning of Mouse ATIP1 Heart-Specific Splice Variants by RACE-PCR
2.3. RT-PCR and Northern Blot Analyses
2.4. Western Blotting
2.5. Quantification of ERK Phosphorylation and Protein Expression Levels
2.6. Immunohistochemistry
2.7. Cell Culture and Immunoprecipitations
2.8. X-Gal Staining
2.9. Histology, Morphometrical Analyses, and Cardiac Fibrosis
2.10. Isolation of Cardiomyocytes
2.11. Cardiomyocyte Shortening and Ca2+ Measurements
2.12. Chronic Infusion of AngII
2.13. Transversal Aortic Constriction (TAC)
2.14. Non-Invasive Blood Pressure Estimation, Hemodynamics, and Tissue Harvesting
2.15. Statistical Analysis
3. Results
3.1. Spatial ATIP1 Expression in Cardiac Myocytes and the Interaction of ATIP1 with AT2
3.2. Cloning of the Heart-Specific ATIP1 Variant
3.3. ATIP Gene Trapping
3.4. ATIP1 Deficiency at the RNA and Protein Levels
3.5. ATIP1 Promoter Activity in Cardiac Myocytes
3.6. Cardiac Hypertrophy in ATIP1-KO Mice
3.7. Increased Shortening and Reduced Responses to AngII and CGP42112A in ATIP1-Deficient Cardiomyocytes
3.8. Altered Left-Ventricular Cardiac Function Under Basal Conditions and After Chronic AngII Application
3.9. Compared to Chronic AngII Administration, Pressure Overload by TAC Resulted in an Altered Hypertrophic Response in ATIP1-Deficient Mice
3.10. An Increased Phospho-Phospholamban-to-Phospholamban Ratio in KO Mice
3.11. Decreased ATIP1 Expression After Chronic AngII Treatment
3.12. Increased ERK Phosphorylation in ATIP1-KO Hearts After Chronic AngII Treatment
3.13. Relative Increases in Proteins Involved in Ca2+ Cycling and Ca2+-Dependent Signaling in ATIP1-KO Hearts After Chronic AngII Treatment
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- de Gasparo, M.; Catt, K.J.; Inagami, T.; Wright, J.W.; Unger, T. International union of pharmacology. Xxiii. The angiotensin ii receptors. Pharmacol. Rev. 2000, 52, 415–472. [Google Scholar]
- Kaschina, E.; Unger, T. Angiotensin at1/at2 receptors: Regulation, signalling and function. Blood Press. 2003, 12, 70–88. [Google Scholar] [CrossRef] [PubMed]
- Lindberg, H.; Nielsen, D.; Jensen, B.V.; Eriksen, J.; Skovsgaard, T. Angiotensin converting enzyme inhibitors for cancer treatment? Acta Oncol. 2004, 43, 142–152. [Google Scholar]
- Levy, B.I. Can angiotensin ii type 2 receptors have deleterious effects in cardiovascular disease? Implications for therapeutic blockade of the renin-angiotensin system. Circulation 2004, 109, 8–13. [Google Scholar] [CrossRef]
- Widdop, R.E.; Jones, E.S.; Hannan, R.E.; Gaspari, T.A. Angiotensin at2 receptors: Cardiovascular hope or hype? Br. J. Pharmacol. 2003, 140, 809–824. [Google Scholar] [CrossRef] [PubMed]
- Horiuchi, M.; Akishita, M.; Dzau, V.J. Recent progress in angiotensin ii type 2 receptor research in the cardiovascular system. Hypertension 1999, 33, 613–621. [Google Scholar] [CrossRef] [PubMed]
- Matsubara, H. Pathophysiological role of angiotensin ii type 2 receptor in cardiovascular and renal diseases. Circ. Res. 1998, 83, 1182–1191. [Google Scholar] [CrossRef]
- Siragy, H.M. The role of the at2 receptor in hypertension. Am. J. Hypertens. 2000, 13, 62S–67S. [Google Scholar] [CrossRef]
