The Endocannabinoid System in the Development and Treatment of Obesity: Searching for New Ideas
Abstract
1. Introduction
2. The Endocannabinoid System
3. Feeding Behavior and Its Association with the Endocannabinoid System
4. Cannabinoid-Based Treatments in Obesity
New Perspectives in the Cannabinoid-Based Treatment of Obesity
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
2-AG | 2-arachidonoylglycerol |
5-HT | Serotonin receptor |
7TM | Seven-transmembrane |
AEA | N-arachidonoyl-ethanolamine, anandamide |
C-term | Carboxyl-terminal domain |
CB1 | Cannabinoid receptor type 1 |
CB2 | Cannabinoid receptor type 2 |
CNR1 | Gene encoding cannabinoid receptor type 1 |
CNR2 | Gene encoding cannabinoid receptor type 2 |
CNS | Central nervous system |
DAGL | Diacylglycerol lipase |
DHA | Docosahexaenoic acid |
DHEA | Dehydroepiandrosterone |
ECL | Extracellular loop |
ECS | Endocannabinoid system |
FAAH | Fatty acid amide hydrolase |
GABA | Gamma-aminobutyric acid |
GPR | G protein-coupled receptor |
HbA1c | Glycated hemoglobin |
HDL-C | High-density lipoprotein cholesterol |
ICL | Intracellular loop |
iNOS | Inducible nitric oxide synthase |
LDL-C | Low-density lipoprotein cholesterol |
MAPK | Mitogen-activated protein kinase |
MGL | Monoacylglycerol lipase |
N-term | Amino-terminal domain |
NAPE-PLD | N-acyl phosphatidylethanolamine phospholipase D |
PPAR | Peroxisome proliferator-activated receptor |
ROCK | Rho-associated coiled-coil kinase |
TRPV1 | Transient receptor potential vanilloid 1 |
References
- Ng, M.; Gakidou, E.; Lo, J.; Abate, Y.H.; Abbafati, C.; Abbas, N.; Abbasian, M.; Abd ElHafeez, S.; Abdel-Rahman, W.M.; Abd-Elsalam, S.; et al. Global, Regional, and National Prevalence of Adult Overweight and Obesity, 1990–2021, with Forecasts to 2050: A Forecasting Study for the Global Burden of Disease Study 2021. Lancet 2025, 405, 813–838. [Google Scholar] [CrossRef]
- Janić, M.; Janež, A.; El-Tanani, M.; Rizzo, M. Obesity: Recent Advances and Future Perspectives. Biomedicines 2025, 13, 368. [Google Scholar] [CrossRef]
- Dolgin, E. Dozens of New Obesity Drugs Are Coming: These Are the Ones to Watch. Nature 2025, 638, 308–310. [Google Scholar] [CrossRef]
- Ligresti, A.; De Petrocellis, L.; Di Marzo, V. From Phytocannabinoids to Cannabinoid Receptors and Endocannabinoids: Pleiotropic Physiological and Pathological Roles through Complex Pharmacology. Physiol. Rev. 2016, 96, 1593–1659. [Google Scholar] [CrossRef]
- Zou, S.; Kumar, U. Cannabinoid Receptors and the Endocannabinoid System: Signaling and Function in the Central Nervous System. Int. J. Mol. Sci. 2018, 19, 833. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.-C.; Mackie, K. Review of the Endocannabinoid System. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2021, 6, 607–615. [Google Scholar] [CrossRef] [PubMed]
