Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,671)

Search Parameters:
Keywords = CRISPR/Cas9 editing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 1991 KB  
Review
Epigenetic Regulation of Glucosinolate Biosynthesis: Mechanistic Insights and Breeding Prospects in Brassicaceae
by Hajer Ben Ammar
DNA 2025, 5(4), 51; https://doi.org/10.3390/dna5040051 - 23 Oct 2025
Abstract
Glucosinolates (GSLs) are nitrogen- and sulfur-containing secondary metabolites central to the defense, development, and environmental responsiveness of Brassicaceae species. While the enzymatic steps and transcriptional networks underlying GSL biosynthesis have been extensively characterized, mounting evidence reveals that chromatin-based processes add a critical, yet [...] Read more.
Glucosinolates (GSLs) are nitrogen- and sulfur-containing secondary metabolites central to the defense, development, and environmental responsiveness of Brassicaceae species. While the enzymatic steps and transcriptional networks underlying GSL biosynthesis have been extensively characterized, mounting evidence reveals that chromatin-based processes add a critical, yet underexplored, layer of regulatory complexity. Recent studies highlight the roles of DNA methylation, histone modifications, and non-coding RNAs in modulating the spatial and temporal expression of GSL biosynthetic genes and their transcriptional regulators in response to developmental cues and environmental signals. This review provides a comprehensive overview of GSL classification, biosynthetic pathway architecture, transcriptional regulation, and metabolite transport, with a focus on emerging epigenetic mechanisms that shape pathway plasticity. We also discuss how these insights may be leveraged in precision breeding and epigenome engineering, including the use of CRISPR/dCas9-based chromatin editing and epigenomic selection, to optimize GSL content, composition, and stress resilience in cruciferous crops. Integrating transcriptional and epigenetic regulation thus offers a novel framework for the dynamic control of specialized metabolism in plants. Full article
Show Figures

Graphical abstract

15 pages, 8378 KB  
Article
Construction of a Zebrafish Model of Cardiac Hypertrophy Caused by ATIC Gene Deletion and Preliminary Exploration of Aerobic Exercise Improvement
by Tianle Yang, Zhilong Zhang, Shuaiwang Huang, Mengchao Cui, Siyuan Liu, Meng Ding, Wenzhi Gu, Boyu Yang and Lan Zheng
Int. J. Mol. Sci. 2025, 26(21), 10249; https://doi.org/10.3390/ijms262110249 - 22 Oct 2025
Abstract
Hypertrophic cardiomyopathy (HCM) is a relatively common global cardiac disease, usually inherited, with complex phenotypes, genetic features, and a natural history. In this study, we constructed atic−/− zebrafish using the CRISPR/Cas9 gene-editing system and found that atic−/− zebrafish hearts exhibited HCM [...] Read more.
Hypertrophic cardiomyopathy (HCM) is a relatively common global cardiac disease, usually inherited, with complex phenotypes, genetic features, and a natural history. In this study, we constructed atic−/− zebrafish using the CRISPR/Cas9 gene-editing system and found that atic−/− zebrafish hearts exhibited HCM symptoms, and atic−/− zebrafish hearts showed progressive enlargement, eccentric hypertrophy, cardiomyocyte enlargement, and collagen fiber deposition. Echocardiography results also showed that compared with atic−/− zebrafish hearts, in wild-type zebrafish hearts, the ejection fraction was significantly reduced, shortening fraction was reduced, and ventricular wall thickness was significantly increased. Meanwhile, aerobic exercise intervention in atic−/− zebrafish showed that aerobic exercise effectively improved the symptoms of HCM and improved cardiac function in atic−/− zebrafish hearts. Transcriptome sequencing results showed that aerobic exercise improved the symptoms of HCM in atic−/− zebrafish hearts involving the calcium signaling pathway, Apelin signaling pathway and ECM–receptor interaction. The q-PCR results of key differential genes involved in these pathways further confirmed that aerobic exercise could bring beneficial effects to atic−/− zebrafish. In conclusion, this study found that the loss of ATIC can lead to hypertrophic cardiomyopathy in zebrafish, and aerobic exercise intervention can effectively improve the hypertrophic pathological characteristics of atic−/− zebrafish hearts, providing new intervention targets and effective lifestyle interventions for HCM. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

