Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (548)

Search Parameters:
Keywords = CB1 and CB2 cannabinoid receptors

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 1550 KiB  
Review
Phytochemical Modulators of Nociception: A Review of Cannabis Terpenes in Chronic Pain Syndromes
by Aniello Alfieri, Sveva Di Franco, Vincenzo Maffei, Pasquale Sansone, Maria Caterina Pace, Maria Beatrice Passavanti and Marco Fiore
Pharmaceuticals 2025, 18(8), 1100; https://doi.org/10.3390/ph18081100 - 24 Jul 2025
Viewed by 557
Abstract
Cannabis sativa L. is a phytochemically rich plant with therapeutic potential across various clinical domains, including pain, inflammation, and neurological disorders. Among its constituents, terpenes are gaining recognition for their capacity to modulate the pathophysiological processes underlying chronic pain syndromes. Traditionally valued for [...] Read more.
Cannabis sativa L. is a phytochemically rich plant with therapeutic potential across various clinical domains, including pain, inflammation, and neurological disorders. Among its constituents, terpenes are gaining recognition for their capacity to modulate the pathophysiological processes underlying chronic pain syndromes. Traditionally valued for their aromatic qualities, terpenes such as myrcene, β-caryophyllene (BCP), limonene, pinene, linalool, and humulene have demonstrated a broad spectrum of biological activities. Beyond their observable analgesic, anti-inflammatory, and anxiolytic outcomes, these compounds exert their actions through distinct molecular mechanisms. These include the activation of cannabinoid receptor type 2 (CB2), the modulation of transient receptor potential (TRP) and adenosine receptors, and the inhibition of pro-inflammatory signalling pathways such as Nuclear Factor kappa-light-chain-enhancer of activated B cells (NF-κB) and Cyclooxygenase-2 (COX-2). This narrative review synthesizes the current preclinical and emerging clinical data on terpene-mediated analgesia, highlighting both monoterpenes and sesquiterpenes, and discusses their potential for synergistic interaction with cannabinoids, the so-called entourage effect. Although preclinical findings are promising, clinical translation is limited by methodological variability, the lack of standardized formulations, and insufficient pharmacokinetic characterization. Further human studies are essential to clarify their therapeutic potential. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

39 pages, 2934 KiB  
Review
Phytocannabinoids as Novel SGLT2 Modulators for Renal Glucose Reabsorption in Type 2 Diabetes Management
by Raymond Rubianto Tjandrawinata, Dante Saksono Harbuwono, Sidartawan Soegondo, Nurpudji Astuti Taslim and Fahrul Nurkolis
Pharmaceuticals 2025, 18(8), 1101; https://doi.org/10.3390/ph18081101 - 24 Jul 2025
Viewed by 403
Abstract
Background: Sodium–glucose cotransporter 2 (SGLT2) inhibitors have transformed type 2 diabetes mellitus (T2DM) management by promoting glucosuria, lowering glycated hemoglobin (HbA1c), blood pressure, and weight; however, their use is limited by genitourinary infections and ketoacidosis. Phytocannabinoids—bioactive compounds from Cannabis sativa—exhibit multi-target [...] Read more.
Background: Sodium–glucose cotransporter 2 (SGLT2) inhibitors have transformed type 2 diabetes mellitus (T2DM) management by promoting glucosuria, lowering glycated hemoglobin (HbA1c), blood pressure, and weight; however, their use is limited by genitourinary infections and ketoacidosis. Phytocannabinoids—bioactive compounds from Cannabis sativa—exhibit multi-target pharmacology, including interactions with cannabinoid receptors, Peroxisome Proliferator-Activated Receptors (PPARs), Transient Receptor Potential (TRP) channels, and potentially SGLT2. Objective: To evaluate the potential of phytocannabinoids as novel modulators of renal glucose reabsorption via SGLT2 and to compare their efficacy, safety, and pharmacological profiles with synthetic SGLT2 inhibitors. Methods: We performed a narrative review encompassing the following: (1) the molecular and physiological roles of SGLT2; (2) chemical classification, natural sources, and pharmacokinetics/pharmacodynamics of major phytocannabinoids (Δ9-Tetrahydrocannabinol or Δ9-THC, Cannabidiol or CBD, Cannabigerol or CBG, Cannabichromene or CBC, Tetrahydrocannabivarin or THCV, and β-caryophyllene); (3) in silico docking and drug-likeness assessments; (4) in vitro assays of receptor binding, TRP channel modulation, and glucose transport; (5) in vivo rodent models evaluating glycemic control, weight change, and organ protection; (6) pilot clinical studies of THCV and case reports of CBD/BCP; (7) comparative analysis with established synthetic inhibitors. Results: In silico studies identify high-affinity binding of several phytocannabinoids within the SGLT2 substrate pocket. In vitro, CBG and THCV modulate SGLT2-related pathways indirectly via TRP channels and CB receptors; direct IC50 values for SGLT2 remain to be determined. In vivo, THCV and CBD demonstrate glucose-lowering, insulin-sensitizing, weight-reducing, anti-inflammatory, and organ-protective effects. Pilot clinical data (n = 62) show that THCV decreases fasting glucose, enhances β-cell function, and lacks psychoactive side effects. Compared to synthetic inhibitors, phytocannabinoids offer pleiotropic benefits but face challenges of low oral bioavailability, polypharmacology, inter-individual variability, and limited large-scale trials. Discussion: While preclinical and early clinical data highlight phytocannabinoids’ potential in SGLT2 modulation and broader metabolic improvement, their translation is impeded by significant challenges. These include low oral bioavailability, inconsistent pharmacokinetic profiles, and the absence of standardized formulations, necessitating advanced delivery system development. Furthermore, the inherent polypharmacology of these compounds, while beneficial, demands comprehensive safety assessments for potential off-target effects and drug interactions. The scarcity of large-scale, well-controlled clinical trials and the need for clear regulatory frameworks remain critical hurdles. Addressing these aspects is paramount to fully realize the therapeutic utility of phytocannabinoids as a comprehensive approach to T2DM management. Conclusion: Phytocannabinoids represent promising multi-target agents for T2DM through potential SGLT2 modulation and complementary metabolic effects. Future work should focus on pharmacokinetic optimization, precise quantification of SGLT2 inhibition, and robust clinical trials to establish efficacy and safety profiles relative to synthetic inhibitors. Full article
Show Figures