- Stoll, M.; Steckelings, U.M.; Paul, M.; Bottari, S.P.; Metzger, R.; Unger, T. The angiotensin at2-receptor mediates inhibition of cell proliferation in coronary endothelial cells. J. Clin. Investig. 1995, 95, 651–657. [Google Scholar] [CrossRef]
- Volpe, M.; Musumeci, B.; De Paolis, P.; Savoia, C.; Morganti, A. Angiotensin ii at2 receptor subtype: An uprising frontier in cardiovascular disease? J. Hypertens. 2003, 21, 1429–1443. [Google Scholar] [CrossRef]
- Carey, R.M.; Jin, X.H.; Siragy, H.M. Role of the angiotensin at2 receptor in blood pressure regulation and therapeutic implications. Am. J. Hypertens. 2001, 14, 98S–102S. [Google Scholar] [CrossRef] [PubMed]
- Hansen, J.L.; Servant, G.; Baranski, T.J.; Fujita, T.; Iiri, T.; Sheikh, S.P. Functional reconstitution of the angiotensin ii type 2 receptor and g(i) activation. Circ. Res. 2000, 87, 753–759. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Pratt, R.E. The at2 receptor selectively associates with gialpha2 and gialpha3 in the rat fetus. J. Biol. Chem. 1996, 271, 15026–15033. [Google Scholar] [CrossRef]
- Feng, Y.H.; Sun, Y.; Douglas, J.G. Gbeta gamma -independent constitutive association of galpha s with shp-1 and angiotensin ii receptor at2 is essential in at2-mediated itim-independent activation of shp-1. Proc. Natl. Acad. Sci. USA 2002, 99, 12049–12054. [Google Scholar] [CrossRef] [PubMed]
- Cui, T.; Nakagami, H.; Iwai, M.; Takeda, Y.; Shiuchi, T.; Daviet, L.; Nahmias, C.; Horiuchi, M. Pivotal role of tyrosine phosphatase shp-1 in at2 receptor-mediated apoptosis in rat fetal vascular smooth muscle cell. Cardiovasc. Res. 2001, 49, 863–871. [Google Scholar] [CrossRef]
- Senbonmatsu, T.; Saito, T.; Landon, E.J.; Watanabe, O.; Price, E., Jr.; Roberts, R.L.; Imboden, H.; Fitzgerald, T.G.; Gaffney, F.A.; Inagami, T. A novel angiotensin ii type 2 receptor signaling pathway: Possible role in cardiac hypertrophy. EMBO J. 2003, 22, 6471–6482. [Google Scholar] [CrossRef]
- Seibold, S.; Rudroff, C.; Weber, M.; Galle, J.; Wanner, C.; Marx, M. Identification of a new tumor suppressor gene located at chromosome 8p21.3-22. FASEB J. 2003, 17, 1180–1182. [Google Scholar] [CrossRef]
- Zuern, C.; Heimrich, J.; Kaufmann, R.; Richter, K.K.; Settmacher, U.; Wanner, C.; Galle, J.; Seibold, S. Down-regulation of mtus1 in human colon tumors. Oncol. Rep. 2010, 23, 183–189. [Google Scholar] [CrossRef]
- Di Benedetto, M.; Bieche, I.; Deshayes, F.; Vacher, S.; Nouet, S.; Collura, V.; Seitz, I.; Louis, S.; Pineau, P.; Amsellem-Ouazana, D.; et al. Structural organization and expression of human mtus1, a candidate 8p22 tumor suppressor gene encoding a family of angiotensin ii at2 receptor-interacting proteins, atip. Gene 2006, 380, 127–136. [Google Scholar] [CrossRef]
- Nouet, S.; Amzallag, N.; Li, J.M.; Louis, S.; Seitz, I.; Cui, T.X.; Alleaume, A.M.; Di Benedetto, M.; Boden, C.; Masson, M.; et al. Trans-inactivation of receptor tyrosine kinases by novel angiotensin ii at2 receptor-interacting protein, atip. J. Biol. Chem. 2004, 279, 28989–28997. [Google Scholar] [CrossRef]