- Augustin, S.M.; Lovinger, D.M. Functional Relevance of Endocannabinoid-Dependent Synaptic Plasticity in the Central Nervous System. ACS Chem. Neurosci. 2018, 9, 2146–2161. [Google Scholar] [CrossRef] [PubMed]
- Galve-Roperh, I.; Palazuelos, J.; Aguado, T.; Guzmán, M. The Endocannabinoid System and the Regulation of Neural Development: Potential Implications in Psychiatric Disorders. Eur. Arch. Psychiatry Clin. Neurosci. 2009, 259, 371–382. [Google Scholar] [CrossRef]
- Rathod, S.S.; Agrawal, Y.O.; Nakhate, K.T.; Meeran, M.F.N.; Ojha, S.; Goyal, S.N. Neuroinflammation in the Central Nervous System: Exploring the Evolving Influence of Endocannabinoid System. Biomedicines 2023, 11, 2642. [Google Scholar] [CrossRef]
- Brissard, L.; Leemput, J.; Hichami, A.; Passilly-Degrace, P.; Maquart, G.; Demizieux, L.; Degrace, P.; Khan, N.A. Orosensory Detection of Dietary Fatty Acids Is Altered in CB1R−/− Mice. Nutrients 2018, 10, 1347. [Google Scholar] [CrossRef]
- Mahler, S.V.; Smith, K.S.; Berridge, K.C. Endocannabinoid Hedonic Hotspot for Sensory Pleasure: Anandamide in Nucleus Accumbens Shell Enhances “liking” of a Sweet Reward. Neuropsychopharmacology 2007, 32, 2267–2278. [Google Scholar] [CrossRef]
- Higuchi, S.; Irie, K.; Yamaguchi, R.; Katsuki, M.; Araki, M.; Ohji, M.; Hayakawa, K.; Mishima, S.; Akitake, Y.; Matsuyama, K.; et al. Hypothalamic 2-Arachidonoylglycerol Regulates Multistage Process of High-Fat Diet Preferences. PLoS ONE 2012, 7, e38609. [Google Scholar] [CrossRef] [PubMed]
- Bermudez-Silva, F.J.; Cardinal, P.; Cota, D. The Role of the Endocannabinoid System in the Neuroendocrine Regulation of Energy Balance. J. Psychopharmacol. 2012, 26, 114–124. [Google Scholar] [CrossRef] [PubMed]
- Silvestri, C.; Di Marzo, V. The Endocannabinoid System in Energy Homeostasis and the Etiopathology of Metabolic Disorders. Cell Metab. 2013, 17, 475–490. [Google Scholar] [CrossRef] [PubMed]
- Sagheddu, C.; Muntoni, A.L.; Pistis, M.; Melis, M. Endocannabinoid Signaling in Motivation, Reward, and Addiction: Influences on Mesocorticolimbic Dopamine Function. Int. Rev. Neurobiol. 2015, 125, 257–302. [Google Scholar] [CrossRef]
- Hanuš, L.; Avraham, Y.; Ben-Shushan, D.; Zolotarev, O.; Berry, E.M.; Mechoulam, R. Short-Term Fasting and Prolonged Semistarvation Have Opposite Effects on 2-AG Levels in Mouse Brain. Brain Res. 2003, 983, 144–151. [Google Scholar] [CrossRef]
- Kirkham, T.C.; Williams, C.M.; Fezza, F.; Di Marzo, V. Endocannabinoid Levels in Rat Limbic Forebrain and Hypothalamus in Relation to Fasting, Feeding and Satiation: Stimulation of Eating by 2-Arachidonoyl Glycerol. Br. J. Pharmacol. 2002, 136, 550–557. [Google Scholar] [CrossRef]
- Kirkham, T.C. Cannabinoids and Appetite: Food Craving and Food Pleasure. Int. Rev. Psychiatry 2009, 21, 163–171. [Google Scholar] [CrossRef]