Graphical abstract

30 pages, 5339 KiB  
Article
Short-Term Incubation of H9c2 Cardiomyocytes with Cannabigerol Attenuates Diacylglycerol Accumulation in Lipid Overload Conditions
by Sylwia Dziemitko, Adrian Chabowski and Ewa Harasim-Symbor
Cells 2025, 14(13), 998; https://doi.org/10.3390/cells14130998 - 30 Jun 2025
Viewed by 398
Abstract
Fatty acids (FAs) play a crucial role in human physiology, including energy production and serving as signaling molecules. However, a dysregulation in their balance can lead to multiple disorders, such as obesity and metabolic syndrome. These pathological conditions alter the balance between the [...] Read more.
Fatty acids (FAs) play a crucial role in human physiology, including energy production and serving as signaling molecules. However, a dysregulation in their balance can lead to multiple disorders, such as obesity and metabolic syndrome. These pathological conditions alter the balance between the heart’s energetic substrates, promoting an increased reliance on FAs and decreased cardiac efficiency. A therapeutic application of a non-psychotropic phytocannabinoid, cannabigerol (CBG), seems to be a promising target since it interacts with different receptors and ion channels, including cannabinoid receptors—CB1 and CB2, α2 adrenoceptor, or 5-hydroxytryptamine receptor. Therefore, in the current study, we evaluated a concentration-dependent effect of CBG (2.5 µM, 5 µM, and 10 µM) on H9c2 cardiomyocytes in lipid overload conditions. Gas–liquid chromatography and Western blotting techniques were used to determine the cellular lipid content and the level of selected proteins involved in FA metabolism, glucose transport, and the insulin signaling pathway. The glucose uptake assay was performed using a colorimetric method. Eighteen-hour CBG treatment in the highest concentration (10 µM) significantly diminished the accumulation of diacylglycerols (DAGs) and the saturation status of this lipid fraction. Moreover, the same concentration of CBG markedly decreased the level of FA transporters, namely fatty acid translocase (CD36) and plasma membrane fatty acid-binding protein (FABPpm), in the presence of palmitate (PA) in the culture medium. The results of our experiment suggest that CBG can significantly modulate lipid storage and composition in cardiomyocytes, thereby protecting against lipid-induced cellular dysfunction. Full article
(This article belongs to the Special Issue Advancements in Cardiac Metabolism)
Show Figures