- Wruck, C.J.; Funke-Kaiser, H.; Pufe, T.; Kusserow, H.; Menk, M.; Schefe, J.H.; Kruse, M.L.; Stoll, M.; Unger, T. Regulation of transport of the angiotensin at2 receptor by a novel membrane-associated golgi protein. Arterioscler. Thromb. Vasc. Biol. 2005, 25, 57–64. [Google Scholar] [CrossRef]
- Reinemund, J.; Seidel, K.; Steckelings, U.M.; Zaade, D.; Klare, S.; Rompe, F.; Katerbaum, M.; Schacherl, J.; Li, Y.; Menk, M.; et al. Poly(adp-ribose) polymerase-1 (parp-1) transcriptionally regulates angiotensin at2 receptor (at2r) and at2r binding protein (atbp) genes. Biochem. Pharmacol. 2009, 77, 1795–1805. [Google Scholar] [CrossRef] [PubMed]
- Pillai, J.B.; Gupta, M.; Rajamohan, S.B.; Lang, R.; Raman, J.; Gupta, M.P. Poly(adp-ribose) polymerase-1-deficient mice are protected from angiotensin ii-induced cardiac hypertrophy. Am. J. Physiol. Heart Circ. Physiol. 2006, 291, H1545–H1553. [Google Scholar] [CrossRef]
- Fujita, T.; Mogi, M.; Min, L.J.; Iwanami, J.; Tsukuda, K.; Sakata, A.; Okayama, H.; Iwai, M.; Nahmias, C.; Higaki, J.; et al. Attenuation of cuff-induced neointimal formation by overexpression of angiotensin ii type 2 receptor-interacting protein 1. Hypertension 2009, 53, 688–693. [Google Scholar] [CrossRef]
- Zuern, C.; Krenacs, L.; Starke, S.; Heimrich, J.; Palmetshofer, A.; Holtmann, B.; Sendtner, M.; Fischer, T.; Galle, J.; Wanner, C.; et al. Microtubule associated tumor suppressor 1 deficient mice develop spontaneous heart hypertrophy and SLE-like lymphoproliferative disease. Int. J. Oncol. 2012, 40, 1079–1088. [Google Scholar] [CrossRef] [PubMed]
- Ito, S.; Asakura, M.; Liao, Y.; Min, K.; Takahashi, A.; Shindo, K.; Yamazaki, S.; Tsukamoto, O.; Asanuma, H.; Mogi, M.; et al. Identification of the Mtus1 Splice Variant as a Novel Inhibitory Factor Against Cardiac Hypertrophy. J. Am. Heart Assoc. 2016, 5, e003521. [Google Scholar] [CrossRef] [PubMed]
- Bai, X.; Zhou, Y.; Ouyang, N.; Liu, L.; Huang, X.; Tian, J.; Lv, T. A de Novo Mutation in the MTUS1 Gene Decreases the Risk of Non-Compaction of Ventricular Myocardium via the Rac1/Cdc42 Pathway. Front. Pediatr. 2019, 7, 247. [Google Scholar] [CrossRef]
- Stryke, D.; Kawamoto, M.; Huang, C.C.; Johns, S.J.; King, L.A.; Harper, C.A.; Meng, E.C.; Lee, R.E.; Yee, A.; L’Italien, L.; et al. Baygenomics: A resource of insertional mutations in mouse embryonic stem cells. Nucleic Acids Res. 2003, 31, 278–281. [Google Scholar] [CrossRef]
- Ullrich, M.; Schuh, K. Gene trap: Knockout on the fast lane. Methods Mol. Biol. 2009, 561, 145–159. [Google Scholar]
- Ullrich, M.; Bundschu, K.; Benz, P.M.; Abesser, M.; Freudinger, R.; Fischer, T.; Ullrich, J.; Renne, T.; Walter, U.; Schuh, K. Identification of spred2 (sprouty-related protein with evh1 domain 2) as a negative regulator of the hypothalamic-pituitary-adrenal axis. J. Biol. Chem. 2011, 286, 9477–9488. [Google Scholar] [CrossRef]
- Bundschu, K.; Gattenlohner, S.; Knobeloch, K.P.; Walter, U.; Schuh, K. Tissue-specific spred-2 promoter activity characterized by a gene trap approach. Gene Expr. Patterns 2006, 6, 247–255. [Google Scholar] [CrossRef] [PubMed]