- Gatta-Cherifi, B.; Matias, I.; Vallée, M.; Tabarin, A.; Marsicano, G.; Piazza, P.V.; Cota, D. Simultaneous Postprandial Deregulation of the Orexigenic Endocannabinoid Anandamide and the Anorexigenic Peptide YY in Obesity. Int. J. Obes. 2012, 36, 880–885. [Google Scholar] [CrossRef]
- Monteleone, P.; Piscitelli, F.; Scognamiglio, P.; Monteleone, A.M.; Canestrelli, B.; Di Marzo, V.; Maj, M. Hedonic Eating Is Associated with Increased Peripheral Levels of Ghrelin and the Endocannabinoid 2-Arachidonoyl-Glycerol in Healthy Humans: A Pilot Study. J. Clin. Endocrinol. Metab. 2012, 97, E917–E924. [Google Scholar] [CrossRef]
- Badowski, M.E.; Perez, S.E. Clinical Utility of Dronabinol in the Treatment of Weight Loss Associated with HIV and AIDS. HIV AIDS 2016, 10, 37–45. [Google Scholar] [CrossRef]
- Argueta, D.A.; DiPatrizio, N.V. Peripheral Endocannabinoid Signaling Controls Hyperphagia in Western Diet-Induced Obesity. Physiol. Behav. 2017, 71, 32–39. [Google Scholar] [CrossRef]
- Kuipers, E.N.; Kantae, V.; Eveleens Maarse, B.C.; Van Den Berg, S.M.; Van Eenige, R.; Nahon, K.J.; Reifel-Miller, A.; Coskun, T.; De Winther, M.P.J.; Lutgens, E.; et al. High Fat Diet Increases Circulating Endocannabinoids Accompanied by Increased Synthesis Enzymes in Adipose Tissue. Front. Physiol. 2019, 9, 1913. [Google Scholar] [CrossRef]
- Castonguay-Paradis, S.; Lacroix, S.; Rochefort, G.; Parent, L.; Perron, J.; Martin, C.; Lamarche, B.; Raymond, F.; Flamand, N.; Di Marzo, V.; et al. Dietary Fatty Acid Intake and Gut Microbiota Determine Circulating Endocannabinoidome Signaling beyond the Effect of Body Fat. Sci. Rep. 2020, 10, 15975. [Google Scholar] [CrossRef]
- Freitas, H.R.; Isaac, A.R.; Malcher-Lopes, R.; Diaz, B.L.; Trevenzoli, I.H.; De Melo Reis, R.A. Polyunsaturated Fatty Acids and Endocannabinoids in Health and Disease. Nutr. Neurosci. 2018, 21, 695–714. [Google Scholar] [CrossRef] [PubMed]
- Rochefort, G.; Provencher, V.; Castonguay-Paradis, S.; Perron, J.; Lacroix, S.; Martin, C.; Flamand, N.; Di Marzo, V.; Veilleux, A. Intuitive Eating Is Associated with Elevated Levels of Circulating Omega-3-Polyunsaturated Fatty Acid-Derived Endocannabinoidome Mediators. Appetite 2021, 156, 104973. [Google Scholar] [CrossRef] [PubMed]
- Tagliamonte, S.; Laiola, M.; Ferracane, R.; Vitale, M.; Gallo, M.A.; Meslier, V.; Pons, N.; Ercolini, D.; Vitaglione, P. Mediterranean Diet Consumption Affects the Endocannabinoid System in Overweight and Obese Subjects: Possible Links with Gut Microbiome, Insulin Resistance and Inflammation. Eur. J. Nutr. 2021, 60, 3703–3716. [Google Scholar] [CrossRef]
- Mani, V. Effect of β-Caryophyllene on Oxidative Stress, Glucose Metabolism in the Skeletal Muscle of High Fat Diet and Fructose-Induced Type-2 Diabetic Adult Male Rats. Bioinformation 2023, 19, 417–422. [Google Scholar] [CrossRef]