Graphical abstract

35 pages, 1877 KiB  
Review
Dysregulation of the Cannabinoid System in Childhood Epilepsy: From Mechanisms to Therapy
by Gloria Montebello and Giuseppe Di Giovanni
Int. J. Mol. Sci. 2025, 26(13), 6234; https://doi.org/10.3390/ijms26136234 - 27 Jun 2025
Viewed by 1818
Abstract
Epilepsy affects over 12 million children worldwide, with approximately 30% classified as having drug-resistant epilepsy (DRE), often accompanied by neuropsychiatric comorbidities that severely impact quality of life. The endocannabinoid system (ECS) functions as a multifaceted neuromodulatory network regulating neuronal excitability, synaptic plasticity, and [...] Read more.
Epilepsy affects over 12 million children worldwide, with approximately 30% classified as having drug-resistant epilepsy (DRE), often accompanied by neuropsychiatric comorbidities that severely impact quality of life. The endocannabinoid system (ECS) functions as a multifaceted neuromodulatory network regulating neuronal excitability, synaptic plasticity, and immune homeostasis from early life through adolescence and into aging. In pediatric epilepsies, alterations in ECS components, particularly CB1 receptor expression and endocannabinoid levels, reveal disorder-specific vulnerabilities and therapeutic opportunities. Cannabidiol (CBD), a non-psychoactive compound from Cannabis sativa, has shown strong preclinical and clinical efficacy in treating DRE and is approved for Dravet syndrome, Lennox–Gastaut syndrome, and Tuberous Sclerosis Complex. Other ECS-based strategies, such as the use of CB1 receptor-positive allosteric modulators, can selectively enhance endogenous cannabinoid signaling where and when it is active, potentially reducing seizures in conditions like Dravet and absence epilepsy. Similarly, FAAH and MAGL inhibitors may help restore ECS tone without directly activating CB1 receptors. Precision targeting of ECS components based on regional expression and syndrome-specific pathophysiology may optimize seizure control and associated comorbidities. Nonetheless, long-term pediatric use must be approached with caution, given the critical role of the ECS in brain development. Full article
Show Figures

Figure 1

17 pages, 6485 KiB  
Article
Exogenous Administration of Delta-9-Tetrahydrocannabinol Affects Adult Hippocampal Neurotransmission in Female Wistar Rats
by Ana M. Neves, Sandra Leal, Bruno M. Fonseca and Susana I. Sá
Int. J. Mol. Sci. 2025, 26(13), 6144; https://doi.org/10.3390/ijms26136144 - 26 Jun 2025
Viewed by 377
Abstract
Delta-9-tetrahydrocannabinol (THC) is a psychoactive element of Cannabis sativa and affects the human cannabinoid system through its receptors, CB1R and CB2R. CB1R was found in several brain areas, including the hippocampal formation (HF), and it is responsible for most THC side effects. We [...] Read more.
Delta-9-tetrahydrocannabinol (THC) is a psychoactive element of Cannabis sativa and affects the human cannabinoid system through its receptors, CB1R and CB2R. CB1R was found in several brain areas, including the hippocampal formation (HF), and it is responsible for most THC side effects. We investigated THC’s effects in the HF of female Wistar rats to assess changes in its neurotransmission. Female Wister rats (n = 20) were gonadectomized under anesthesia at 8 weeks old. Afterwards, they received estradiol benzoate (EB) and/or THC. Immunohistochemistry was performed to assess the expression of the cholinergic receptor alpha 7 subunit (CHRNA7), the vesicular acetylcholine transporter (VAChT), the vesicular glutamate transporter (VGLUT), the gamma-aminobutyric acid type A receptor (GABRA), the CB1 receptor, and estradiol receptor alpha (EBα). In the HF, the expression of CHRNA7 was increased by EB and by THC in the Oil groups but decreased by THC in the EB groups. The same is true for VGLUT expression in the DG and hilum and for GABRA expression in the hilum. The expression of VAChT and CB1 is reduced by EB, while the concomitant administration of THC increases it. GAD expression is reduced by EB administration in CA1, CA3, and DG. Our results may help with decision-making regarding the prescription of low doses of THC as a therapeutical approach. Full article
Show Figures