15 pages, 495 KB  
Review
Insect Odorant-Binding Proteins (OBPs) and Chemosensory Proteins (CSPs): Mechanisms and Research Perspectives in Mediating Insecticide Resistance
by Qian Wang, Xuping Shentu, Xiaoping Yu and Yipeng Liu
Biology 2025, 14(10), 1452; https://doi.org/10.3390/biology14101452 - 20 Oct 2025
Viewed by 205
Abstract
Insecticide resistance has become a critical issue threatening global agricultural production and food security. Previous studies have primarily focused on resistance mechanisms such as target-site mutations, enhanced metabolic detoxification, and reduced cuticular penetration. However, growing evidence in recent years indicates that odorant-binding proteins [...] Read more.
Insecticide resistance has become a critical issue threatening global agricultural production and food security. Previous studies have primarily focused on resistance mechanisms such as target-site mutations, enhanced metabolic detoxification, and reduced cuticular penetration. However, growing evidence in recent years indicates that odorant-binding proteins (OBPs) and chemosensory proteins (CSPs)—beyond their roles in chemoreception—also play key roles in the development of insecticide resistance. Research has revealed that these proteins significantly modulate insect susceptibility to insecticides through various mechanisms, including direct binding to insecticides, regulation of detoxification metabolic pathways, and influence on behavioral adaptations in pests. This review also systematically summarizes modern research strategies employed to investigate OBPs/CSPs functions, including high-throughput omics technologies, RNA interference, CRISPR-Cas9 gene editing, and molecular docking, while discussing the potential of targeting these proteins for developing novel insecticides and resistance management strategies. Although significant progress has been made in laboratory studies, the practical application of OBPs/CSPs-mediated resistance mechanisms still faces multiple challenges. Future research should prioritize multi-gene targeting strategies, cross-species functional validation, and field trial implementation to facilitate the development of green and precise pest control approaches based on OBPs and CSPs, thereby offering new pathways for sustainable agriculture. Full article
Show Figures

Figure 1

36 pages, 3191 KB  
Review
The Interplay Between lncRNAs–microRNAs Network Dysregulation and Cellular Hallmarks of Thyroid Cancer
by Maryam Hejazi, Ramin Heshmat, Gita Shafiee, Bagher Larijani, Amir Ali Mokhtarzadeh, Vida Ebrahimi and Seyed Mohammad Tavangar
Cancers 2025, 17(20), 3373; https://doi.org/10.3390/cancers17203373 - 18 Oct 2025
Viewed by 175
Abstract
Background/Objectives: Thyroid cancer (TC) is the most common type of endocrine neoplasm and is increasing in incidence, particularly papillary thyroid carcinoma (PTC). Early-stage disease has a favorable prognosis; however, advanced forms, such as anaplastic thyroid carcinoma, complicate treatment. Long non-coding RNAs (lncRNAs), [...] Read more.
Background/Objectives: Thyroid cancer (TC) is the most common type of endocrine neoplasm and is increasing in incidence, particularly papillary thyroid carcinoma (PTC). Early-stage disease has a favorable prognosis; however, advanced forms, such as anaplastic thyroid carcinoma, complicate treatment. Long non-coding RNAs (lncRNAs), longer than 200 nucleotides and non-coding, together with microRNAs, have emerged as major regulators of TC pathogenesis. This review summarizes data on how dysregulated lncRNAs influence the hallmarks of cancer in thyroid malignancies. Methods: We reviewed the literature on the role of lncRNAs and microRNAs in TC, focusing on their functions as competing endogenous RNAs (ceRNAs), regulators of PI3K/AKT and Wnt/β-catenin pathways, and controllers of epigenetic alterations. Results: Dysregulated lncRNAs contribute to hallmarks including sustained growth, evading suppressors, resisting death, replicative immortality, angiogenesis, invasion, metabolic reprogramming, immune evasion, genomic instability, and tumor-promoting inflammation. ceRNA mechanisms amplify immune evasion by regulating checkpoint proteins and cytokines, altering immune cell activity. Altered lncRNA profiles correlate with aggressiveness, metastasis, and prognosis. Notable lncRNAs, such as H19, MALAT1, and DOCK9-AS2, dysregulate oncogenic pathways and represent potential biomarkers. Conclusions: Advances in therapeutics suggest inhibiting oncogenic lncRNAs or restoring tumor-suppressive lncRNAs via RNA interference, antisense oligonucleotides, or CRISPR/Cas9 editing. New technologies, including single-cell RNA sequencing and spatial transcriptomics, will improve understanding of heterogeneous lncRNA–microRNA networks in TC and support precision medicine. LncRNAs signify both molecular drivers and clinical targets for thyroid cancer. Full article
(This article belongs to the Special Issue MicroRNA and Cancer Immunology)
Show Figures