- Hassanzadeh, P.; Arbabi, E.; Atyabi, F.; Dinarvand, R. The Endocannabinoid System and NGF Are Involved in the Mechanism of Action of Resveratrol: A Multi-Target Nutraceutical with Therapeutic Potential in Neuropsychiatric Disorders. Psychopharmacology 2016, 233, 1087–1096. [Google Scholar] [CrossRef] [PubMed]
- Thors, L.; Belghiti, M.; Fowler, C.J. Inhibition of Fatty Acid Amide Hydrolase by Kaempferol and Related Naturally Occurring Flavonoids. Br. J. Pharmacol. 2008, 155, 244–252. [Google Scholar] [CrossRef] [PubMed]
- Thors, L.; Burston, J.J.; Alter, B.J.; McKinney, M.K.; Cravatt, B.F.; Ross, R.A.; Pertwee, R.G.; Gereau IV, R.W.; Wiley, J.L.; Fowler, C.J. Biochanin A, a Naturally Occurring Inhibitor of Fatty Acid Amide Hydrolase. Br. J. Pharmacol. 2010, 160, 549–560. [Google Scholar] [CrossRef]
- Refolo, M.G.; D’Alessandro, R.; Malerba, N.; Laezza, C.; Bifulco, M.; Messa, C.; Caruso, M.G.; Notarnicola, M.; Tutino, V. Anti Proliferative and Pro Apoptotic Effects of Flavonoid Quercetin Are Mediated by CB1 Receptor in Human Colon Cancer Cell Lines. J. Cell. Physiol. 2015, 230, 2973–2980. [Google Scholar] [CrossRef]
- Tutino, V.; De Nunzio, V.; Tafaro, A.; Bianco, G.; Gigante, I.; Scavo, M.P.; D’Alessandro, R.; Refolo, M.G.; Messa, C.; Caruso, M.G.; et al. Cannabinoid Receptor-1 up-Regulation in Azoxymethane (AOM)-Treated Mice after Dietary Treatment with Quercetin. Anticancer Res. 2018, 38, 4485–4491. [Google Scholar] [CrossRef]
- di Francesco, A.; Falconi, A.; di Germanio, C.; Micioni Di Bonaventura, M.V.; Costa, A.; Caramuta, S.; Del Carlo, M.; Compagnone, D.; Dainese, E.; Cifani, C.; et al. Extravirgin Olive Oil Up-Regulates CB1 Tumor Suppressor Gene in Human Colon Cancer Cells and in Rat Colon via Epigenetic Mechanisms. J. Nutr. Biochem. 2015, 26, 250–258. [Google Scholar] [CrossRef]
- Forte, N.; Roussel, C.; Marfella, B.; Lauritano, A.; Villano, R.; De Leonibus, E.; Salviati, E.; Khalilzadehsabet, T.; Giorgini, G.; Silvestri, C.; et al. Olive Oil-Derived Endocannabinoid-like Mediators Inhibit Palatable Food-Induced Reward and Obesity. Commun. Biol. 2023, 6, 959. [Google Scholar] [CrossRef]
- Vago, R.; Fiorio, F.; Trevisani, F.; Salonia, A.; Montorsi, F.; Bettiga, A. The Mediterranean Diet as a Source of Bioactive Molecules with Cannabinomimetic Activity in Prevention and Therapy Strategy. Nutrients 2022, 14, 468. [Google Scholar] [CrossRef]
- Mazier, W.; Saucisse, N.; Gatta-Cherifi, B.; Cota, D. The Endocannabinoid System: Pivotal Orchestrator of Obesity and Metabolic Disease. Trends Endocrinol. Metab. 2015, 26, 524–537. [Google Scholar] [CrossRef] [PubMed]
- Muccioli, G.G.; Naslain, D.; Bäckhed, F.; Reigstad, C.S.; Lambert, D.M.; Delzenne, N.M.; Cani, P.D. The Endocannabinoid System Links Gut Microbiota to Adipogenesis. Mol. Syst. Biol. 2010, 6, 392. [Google Scholar] [CrossRef] [PubMed]