Figure 1

19 pages, 7023 KiB  
Article
Modulation of Neurexins Alternative Splicing by Cannabinoid Receptors 1 (CB1) Signaling
by Elisa Innocenzi, Giuseppe Sciamanna, Alice Zucchi, Vanessa Medici, Eleonora Cesari, Donatella Farini, David J. Elliott, Claudio Sette and Paola Grimaldi
Cells 2025, 14(13), 972; https://doi.org/10.3390/cells14130972 - 25 Jun 2025
Viewed by 553
Abstract
Synaptic plasticity is the key mechanism underlying learning and memory. Neurexins are pre-synaptic molecules that play a pivotal role in synaptic plasticity, interacting with many different post-synaptic molecules in the formation of neural circuits. Neurexins are alternatively spliced at different splice sites, yielding [...] Read more.
Synaptic plasticity is the key mechanism underlying learning and memory. Neurexins are pre-synaptic molecules that play a pivotal role in synaptic plasticity, interacting with many different post-synaptic molecules in the formation of neural circuits. Neurexins are alternatively spliced at different splice sites, yielding thousands of isoforms with different properties of interaction with post-synaptic molecules for a quick adaptation to internal and external inputs. The endocannabinoid system also plays a central role in synaptic plasticity, regulating key retrograde signaling at both excitatory and inhibitory synapses. This study aims at elucidating the crosstalk between alternative splicing of neurexin and the endocannabinoid system in the hippocampus. By employing an ex vivo hippocampal system, we found that pharmacological activation of cannabinoid receptor 1 (CB1) with the specific agonist ACEA led to reduced neurotransmission, associated with increased expression of the Nrxn1–3 spliced isoforms excluding the exon at splice site 4 (SS4−). In contrast, treatment with the CB1 antagonist AM251 increased glutamatergic activity and promoted the expression of the Nrxn variants including the exon (SS4+) Knockout of the involved splicing factor SLM2 determined the suppression of the exon splicing at SS4 and the expression only of the SS4+ variants of Nrxns1–3 transcripts. Interestingly, in SLM2 ko hippocampus, modulation of neurotransmission by AM251 or ACEA was abolished. These findings suggest a direct crosstalk between CB1-dependent signaling, neurotransmission and expression of specific Nrxns splice variants in the hippocampus. We propose that the fine-tuned regulation of Nrxn13 genes alternative splicing may play an important role in the feedback control of neurotransmission by the endocannabinoid system. Full article
(This article belongs to the Special Issue Synaptic Plasticity and the Neurobiology of Learning and Memory)
Show Figures

Figure 1

24 pages, 5287 KiB  
Article
A Tourette Syndrome/ADHD-like Phenotype Results from Postnatal Disruption of CB1 and CB2 Receptor Signalling
by Victoria Gorberg, Tamar Harpaz, Emilya Natali Shamir, Orit Diana Karminsky, Ester Fride, Roger G. Pertwee, Iain R. Greig, Peter McCaffery and Sharon Anavi-Goffer
Int. J. Mol. Sci. 2025, 26(13), 6052; https://doi.org/10.3390/ijms26136052 - 24 Jun 2025
Viewed by 570
Abstract
Cannabinoid receptor 1 (CB1) signalling is critical for weight gain and for milk intake in newborn pups. This is important as in humans, low birth weight increases the risk for attention-deficit hyperactivity disorder (ADHD). Moreover, some children with ADHD also have [...] Read more.
Cannabinoid receptor 1 (CB1) signalling is critical for weight gain and for milk intake in newborn pups. This is important as in humans, low birth weight increases the risk for attention-deficit hyperactivity disorder (ADHD). Moreover, some children with ADHD also have Tourette syndrome (TS). However, it remains unclear if insufficient CB1 receptor signalling may promote ADHD/TS-like behaviours. Here, ADHD/TS-like behaviours were studied from postnatal to adulthood by exposing postnatal wild-type CB1 and Cannabinoid receptor 2 (CB2) knockout mouse pups to SR141716A (rimonabant), a CB1 receptor antagonist/inverse agonist. Postnatal disruption of the cannabinoid system by SR141716A induced vocal-like tics and learning deficits in male mice, accompanied by excessive vocalisation, hyperactivity, motor-like tics and/or high-risk behaviour in adults. In CB1 knockouts, rearing and risky behaviours increased in females. In CB2 knockouts, vocal-like tics did not develop, and males were hyperactive with learning deficits. Importantly, females were hyperactive but showed no vocal-like tics. The appearance of vocal-like tics depends on disrupted CB1 receptor signalling and on functional CB2 receptors after birth. Inhibition of CB1 receptor signalling together with CB2 receptor stimulation underlie ADHD/TS-like behaviours in males. This study suggests that the ADHD/TS phenotype may be a single clinical entity resulting from incorrect cannabinoid signalling after birth. Full article
Show Figures