Graphical abstract

27 pages, 1490 KB  
Review
Application of Gene Editing Technology in Livestock: Progress, Challenges, and Future Perspectives
by Jing Wang, Lei Zhang, Chuanying Pan, Xianyong Lan, Baosong Xing and Mingxun Li
Agriculture 2025, 15(20), 2155; https://doi.org/10.3390/agriculture15202155 - 17 Oct 2025
Viewed by 491
Abstract
Gene editing technologies, particularly CRISPR/Cas9, have revolutionized livestock genetics. They enable precise, efficient, and inheritable genome modifications. This review summarizes recent advances in the application of gene editing in livestock. We focus on six key areas: enhancement of disease resistance, improvement of growth [...] Read more.
Gene editing technologies, particularly CRISPR/Cas9, have revolutionized livestock genetics. They enable precise, efficient, and inheritable genome modifications. This review summarizes recent advances in the application of gene editing in livestock. We focus on six key areas: enhancement of disease resistance, improvement of growth performance and meat production traits, modification of milk composition, regulation of reproductive traits, adaptation to environmental stress, and promotion of animal welfare. For example, they have played an important role in improving mastitis resistance in cows, enhancing meat production performance in pigs, increasing milk yield in goats, and producing polled cows. Despite rapid progress, practical implementation in animal breeding still faces challenges. These include off-target effects, low embryo editing efficiency, delivery limitations, and ethical as well as regulatory constraints. Future directions emphasize the development of advanced editing tools, multiplex trait integration, and harmonized public policy. With continued innovation and responsible oversight, gene editing holds great promise for sustainable animal agriculture and global food security. Full article
(This article belongs to the Section Farm Animal Production)
Show Figures

Figure 1

14 pages, 6736 KB  
Article
Creation of TGMS Lines of Waxy Rice with Elite Physicochemical Properties of Starch via Waxy Gene Editing
by Jun Zhu, Zhenchao Wang, Ruipeng Zhao, Weiyi Li, Tanghuang Gan, Jiaxin Wan, Haoliang Sun, Ying Liu, Min Wei, Hongyan Xu, Tingting Luo, Yonghuan Hua, Shuangcheng Li, Yuhao Fu and Ping Li
Foods 2025, 14(20), 3530; https://doi.org/10.3390/foods14203530 - 16 Oct 2025
Viewed by 236
Abstract
Waxy rice starch (WRS), characterized by low amylose content, high viscosity, and strong gel-forming ability, is highly valued in food and industrial applications. Temperature-sensitive genic male-sterile (TGMS) lines exhibit complete male sterility under low-temperature conditions, a trait widely exploited in hybrid rice breeding. [...] Read more.
Waxy rice starch (WRS), characterized by low amylose content, high viscosity, and strong gel-forming ability, is highly valued in food and industrial applications. Temperature-sensitive genic male-sterile (TGMS) lines exhibit complete male sterility under low-temperature conditions, a trait widely exploited in hybrid rice breeding. Here, we generated an elite waxy TGMS line, 520S, via CRISPR/Cas9-mediated editing of the Waxy (Wx) gene. The wx mutants displayed robust male sterility, desirable glutinous traits, and favorable physicochemical properties, including gelatinization temperature, gel consistency, paste viscosity, and amylopectin fine structure. Fertility assays confirmed temperature-sensitive pollen sterility consistent with wild-type responses, and T2 generation mutants were transgene-free with stable inheritance of the waxy phenotype. Notably, wx starch maintained gel stability over 48 h, demonstrating superior hydrocolloidal properties and translucency compared with wild-type and commercial WRS. 520Swx1 retained gelatinization temperature and amylopectin structure comparable to wild type, highlighting the potential of CRISPR/Cas9-mediated mutagenesis to enhance waxy rice yield while preserving starch quality. These findings establish an efficient strategy to improve both production and functional performance of WRS for industrial and food applications. Full article
Show Figures