- Lacroix, S.; Pechereau, F.; Leblanc, N.; Boubertakh, B.; Houde, A.; Martin, C.; Flamand, N.; Silvestri, C.; Raymond, F.; Di Marzo, V.; et al. Rapid and Concomitant Gut Microbiota and Endocannabinoidome Response to Diet-Induced Obesity in Mice. mSystems 2019, 4, e00407–e00419. [Google Scholar] [CrossRef] [PubMed]
- Lau, B.K.; Cota, D.; Cristino, L.; Borgland, S.L. Endocannabinoid Modulation of Homeostatic and Non-Homeostatic Feeding Circuits. Neuropharmacology 2017, 124, 38–51. [Google Scholar] [CrossRef] [PubMed]
- Gregus, A.M.; Buczynski, M.W. Druggable Targets in Endocannabinoid Signaling. Adv. Exp. Med. Biol. 2020, 1274, 177–201. [Google Scholar] [CrossRef]
- Engeli, S. Dysregulation of the Endocannabinoid System in Obesity. J. Neuroendocrinol. 2008, 20 (Suppl. 1), 110–115. [Google Scholar] [CrossRef]
- DiPatrizio, N.V.; Piomelli, D. The Thrifty Lipids: Endocannabinoids and the Neural Control of Energy Conservation. Trends Neurosci. 2012, 35, 403–411. [Google Scholar] [CrossRef]
- Jager, G.; Witkamp, R.F. The Endocannabinoid System and Appetite: Relevance for Food Reward. Nutr. Res. Rev. 2014, 27, 172–185. [Google Scholar] [CrossRef]
- Forte, N.; Fernández-rilo, A.C.; Palomba, L.; Di Marzo, V.; Cristino, L. Obesity Affects the Microbiota–Gut–Brain Axis and the Regulation Thereof by Endocannabinoids and Related Mediators. Int. J. Mol. Sci. 2020, 21, 1554. [Google Scholar] [CrossRef]
- Engeli, S.; Böhnke, J.; Feldpausch, M.; Gorzelniak, K.; Janke, J.; Bátkai, S.; Pacher, P.; Harvey-White, J.; Luft, F.C.; Sharma, A.M.; et al. Activation of the Peripheral Endocannabinoid System in Human Obesity. Diabetes 2005, 54, 2838–2843. [Google Scholar] [CrossRef]
- Blüher, M.; Engeli, S.; Klöting, N.; Berndt, J.; Fasshauer, M.; Bátkai, S.; Pacher, P.; Schön, M.R.; Jordan, J.; Stumvoll, M. Dysregulation of the Peripheral and Adipose Tissue Endocannabinoid System in Human Abdominal Obesity. Diabetes 2006, 55, 3053–3060. [Google Scholar] [CrossRef]
- Côté, M.; Matias, I.; Lemieux, I.; Petrosino, S.; Alméras, N.; Després, J.P.; Di Marzo, V. Circulating Endocannabinoid Levels, Abdominal Adiposity and Related Cardiometabolic Risk Factors in Obese Men. Int. J. Obes. 2007, 31, 692–699. [Google Scholar] [CrossRef] [PubMed]
- Di Marzo, V.; Verrijken, A.; Hakkarainen, A.; Petrosino, S.; Mertens, I.; Lundbom, N.; Piscitelli, F.; Westerbacka, J.; Soro-Paavonen, A.; Matias, I.; et al. Role of Insulin as a Negative Regulator of Plasma Endocannabinoid Levels in Obese and Nonobese Subjects. Eur. J. Endocrinol. 2009, 161, 715–722. [Google Scholar] [CrossRef] [PubMed]
- Abdulnour, J.; Yasari, S.; Rabasa-Lhoret, R.; Faraj, M.; Petrosino, S.; Piscitelli, F.; Prud’Homme, D.; Di Marzo, V. Circulating Endocannabinoids in Insulin Sensitive vs. Insulin Resistant Obese Postmenopausal Women. A MONET Group Study. Obesity 2014, 22, 211–216. [Google Scholar] [CrossRef] [PubMed]