Figure 1

17 pages, 3818 KiB  
Article
Multi-Target Protective Effects of β-Caryophyllene (BCP) at the Intersection of Neuroinflammation and Neurodegeneration
by Caterina Ricardi, Anna Mazzierli, Stefano Guglielmo, Nicola Origlia, Francesca Gado, Clementina Manera, Grazia Chiellini and Beatrice Polini
Int. J. Mol. Sci. 2025, 26(13), 6027; https://doi.org/10.3390/ijms26136027 - 23 Jun 2025
Viewed by 400
Abstract
Recent advances in cannabinoid-based therapies identified the natural CB2 receptor agonist β-caryophyllene (BCP) as a promising anti-inflammatory and neuroprotective agent. To further explore its therapeutic potential on the management of neurodegenerative disorders, in the present study we investigated the ability of BCP to [...] Read more.
Recent advances in cannabinoid-based therapies identified the natural CB2 receptor agonist β-caryophyllene (BCP) as a promising anti-inflammatory and neuroprotective agent. To further explore its therapeutic potential on the management of neurodegenerative disorders, in the present study we investigated the ability of BCP to prevent neuroinflammation and promote neuroprotection by using both in vitro and ex vivo models of β-amyloid induced neurotoxicity. Our data showed that BCP significantly protected human microglial HMC3 cells from Aβ25-35-induced cytotoxicity, reducing the release of pro-inflammatory cytokines (TNF-α, IL-6) while enhancing IL-10 secretion. These effects were associated with a reduced activation of the NF-κB pathway, which emerged as a central mediator of BCP action. Notably, the use of CB2R- or PPARγ-selective antagonists revealed that the observed NF-κB inhibition by BCP may involve the coordinated activation of both canonical (e.g., CB2R) and non-canonical (e.g., PPARγ) receptors. Moreover, BCP restored the expression of SIRT1, PGC-1α, and BDNF, indicating the involvement of neurotrophic pathways. Clear neuroprotective properties for BCP have been highlighted in Aβ1-42-treated brain slice preparations, where BCP demonstrated the rescue of both the amyloid-dependent depression of BDNF expression and long-term synaptic potentiation (LTP) impairment. Overall, our results suggest that BCP constitutes an attractive natural molecule for the treatment of Aβ-induced neuroinflammation and synaptic dysfunction, warranting further exploration for its clinical application. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

20 pages, 7139 KiB  
Article
Cannabinoid Receptor 1 Regulates Zebrafish Renal Multiciliated Cell Development via cAMP Signaling
by Thanh Khoa Nguyen, Sophia Baker, Julienne Angtuaco, Liana Arceri, Samuel Kaczor, Bram Fitzsimonds, Matthew R. Hawkins and Rebecca A. Wingert
J. Dev. Biol. 2025, 13(2), 20; https://doi.org/10.3390/jdb13020020 - 17 Jun 2025
Viewed by 770
Abstract
Endocannabinoid signaling plays a significant role in neurogenesis and nervous system physiology, but its roles in the development of other tissues are just beginning to be appreciated. Previous reports have shown the presence of the key endocannabinoid receptor Cannabinoid receptor 1 (CB1 or [...] Read more.
Endocannabinoid signaling plays a significant role in neurogenesis and nervous system physiology, but its roles in the development of other tissues are just beginning to be appreciated. Previous reports have shown the presence of the key endocannabinoid receptor Cannabinoid receptor 1 (CB1 or Cnr1) in multiciliated (MCC) tissues and its upregulation in kidney diseases, yet the relationship between Cnr1 and renal MCC development is unknown. Here, we report that Cnr1 is essential for cilia development across tissues and regulates renal MCCs via cyclic AMP (cAMP) signaling during zebrafish embryogenesis. Using a combination of genetic and pharmacological studies, we found that the loss of function, agonism and antagonism of cnr1 all lead to reduced mature renal MCC populations. cnr1 deficiency also led to reduced cilia development across tissues, including the pronephros, ear, Kupffer’s vesicle (KV), and nasal placode. Interestingly, treatment with the cAMP activator Forskolin (FSK) restored renal MCC defects in agonist-treated embryos, suggesting that cnr1 mediates cAMP signaling in renal MCC development. Meanwhile, treatment with the cAMP inhibitor SQ-22536 alone or with cnr1 deficiency led to reduced MCC populations, suggesting that cnr1 also mediates renal MCC development independently of cAMP signaling. Our findings indicate that cnr1 has a critical role in controlling renal MCC development both via cAMP signaling and an independent pathway, further revealing implications for ciliopathies and renal diseases. Full article
(This article belongs to the Special Issue Feature Papers from Journal of Developmental Biology Reviewers)
Show Figures