Graphical abstract

36 pages, 3640 KB  
Article
Bioinformatic Identification of CRISPR–Cas Systems in Leptospira Genus: An Update on Their Distribution Across 77 Species
by Ronald Guillermo Peláez Sánchez, Juanita González Restrepo, Santiago Pineda, Alexandra Milena Cuartas-López, Juliana María Martínez Garro, Marco Torres-Castro, Rodrigo Urrego, Luis Ernesto López-Rojas, Jorge Emilio Salazar Florez and Fernando P. Monroy
Pathogens 2025, 14(10), 1044; https://doi.org/10.3390/pathogens14101044 - 16 Oct 2025
Viewed by 341
Abstract
Leptospirosis is a globally distributed zoonotic disease caused by pathogenic bacteria of the Leptospira genus. Genome editing in Leptospira has been difficult to perform. Currently, the functionality of the CRISPR-Cas system has been demonstrated in species such as Leptospira interrogans. However, the [...] Read more.
Leptospirosis is a globally distributed zoonotic disease caused by pathogenic bacteria of the Leptospira genus. Genome editing in Leptospira has been difficult to perform. Currently, the functionality of the CRISPR-Cas system has been demonstrated in species such as Leptospira interrogans. However, the different CRISPR-Cas systems present in most of the 77 species are unknown. Therefore, the objective of this study was to identify these arrays across the genomes of all described Leptospira species using bioinformatics tools. Methods: a bioinformatics workflow was followed: genomes were downloaded from the NCBI database; Cas protein detection was carried out using the CRISPR-CasFinder and RAST web servers; functional analyses of Cas proteins were performed with InterProScan, ProtParam, Swiss Model, Alphafold3, Swiss PDB Viewer, and Pymol; conservation pattern detection was conducted using MEGA12, and Seqlogos; spacer identification was carried out with the Actinobacteriophages database and BLAST version 1.4.0; and bacteriophage detection was performed using PHASTER, and PHASTEST. Results: Cas proteins were detected in 36 out of the 77 species of the Leptospira species, including Cas1 to Cas9 and Cas12. These proteins were classified into Class 1 and Class 2 systems, corresponding to types I, II, and V. Direct repeats and spacers were detected in 19 species, with the direct repeats exhibiting two conserved nucleotide motifs. Analysis of spacer sequences revealed 323 distinct bacteriophages. Additionally, three intact bacteriophages were detected in the genomes of four Leptospira species. Notably, two saprophytic species have complete CRISPR-Cas systems. Conclusions: The presence of Cas proteins, direct repeats, and spacer sequences with homology to bacteriophage genomes provides evidence for a functional CRISPR-Cas system in at least 19 species. Full article
Show Figures