- Arias-Loza, P.A.; Hu, K.; Schafer, A.; Bauersachs, J.; Quaschning, T.; Galle, J.; Jazbutyte, V.; Neyses, L.; Ertl, G.; Fritzemeier, K.H.; et al. Medroxyprogesterone acetate but not drospirenone ablates the protective function of 17 beta-estradiol in aldosterone salt-treated rats. Hypertension 2006, 48, 994–1001. [Google Scholar] [CrossRef] [PubMed]
- Tchoukalova, Y.D.; Harteneck, D.A.; Karwoski, R.A.; Tarara, J.; Jensen, M.D. A quick, reliable, and automated method for fat cell sizing. J. Lipid Res. 2003, 44, 1795–1801. [Google Scholar] [CrossRef]
- Burkard, N.; Rokita, A.G.; Kaufmann, S.G.; Hallhuber, M.; Wu, R.; Hu, K.; Hofmann, U.; Bonz, A.; Frantz, S.; Cartwright, E.J.; et al. Conditional neuronal nitric oxide synthase overexpression impairs myocardial contractility. Circ. Res. 2007, 16, e32–e44. [Google Scholar] [CrossRef]
- Sag, C.M.; Dybkova, N.; Neef, S.; Maier, L.S. Effects on recovery during acidosis in cardiac myocytes overexpressing camkii. J. Mol. Cell Cardiol. 2007, 43, 696–709. [Google Scholar] [CrossRef]
- Wagner, S.; Dybkova, N.; Rasenack, E.C.; Jacobshagen, C.; Fabritz, L.; Kirchhof, P.; Maier, S.K.; Zhang, T.; Hasenfuss, G.; Brown, J.H.; et al. Ca2+/calmodulin-dependent protein kinase ii regulates cardiac Na+ channels. J. Clin. Investig. 2006, 116, 3127–3138. [Google Scholar] [CrossRef] [PubMed]
- Maier, L.S.; Zhang, T.; Chen, L.; DeSantiago, J.; Brown, J.H.; Bers, D.M. Transgenic camkiideltac overexpression uniquely alters cardiac myocyte Ca2+ handling: Reduced sr Ca2+ load and activated sr Ca2+ release. Circ. Res. 2003, 92, 904–911. [Google Scholar] [CrossRef]
- Toischer, K.; Rokita, A.G.; Unsold, B.; Zhu, W.; Kararigas, G.; Sossalla, S.; Reuter, S.P.; Becker, A.; Teucher, N.; Seidler, T.; et al. Differential cardiac remodeling in preload versus afterload. Circulation 2010, 122, 993–1003. [Google Scholar] [CrossRef]
- Pacher, P.; Nagayama, T.; Mukhopadhyay, P.; Batkai, S.; Kass, D.A. Measurement of cardiac function using pressure-volume conductance catheter technique in mice and rats. Nat. Protoc. 2008, 3, 1422–1434. [Google Scholar] [CrossRef]
- Rodrigues-Ferreira, S.; Nahmias, C. An atipical family of angiotensin ii at2 receptor-interacting proteins. Trends Endocrinol. Metab. 2010, 21, 684–690. [Google Scholar] [CrossRef]
- Ishihata, A.; Endoh, M. Pharmacological characteristics of the positive inotropic effect of angiotensin ii in the rabbit ventricular myocardium. Br. J. Pharmacol. 1993, 108, 999–1005. [Google Scholar] [CrossRef] [PubMed]
- Mattiazzi, A. Positive inotropic effect of angiotensin ii. Increases in intracellular Ca2+ or changes in myofilament Ca2+ responsiveness? J. Pharmacol. Toxicol. Methods 1997, 37, 205–214. [Google Scholar] [CrossRef] [PubMed]
- Porrello, E.R.; Delbridge, L.M.; Thomas, W.G. The angiotensin ii type 2 (at2) receptor: An enigmatic seven transmembrane receptor. Front. Biosci. 2009, 14, 958–972. [Google Scholar] [CrossRef] [PubMed]
- De Mello, W.C.; Monterrubio, J. Intracellular and extracellular angiotensin ii enhance the l-type calcium current in the failing heart. Hypertension 2004, 44, 360–364. [Google Scholar] [CrossRef]