Figure 1

18 pages, 2189 KiB  
Article
Changes of CB1 Receptor Expression in Tissues of Cocaine-Exposed Eels
by Lorenzo Riccio, Teresa Chianese, Aldo Mileo, Sabrina Balsamo, Rosaria Sciarrillo, Roberta Gatta, Luigi Rosati, Maria De Falco and Anna Capaldo
Animals 2025, 15(12), 1734; https://doi.org/10.3390/ani15121734 - 12 Jun 2025
Viewed by 1058
Abstract
Previous studies performed on the European eel Anguilla anguilla showed changes in the morphology and physiology of several tissues after exposure to environmental cocaine concentrations. To better understand the model through which cocaine produced its effects on these tissues, we investigated whether there [...] Read more.
Previous studies performed on the European eel Anguilla anguilla showed changes in the morphology and physiology of several tissues after exposure to environmental cocaine concentrations. To better understand the model through which cocaine produced its effects on these tissues, we investigated whether there were alterations in the expression of cannabinoid CB1 receptor (CB1R). Indeed, the endocannabinoid system, and CB1R, regulate neurotransmission, neurodevelopment, embryonic development, reproduction, and the activity of the gastrointestinal system. CB1R has been detected in nervous and peripheral tissues in mammals, and orthologues of the mammalian CB1R are found throughout vertebrates including chicken, turtle, frog, and fish. Therefore, samples of gut, kidney, ovary, muscle, liver, skin, and gills from cocaine-exposed and non-exposed eels were processed for routine histology. Immunohistochemical analysis was carried out to evaluate the immunolocalization of the CB1R. Our results showed for the first time (1) the presence of CB1R in the peripheral tissues of the eel, and (2) statistically significant differences in the localization of CB1R in the gut, kidney, ovary, muscle, and liver of the eels exposed to cocaine, compared to controls. These results demonstrate the involvement of CB1R in cocaine effects and suggest its potential role as a biomarker of tissue alteration. Full article
(This article belongs to the Section Aquatic Animals)
Show Figures

Figure 1

17 pages, 3136 KiB  
Article
The Multitarget Antinociceptive Compound Affinin and Its Effects on Hypothermia, Hypolocomotion, and Sickness Behavior in Lipopolysaccharide-Treated Mice
by Beatriz A. Luz-Martínez, Juan M. Viveros-Paredes, Alejandra Rojas-Molina and César Ibarra-Alvarado
Molecules 2025, 30(12), 2554; https://doi.org/10.3390/molecules30122554 - 11 Jun 2025
Viewed by 480
Abstract
Affinin (spilanthol) is the main bioactive alkylamide present in Heliopsis longipes roots, exerting antinociceptive and anti-inflammatory effects that involve the activation of TRP channels. Previous studies indicated that affinin reduces the LPS-induced increase in pro-inflammatory cytokine production in murine macrophages. However, no studies [...] Read more.
Affinin (spilanthol) is the main bioactive alkylamide present in Heliopsis longipes roots, exerting antinociceptive and anti-inflammatory effects that involve the activation of TRP channels. Previous studies indicated that affinin reduces the LPS-induced increase in pro-inflammatory cytokine production in murine macrophages. However, no studies have evaluated whether affinin produces antinociceptive, anti-inflammatory, and behavioral effects in experimental animals treated with LPS, nor has the mechanism of action involved in these pharmacological effects been established. The present study evaluated whether affinin induces hypothermia, catalepsy, hypolocomotion, and analgesia and, moreover, whether the analgesia involves the activation of the CB1 cannabinoid receptor and TRPV1 and TRPA1 channels. Subsequently, the anti-inflammatory activity and behavioral effects induced by affinin (20 mg/kg) in mice were evaluated via LPS (2.5 mg/kg)-induced hypothermia. The results of the experiments indicate that the analgesic effect of affinin involves the activation of the CB1 cannabinoid receptors and the TRPV1 and TRPA1 channels. Additionally, affinin reduced the severity of LPS-induced hypothermia and attenuated the increase in TNF-α and IL-6 levels in serum. The results obtained demonstrate that affinin induces antinociceptive, anti-hypothermic, and anti-inflammatory activities, which involve the CB1 receptor and the TRPV1 and TRPA1 channels and the suppression of pro-inflammatory cytokines. Full article
Show Figures