Figure 1

41 pages, 4704 KB  
Review
Integrative Genomics and Precision Breeding for Stress-Resilient Cotton: Recent Advances and Prospects
by Zahra Ghorbanzadeh, Bahman Panahi, Leila Purhang, Zhila Hossein Panahi, Mehrshad Zeinalabedini, Mohsen Mardi, Rasmieh Hamid and Mohammad Reza Ghaffari
Agronomy 2025, 15(10), 2393; https://doi.org/10.3390/agronomy15102393 - 15 Oct 2025
Viewed by 489
Abstract
Developing climate-resilient and high-quality cotton cultivars remains an urgent challenge, as the key target traits yield, fibre properties, and stress tolerance are highly polygenic and strongly influenced by genotype–environment interactions. Recent advances in chromosome-scale genome assemblies, pan-genomics, and haplotype-resolved resequencing have greatly enhanced [...] Read more.
Developing climate-resilient and high-quality cotton cultivars remains an urgent challenge, as the key target traits yield, fibre properties, and stress tolerance are highly polygenic and strongly influenced by genotype–environment interactions. Recent advances in chromosome-scale genome assemblies, pan-genomics, and haplotype-resolved resequencing have greatly enhanced the capacity to identify causal variants and recover non-reference alleles linked to fibre development and environmental adaptation. Parallel progress in functional genomics and precision genome editing, particularly CRISPR/Cas, base editing, and prime editing, now enables rapid, heritable modification of candidate loci across the complex tetraploid cotton genome. When integrated with high-throughput phenotyping, genomic selection, and machine learning, these approaches support predictive ideotype design rather than empirical, trial-and-error breeding. Emerging digital agriculture tools, such as digital twins that combine genomic, phenomic, and environmental data layers, allow simulation of ideotype performance and optimisation of trait combinations in silico before field validation. Speed breeding and phenomic selection further shorten generation time and increase selection intensity, bridging the gap between laboratory discovery and field deployment. However, the large-scale implementation of these technologies faces several practical constraints, including high infrastructural costs, limited accessibility for resource-constrained breeding programmes in developing regions, and uneven regulatory acceptance of genome-edited crops. However, reliance on highly targeted genome editing may inadvertently narrow allelic diversity, underscoring the need to integrate these tools with broad germplasm resources and pangenomic insights to sustain long-term adaptability. To realise these opportunities at scale, standardised data frameworks, interoperable phenotyping systems, robust multi-omic integration, and globally harmonised, science-based regulatory pathways are essential. This review synthesises recent progress, highlights case studies in fibre, oil, and stress-resilience engineering, and outlines a roadmap for translating integrative genomics into climate-smart, high-yield cotton breeding programmes. Full article
(This article belongs to the Special Issue Crop Genomics and Omics for Future Food Security)
Show Figures

Figure 1

23 pages, 1986 KB  
Review
m6A RNA Modification: Technologies Behind Future Anti-Cancer Therapy
by Kristina Shpiliukova, Artyom Kachanov, Sergey Brezgin, Vladimir Chulanov, Alexander Ivanov, Dmitry Kostyushev and Anastasiya Kostyusheva
Molecules 2025, 30(20), 4091; https://doi.org/10.3390/molecules30204091 - 15 Oct 2025
Viewed by 406
Abstract
N6-methyladenosine (m6A) modifications are among the most prevalent epigenetic marks in eukaryotic RNAs, regulating both coding and non-coding RNAs and playing a pivotal role in RNA metabolism. Given their widespread influence, m6A modifications are deeply implicated in the pathogenesis [...] Read more.
N6-methyladenosine (m6A) modifications are among the most prevalent epigenetic marks in eukaryotic RNAs, regulating both coding and non-coding RNAs and playing a pivotal role in RNA metabolism. Given their widespread influence, m6A modifications are deeply implicated in the pathogenesis of various cancers, including highly aggressive malignancies such as lung cancer, melanoma, and liver cancer. Dysregulation of m6A dynamics—marked by an imbalance in methylation and demethylation—can drive tumor progression, enhance metastatic potential, increase aggressiveness, and promote drug resistance, while also exerting context-dependent tumor-suppressive effects. Given this dual role, precise modulation of m6A levels and the activity of its regulatory enzymes (writers, erasers, and readers) represent a promising therapeutic avenue. In this review, we highlight recent advances in targeting m6A machinery, including small-molecule inhibitors, antisense oligonucleotides, and CRISPR/Cas-based editing tools, capable of both writing and erasing m6A marks and altering m6A methylation sites per se. By evaluating these strategies, we aim to identify the most effective approaches for restoring physiological m6A homeostasis or for strategically manipulating the m6A machinery for therapeutic benefit. Full article
Show Figures