- Watanabe, A.; Endoh, M. Relationship between the increase in Ca2+ transient and contractile force induced by angiotensin ii in aequorin-loaded rabbit ventricular myocardium. Cardiovasc. Res. 1998, 37, 524–531. [Google Scholar] [CrossRef]
Hemodynamics/NIBP | Untreated | After Ang II | TAC | |||
WT | KO | WT | KO | |||
NIBP | ||||||
SBP (mmHg) | 112 | 106 | 129 B | 130 C | ||
DBP (mmHg) | 75 | 71 | 90 | 86 | ||
MBP (mmHg) | 87 | 84 | 102 | 102 | ||
HR (min−1) | 678 | 620 | 617 | 592 | ||
Hemodynamic parameter (isoflurane) | WT | KO | ||||
HW/BW (mg/g) | 4.7 | 6.4 A | 5.0 | 6.6 D | 6.9 | 7.6 E |
HR (min−1) | 478.00 | 508.36 | 489.56 | 446.89 C | 505.1 | 493.90 |
Maximum Volume (µL) | 23.08 | 17.32 A | 14.49 B | 11.63 C,D | 21.2 | 20.6 |
Minimum Volume (µL) | 15.06 | 9.65 A | 5.33 B | 3.67 C,D | 10.5 | 9.5 |
Maximum Pressure (mmHg) | 100.36 | 96.92 | 105.51 | 108.15 C | 178.9 | 165.1 |
SV (µL) | 8.02 | 7.68 | 5.32 | 7.45 | 10.6 | 8.2 E |
ESP (mmHg) | 99.03 | 93.27 | 100.49 | 103.01 C | 162.0 | 155.4 |
ESV (µL) | 13.58 | 10.44 A | 5.55 B | 4.23 C | 12.2 | 14.0 |
EDV (µL) | 22.34 | 16.45 A | 13.72 B | 10.42 C,D | 20.8 | 20.0 |
CO (µL min−1) | 3844.92 | 3941.22 | 4445.77 | 3519.55 D | 5345.4 | 3829.0 E |
V@dP/dt max (µL) | 22.60 | 16.88 A | 13.65 B | 11.12 C,D | 20.6 | 20.1 |
V@dP/dt min (µL) | 15.35 | 10.25 A | 5.61 B | 4.20 C | 11.1 | 12.9 |
P@dP/dt max (mmHg) | 53.48 | 53.87 | 61.09 | 64.85 C,D | 63.9 | 57.9 |
Ea (mmHg µL−1) | 13.32 | 12.72 | 11.54 | 13.65 C,D | 15.6 | 20.4 E |
Systolic indices | ||||||
EF (%) | 36.48 | 45.85 A | 63.37 B | 69.81 C | 53.8 | 47.0 |
dP/dtmax (mmHg s−1) | 6966.56 | 8217.14 A | 8823.00 | 9448.33 C | 10,466.2 | 8464.4 E |
dV/dt max (µL s−1) | 37,256 | 32,986 | 36,525 | 28,625 D | 725.2 | 627.1 |
Diastolic indices | ||||||
−dP/dtmin (mmHg s−1) | 6806.33 | 8364.59 A | 9060.78 B | 8855.67 | 10,624.1 | 8383.6 E |
Tau (W) (ms) | 7.66 | 5.92 A | 6.48 | 6.55 | 6.6 | 8.3 E |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fischer, T.; Gredy, S.; Scheel, N.; Benz, P.M.; Fissler, B.; Ullrich, M.; Abeßer, M.; Rokita, A.G.; Reichle, J.; Maier, L.S.; et al. ATIP1 Is a Suppressor of Cardiac Hypertrophy and Modulates AT2-Dependent Signaling in Cardiac Myocytes. Cells 2025, 14, 645. https://doi.org/10.3390/cells14090645
Fischer T, Gredy S, Scheel N, Benz PM, Fissler B, Ullrich M, Abeßer M, Rokita AG, Reichle J, Maier LS, et al. ATIP1 Is a Suppressor of Cardiac Hypertrophy and Modulates AT2-Dependent Signaling in Cardiac Myocytes. Cells. 2025; 14(9):645. https://doi.org/10.3390/cells14090645
Chicago/Turabian StyleFischer, Tobias, Sina Gredy, Nadine Scheel, Peter M. Benz, Benjamin Fissler, Melanie Ullrich, Marco Abeßer, Adam G. Rokita, Jochen Reichle, Lars S. Maier, and et al. 2025. "ATIP1 Is a Suppressor of Cardiac Hypertrophy and Modulates AT2-Dependent Signaling in Cardiac Myocytes" Cells 14, no. 9: 645. https://doi.org/10.3390/cells14090645
APA StyleFischer, T., Gredy, S., Scheel, N., Benz, P. M., Fissler, B., Ullrich, M., Abeßer, M., Rokita, A. G., Reichle, J., Maier, L. S., Ritter, O., Baba, H. A., & Schuh, K. (2025). ATIP1 Is a Suppressor of Cardiac Hypertrophy and Modulates AT2-Dependent Signaling in Cardiac Myocytes. Cells, 14(9), 645. https://doi.org/10.3390/cells14090645