Figure 1

19 pages, 537 KiB  
Review
Dysregulated Neurotransmitters and CB1 Receptor Dysfunction and Their Roles in Agitation Associated with Alzheimer’s Disease
by Jagadeesh S. Rao, María Alejandra Tangarife, Diego A. Rodríguez-Soacha, María Juanita Arbelaez, María Margarita Venegas, Laura Delgado-Murillo, Saadia Shahnawaz, Claudia Grimaldi, Evelyn Gutiérrez and Ram Mukunda
J. Dement. Alzheimer's Dis. 2025, 2(2), 15; https://doi.org/10.3390/jdad2020015 - 1 Jun 2025
Viewed by 707
Abstract
Alzheimer’s disease (AD) is characterized by the progressive loss of cognitive function and is frequently accompanied by neuropsychiatric symptoms (NPS). Pathologically, AD is defined by two hallmark features: the extracellular accumulation of β-amyloid and the intracellular hyperphosphorylation of the tau protein. In addition [...] Read more.
Alzheimer’s disease (AD) is characterized by the progressive loss of cognitive function and is frequently accompanied by neuropsychiatric symptoms (NPS). Pathologically, AD is defined by two hallmark features: the extracellular accumulation of β-amyloid and the intracellular hyperphosphorylation of the tau protein. In addition to these primary changes, several other abnormalities are associated with the disease, including neuroinflammation, synaptic loss, oxidative stress, neurotransmitter imbalance, and genetic and epigenetic alterations. NPS in AD encompass a range of symptoms, such as anxiety, apathy, agitation, depression, and psychosis. These symptoms are thought to arise partly from the damage caused by the pathological hallmarks of AD, which impair various neurotransmitter systems. Altered levels of several neurotransmitters, including gamma-aminobutyric acid (GABA), serotonin (5-HT), dopamine (DA), and the cholinergic and noradrenergic systems, have been implicated in the development of agitation. Additionally, reduced endocannabinoid system (ECS) functionality, particularly cannabinoid receptor 1 (CB1R), has been linked to neurobehavioral alterations. Preclinical studies suggest that a decrease in CB1R levels is associated with aggressive behavior, and CB1R agonists have demonstrated beneficial effects in alleviating agitation and related symptoms. Given these findings, the current review focuses on the therapeutic potential of targeting neurotransmitter systems and CB1R dysfunction to manage agitation in AD. Full article
Show Figures

Figure 1

20 pages, 2217 KiB  
Article
Cannabinoid Modulation of Excitability and Short-Term Neuronal Dynamics in the Dorsal and Ventral Hippocampus
by Giota Tsotsokou, Ioanna-Maria Sotiropoulou, Klearchos Stampolitis, George D. Oikonomou, Aikaterini-Paraskevi Avdi and Costas Papatheodoropoulos
Biology 2025, 14(6), 642; https://doi.org/10.3390/biology14060642 - 31 May 2025
Viewed by 1414
Abstract
Endocannabinoids, acting primarily through CB1 receptors, are critical modulators of neuronal activity, influencing cognitive functions and emotional processing. CB1 receptors are highly expressed in the hippocampus, primarily on GABAergic interneurons, modulating the excitation/inhibition balance. Previous evidence suggests the functional heterogeneity of CB1 receptors [...] Read more.
Endocannabinoids, acting primarily through CB1 receptors, are critical modulators of neuronal activity, influencing cognitive functions and emotional processing. CB1 receptors are highly expressed in the hippocampus, primarily on GABAergic interneurons, modulating the excitation/inhibition balance. Previous evidence suggests the functional heterogeneity of CB1 receptors along the dorsoventral axis of the hippocampus. However, it is not known whether CB1 receptors differentially modulate basic aspects of the local neuronal network along the hippocampus. This study investigated how CB1 receptor activation modulates excitability, paired-pulse inhibition (PPI), and short-term neuronal dynamics (STND) in the dorsal and ventral CA1 hippocampus under physiologically relevant conditions. Using extracellular recordings from hippocampal slices of male Wistar rats, we compared the effects of two CB1 receptor agonists, ACEA and WIN55,212-2, on network activity in the dorsal and ventral hippocampus. We found that both agonists significantly increased excitability and reduced PPI in the dorsal, but not the ventral, hippocampus. Similarly, CB1 receptor activation modulated STND more prominently in the dorsal hippocampus, reducing facilitation at low frequencies and reversing depression at high frequencies, whereas effects on the ventral region were minimal. These dorsoventral differences in the actions of cannabinoid receptor agonists occurred despite similar CB1 receptor expression levels in both regions, suggesting that functional differences arise from downstream mechanisms rather than receptor density. Pre-application of the GIRK channel blocker Tertiapin-Q occluded the effects of WIN55,212-2 on STND, indicating a significant role of GIRK channel-mediated signaling in CB1 receptor actions. These findings demonstrate that CB1 receptors modulate hippocampal circuitry in a region-specific manner, with the dorsal hippocampus being more sensitive to cannabinoid signaling, likely through differential engagement of intracellular signaling pathways such as GIRK channel activation. These results provide novel insights into how endocannabinoid signaling differentially regulates neuronal dynamics along the dorsoventral axis of the hippocampus. They also have important implications for understanding the role of cannabinoids in hippocampus-dependent behaviors. Full article
(This article belongs to the Section Neuroscience)
Show Figures