Graphical abstract

19 pages, 1017 KB  
Review
Advancements in Hematopoietic Stem Cell Therapy: From Biological Pathways to Emerging Therapeutic Strategies
by Viviana Cortiana, Harshal Chorya, Rabab Hunaid Abbas, Jade Gambill, Adhith Theyver, Chandler H. Park and Yan Leyfman
Therapeutics 2025, 2(4), 18; https://doi.org/10.3390/therapeutics2040018 - 15 Oct 2025
Viewed by 308
Abstract
Hematopoietic stem cell (HSC) therapy remains essential in treating blood disorders, autoimmune diseases, neurodegenerative conditions, and cancers. Despite its potential, challenges arise from the inherent heterogeneity of HSCs and the complexity of their regulatory niche. Recent advancements in single-cell RNA sequencing and chromatin [...] Read more.
Hematopoietic stem cell (HSC) therapy remains essential in treating blood disorders, autoimmune diseases, neurodegenerative conditions, and cancers. Despite its potential, challenges arise from the inherent heterogeneity of HSCs and the complexity of their regulatory niche. Recent advancements in single-cell RNA sequencing and chromatin accessibility sequencing have provided deeper insights into HSC markers and chromatin dynamics, highlighting the intricate balance between intrinsic and extrinsic regulatory mechanisms. Zebrafish models have emerged as valuable tools in HSC research, particularly through live imaging and cellular barcoding techniques. These models have allowed us to describe critical interactions between HSCs and embryonic macrophages, involving reactive oxygen species and calreticulin signaling. These are essential for ensuring HSC quality and proper differentiation, with implications for improving HSC transplant outcomes. Furthermore, the review examines clonal hematopoiesis, with a focus on mutations in epigenetic regulators such as DNMT3A, TET2, and ASXL1, which elevate the risk of myelodysplastic syndromes and acute myeloid leukemia. Emerging technologies, including in vivo cellular barcoding and CRISPR-Cas9 gene editing, are being investigated to enhance clonal diversity and target specific mutations, offering potential strategies to mitigate these risks. Additionally, macrophages play a pivotal role in maintaining HSC clonality and ensuring niche localization. Interactions mediated by factors such as VCAM-1 and CXCL12/CXCR4 signaling are crucial for HSC homing and the stress response, opening new therapeutic avenues for enhancing HSC transplantation success and addressing clonal hematopoiesis. This review synthesizes findings from zebrafish models, cutting-edge sequencing technologies, and novel therapeutic strategies, offering a comprehensive framework for advancing HSC biology and improving clinical outcomes in stem cell therapy and the treatment of hematologic diseases. Full article
Show Figures

Figure 1

15 pages, 262 KB  
Review
How Close Are We to Achieving Durable and Efficacious Gene Therapy for Hemophilia A and B?
by Patrycja Sosnowska-Sienkiewicz and Danuta Januszkiewicz-Lewandowska
Genes 2025, 16(10), 1200; https://doi.org/10.3390/genes16101200 - 14 Oct 2025
Viewed by 477
Abstract
Hemophilia, an X-linked recessive bleeding disorder, results from mutations in the F8 or F9 genes, leading to factor VIII (hemophilia A) or factor IX (hemophilia B) deficiency. While conventional treatment relies on regular factor replacement therapy, gene therapy has emerged as a promising [...] Read more.
Hemophilia, an X-linked recessive bleeding disorder, results from mutations in the F8 or F9 genes, leading to factor VIII (hemophilia A) or factor IX (hemophilia B) deficiency. While conventional treatment relies on regular factor replacement therapy, gene therapy has emerged as a promising alternative, offering the potential for sustained endogenous factor production after a single administration. This review provides an in-depth analysis of recent advances in gene therapy for both hemophilia A and B, with a focus on AAV-mediated liver-directed approaches and other approved modalities. Key limitations—such as vector immunogenicity, hepatic toxicity, waning transgene expression, and limited re-dosing capacity—are discussed. Additional gene delivery platforms, including lentiviral and retroviral vectors, genome editing techniques (e.g., CRISPR/Cas9), and non-viral systems like transposons and lipid nanoparticles, are also examined. Although gene therapy for hemophilia B demonstrates greater clinical durability, hemophilia A presents unique challenges due to factor VIII’s size, poor expression efficiency, and the need for higher vector doses. Future efforts will focus on overcoming immune barriers, improving delivery technologies, and developing approaches suitable for pediatric patients and individuals with pre-existing immunity. This review provides not only a descriptive overview but also a critical comparison of gene therapy approaches for hemophilia A and B. We emphasize that the durability of response is currently superior in hemophilia B, whereas hemophilia A still faces unique barriers, including declining FVIII expression and higher immunogenicity. By analyzing cross-platform challenges (AAV, lentiviral, CRISPR, and emerging LNPs), we highlight the most promising strategies for overcoming these limitations and provide a forward-looking perspective on the future of gene therapy. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
17 pages, 3452 KB  
Article
CAP-LAMP2b–Modified Stem Cells’ Extracellular Vesicles Hybrid with CRISPR-Cas9 Targeting ADAMTS4 to Reverse IL-1β–Induced Aggrecan Loss in Chondrocytes
by Kun-Chi Wu, Yu-Hsun Chang, Raymond Yuh-Shyan Chiang and Dah-Ching Ding
Int. J. Mol. Sci. 2025, 26(19), 9812; https://doi.org/10.3390/ijms26199812 - 9 Oct 2025
Viewed by 502
Abstract
Extracellular vesicles (EVs) from mesenchymal stem cells hold therapeutic promise for inflammatory and degenerative diseases; however, limited delivery and targeting capabilities hinder their clinical use. In this study, we sought to enhance the anti-inflammatory and chondroprotective effects of EVs through CAP-LAMP2b (chondrocyte affinity [...] Read more.
Extracellular vesicles (EVs) from mesenchymal stem cells hold therapeutic promise for inflammatory and degenerative diseases; however, limited delivery and targeting capabilities hinder their clinical use. In this study, we sought to enhance the anti-inflammatory and chondroprotective effects of EVs through CAP-LAMP2b (chondrocyte affinity peptide fused to an EV membrane protein) engineering and ADAMTS4 gene editing hybrid vesicle formation. Human umbilical cord MSCs (hUCMSCs) were characterized via morphology, immunophenotyping, and trilineage differentiation. EVs from control and CAP-LAMP2b-transfected hUCMSCs were fused with liposomes carrying CRISPR-Cas9 ADAMTS4 gRNA. DiI-labeled EV uptake was assessed via fluorescence imaging. CAP-LAMP2b was expressed in hUCMSCs and their EVs. EVs exhibited the expected size (~120 nm), morphology, and exosomal markers (CD9, CD63, CD81, HSP70). CAP-modified hybrid EVs significantly enhanced chondrocyte uptake compared to control EVs and liposomes. IL-1β increased ADAMTS4 expression, whereas CAP-LAMP2b-ADAMTS4 EVs, particularly clone SG3, reversed these effects by reducing ADAMTS4 and restoring aggrecan. Western blotting confirmed suppressed ADAMTS4 and elevated aggrecan protein. CAP-LAMP2b-ADAMTS4 EVs, therefore, showed superior uptake and therapeutic efficacy in inflamed chondrocytes, attenuating inflammatory gene expression and preserving matrix integrity. These results support engineered EVs as a promising cell-free approach for cartilage repair and osteoarthritis treatment. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

15 pages, 9626 KB  
Article
Development of Resistance to Damping-Off in Rice, Oryza sativa L., Using CRISPR/Cas9
by Seung-Kyo Jeong, Jae-Ryoung Park, Eun-Gyeong Kim and Kyung-Min Kim
Int. J. Mol. Sci. 2025, 26(19), 9761; https://doi.org/10.3390/ijms26199761 - 7 Oct 2025
Viewed by 474
Abstract
Damping-off disease hinders rice seedling growth and reduces yield. Current control methods, such as seed or soil sterilization, rely on chemicals that cause environmental pollution and promote pathogen resistance. As a sustainable alternative, we targeted the damping-off resistance-related gene OsDGTq1 using CRISPR/Cas9. Field [...] Read more.
Damping-off disease hinders rice seedling growth and reduces yield. Current control methods, such as seed or soil sterilization, rely on chemicals that cause environmental pollution and promote pathogen resistance. As a sustainable alternative, we targeted the damping-off resistance-related gene OsDGTq1 using CRISPR/Cas9. Field experiments first verified OsDGTq1’s significance in resistance. The CRISPR/Cas9 system, delivered via Agrobacterium-mediated transformation, was used to edit OsDGTq1 in rice cultivar Ilmi. Lesions from major damping-off pathogens, Rhizoctonia solani and Pythium graminicola, were observed on G0 plants. All 37 regenerated plants contained T-DNA insertions. Among them, edits generated by sgRNA1-1, sgRNA1-2, and sgRNA1-3 resulted in the insertion of two thymine bases as target mutations. Edited lines were assigned names and evaluated for agronomic traits, seed-setting rates, and pathogen responses. Several lines with edited target genes showed distinct disease responses and altered gene expression compared to Ilmi, likely due to CRISPR/Cas9-induced sequence changes. Further studies in subsequent generations are needed to confirm the stability of these edits and their association with resistance. These results confirm that genome editing of OsDGTq1 alters resistance to damping-off. The approach demonstrates that gene-editing technology can accelerate rice breeding, offering an environmentally friendly strategy to develop resistant varieties. Such varieties can reduce chemical inputs, prevent pollution, and minimize seedling loss, ultimately enhancing food self-sufficiency and stabilizing rice supply. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