Figure 1

18 pages, 318 KiB  
Opinion
Palmitoylethanolamide: A Multifunctional Molecule for Neuroprotection, Chronic Pain, and Immune Modulation
by Valeria Di Stefano, Luca Steardo, Martina D’Angelo, Francesco Monaco and Luca Steardo
Biomedicines 2025, 13(6), 1271; https://doi.org/10.3390/biomedicines13061271 - 22 May 2025
Viewed by 2155
Abstract
Palmitoylethanolamide (PEA) is an endogenous lipid mediator belonging to the N-acyl-ethanolamine family, widely recognized for its multifaceted effects on neuroprotection, chronic pain management, and immune modulation. As a naturally occurring compound, PEA plays a crucial role in maintaining homeostasis under conditions of cellular [...] Read more.
Palmitoylethanolamide (PEA) is an endogenous lipid mediator belonging to the N-acyl-ethanolamine family, widely recognized for its multifaceted effects on neuroprotection, chronic pain management, and immune modulation. As a naturally occurring compound, PEA plays a crucial role in maintaining homeostasis under conditions of cellular stress and inflammation. Its pharmacological effects are primarily mediated through peroxisome proliferator-activated receptor-alpha (PPAR-α) activation, alongside indirect modulation of cannabinoid receptors CB1 and CB2, as well as interactions with novel targets such as GPR55 and TRPV1. These molecular mechanisms underpin its broad therapeutic potential, particularly in the management of neuroinflammatory and neurodegenerative disorders, pain syndromes, and immune dysregulation. A major advancement in PEA research has been the development of ultramicronized palmitoylethanolamide (umPEA), which significantly enhances its bioavailability and therapeutic efficacy by facilitating better tissue absorption and interaction with key molecular pathways. Preclinical and clinical studies have demonstrated that umPEA is particularly effective in reducing neuroinflammation, stabilizing mast cells, and enhancing endocannabinoid system activity, making it a promising candidate for integrative approaches in neuropsychiatric and chronic inflammatory diseases. Given its well-established safety profile, umPEA represents an attractive alternative or adjunct to conventional anti-inflammatory and analgesic therapies. This communication provides a comprehensive overview of the mechanisms of action and therapeutic applications of both PEA and umPEA, emphasizing their emerging role in clinical practice and personalized medicine. Full article
(This article belongs to the Special Issue Therapeutic Potential for Cannabis and Cannabinoids, 3rd Edition)
19 pages, 1973 KiB  
Article
Characterization of Novel and Known Activators of Cannabinoid Receptor Subtype 2 Reveals Mixed Pharmacology That Differentiates Mycophenolate Mofetil and GW-842,166X from MDA7
by Alice L. Rodriguez, Aidong Qi, Allie Han, Haley E. Kling, Marc C. Quitalig, Aaron M. Bender, Lisa Barbaro, David Whomble, Craig W. Lindsley and Colleen M. Niswender
Int. J. Mol. Sci. 2025, 26(10), 4956; https://doi.org/10.3390/ijms26104956 - 21 May 2025
Viewed by 765
Abstract
CB1 and CB2 cannabinoid receptors are members of the GPCR superfamily that modulate the effects of endocannabinoids. CB1 is the most abundant CB receptor in the central nervous system, while CB2 is present both peripherally and in the brain. [...] Read more.
CB1 and CB2 cannabinoid receptors are members of the GPCR superfamily that modulate the effects of endocannabinoids. CB1 is the most abundant CB receptor in the central nervous system, while CB2 is present both peripherally and in the brain. CB2 plays a role in inflammation, as well as neurodegenerative and psychiatric disorders. To identify new ligands for CB2, we screened a library of FDA-approved drugs for activity at the receptor using a thallium flux assay, resulting in the discovery of the immunosuppressant mycophenolate mofetil as a potent, selective activator of CB2. Further characterization of the compound confirmed agonist activity in a variety of complementary assays, including PI hydrolysis, cAMP inhibition, and β-arrestin recruitment. Radioligand binding assays established a non-competitive interaction with the site occupied by [3H]CP55,940. CB2 agonists GW-842,166X and MDA7 were also profiled, revealing that GW-842,166X exhibits a similar activity profile to mycophenolate mofetil, whereas MDA7 presents a distinct profile. These differences provide insight into the complex CB2 pharmacology impacting preclinical and clinical studies, and ultimately, new treatment strategies for brain disorders. Full article
(This article belongs to the Special Issue Molecular Advances on Cannabinoid and Endocannabinoid Research 2.0)
Show Figures

Figure 1

Back to TopTop