31 pages, 2385 KB  
Review
Turning Susceptibility into Strength: A New Era of Durable Resistance in Plants Through Genome Editing
by Shallu Thakur, Simranjot Kaur, Sudeep Adhikari, Prerna Sabharwal, Yuqing Fu and Geoffrey Meru
Plants 2025, 14(19), 3080; https://doi.org/10.3390/plants14193080 - 5 Oct 2025
Viewed by 608
Abstract
In plants, resistance genes (R) are key players in combatting diseases caused by various phytopathogens. Typically, resistance relies on detecting a single pathogen-derived molecular pattern. However, R-gene-mediated resistance is often race specific, follows the gene-for-gene hypothesis, and can be overcome [...] Read more.
In plants, resistance genes (R) are key players in combatting diseases caused by various phytopathogens. Typically, resistance relies on detecting a single pathogen-derived molecular pattern. However, R-gene-mediated resistance is often race specific, follows the gene-for-gene hypothesis, and can be overcome in field conditions as pathogens evolve. On the contrary, altering plant susceptibility genes (S-genes) facilitates compatibility and results in broad and durable resistance. S-genes are negative regulators present in plants and exploited by pathogens to facilitate their growth and cause infection. Several studies across crop species have reported manipulation of S-genes using genome editing to confer broad spectrum resistance. This review focuses on the plant defense mechanism against biotic stress, R-genes vs. S-genes, different types/classes of S-genes, different tools for S-gene discovery, and the use of gene editing technologies to target S-genes in addition to their applications, challenges, and future perspectives. Full article
Show Figures

Figure 1

15 pages, 2416 KB  
Article
Engineering a High-Fidelity MAD7 Variant with Enhanced Specificity for Precision Genome Editing via CcdB-Based Bacterial Screening
by Haonan Zhang, Ying Yang, Tianxiang Yang, Peiyao Cao, Cheng Yu, Liya Liang, Rongming Liu and Zhiying Chen
Biomolecules 2025, 15(10), 1413; https://doi.org/10.3390/biom15101413 - 4 Oct 2025
Viewed by 469
Abstract
CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-associated protein) nucleases enable precise genome editing, but off-target cleavage remains a critical challenge. Here, we report the development of MAD7_HF, a high-fidelity variant of the MAD7 nuclease engineered through a bacterial screening system leveraging the [...] Read more.
CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-associated protein) nucleases enable precise genome editing, but off-target cleavage remains a critical challenge. Here, we report the development of MAD7_HF, a high-fidelity variant of the MAD7 nuclease engineered through a bacterial screening system leveraging the DNA gyrase-targeting toxic gene ccdB. This system couples survival to efficient on-target cleavage and minimal off-target activity, mimicking the transient action required for high-precision editing. Through iterative selection and sequencing validation, we identified MAD7_HF, harboring three substitutions (R187C, S350T, K1019N) that enhanced discrimination between on- and off-target sites. In Escherichia coli assays, MAD7_HF exhibited a >20-fold reduction in off-target cleavage across multiple mismatch contexts while maintaining on-target efficiency comparable to wild-type MAD7. Structural modeling revealed that these mutations stabilize the guide RNA-DNA hybrid at on-target sites and weaken interactions with mismatched sequences. This work establishes a high-throughput bacterial screening strategy that allows the identification of Cas12a variants with improved specificity at a given target site, providing a useful framework for future efforts to develop precision genome-editing tools. Full article
(This article belongs to the Special Issue Advances in Microbial CRISPR Editing)
Show Figures

Figure 1

Back to TopTop