- Baenas, I.; Miranda-Olivos, R.; Granero, R.; Solé-Morata, N.; Sánchez, I.; Pastor, A.; del Pino-Gutiérrez, A.; Codina, E.; Tinahones, F.J.; Fernández-Formoso, J.A.; et al. Association of Anandamide and 2-Arachidonoylglycerol Concentrations with Clinical Features and Body Mass Index in Eating Disorders and Obesity. Eur. Psychiatry 2023, 66, e49. [Google Scholar] [CrossRef] [PubMed]
- Mattelaer, N.; Van der Schueren, B.; Van Oudenhove, L.; Weltens, N.; Vangoitsenhoven, R. The Circulating and Central Endocannabinoid System in Obesity and Weight Loss. Int. J. Obes. 2024, 48, 1363–1382. [Google Scholar] [CrossRef]
- Knani, I.; Earley, B.J.; Udi, S.; Nemirovski, A.; Hadar, R.; Gammal, A.; Cinar, R.; Hirsch, H.J.; Pollak, Y.; Gross, I.; et al. Targeting the Endocannabinoid/CB1 Receptor System for Treating Obesity in Prader–Willi Syndrome. Mol. Metab. 2016, 5, 1187–1199. [Google Scholar] [CrossRef] [PubMed]
- Fanelli, F.; Mezzullo, M.; Repaci, A.; Belluomo, I.; Ibarra Gasparini, D.; Di Dalmazi, G.; Mastroroberto, M.; Vicennati, V.; Gambineri, A.; Morselli-Labate, A.M.; et al. Profiling Plasma N-Acylethanolamine Levels and Their Ratios as a Biomarker of Obesity and Dysmetabolism. Mol. Metab. 2018, 14, 82–94. [Google Scholar] [CrossRef]
- Benzinou, M.; Chèvre, J.C.; Ward, K.J.; Lecoeur, C.; Dina, C.; Lobbens, S.; Durand, E.; Delplanque, J.; Horber, F.F.; Heude, B.; et al. Endocannabinoid Receptor 1 Gene Variations Increase Risk for Obesity and Modulate Body Mass Index in European Populations. Hum. Mol. Genet. 2008, 17, 1916–1921. [Google Scholar] [CrossRef]
- Sipe, J.C.; Waalen, J.; Gerber, A.; Beutler, E. Overweight and Obesity Associated with a Missense Polymorphism in Fatty Acid Amide Hydrolase (FAAH). Int. J. Obes. 2005, 29, 755–759. [Google Scholar] [CrossRef]
- Monteleone, P.; Tortorella, A.; Martiadis, V.; Di Filippo, C.; Canestrelli, B.; Maj, M. The CDNA 385C to A Missense Polymorphism of the Endocannabinoid Degrading Enzyme Fatty Acid Amide Hydrolase (FAAH) Is Associated with Overweight/Obesity but Not with Binge Eating Disorder in Overweight/Obese Women. Psychoneuroendocrinology 2008, 33, 546–550. [Google Scholar] [CrossRef] [PubMed]
- Col Araz, N.; Nacak, M.; Oguzkan Balci, S.; Benlier, N.; Araz, M.; Pehlivan, S.; Balat, A.; Aynacioglu, A.S. Childhood Obesity and the Role of Dopamine D2 Receptor and Cannabinoid Receptor-1 Gene Polymorphisms. Genet. Test. Mol. Biomark. 2012, 16, 1408–1412. [Google Scholar] [CrossRef]
- Wangensteen, T.; Akselsen, H.; Holmen, J.; Undlien, D.; Retterstøl, L. A Common Haplotype in NAPEPLD Is Associated with Severe Obesity in a Norwegian Population-Based Cohort (the HUNT Study). Obesity 2011, 19, 612–617. [Google Scholar] [CrossRef]
- De Luis, D.A.; Izaola, O.; Aller, R.; Lopez, J.J.; Torres, B.; Diaz, G.; Gomez, E.; Romero, E. Association of G1359A Polymorphism of the Cannabinoid Receptor Gene (CNR1) with Macronutrient Intakes in Obese Females. J. Hum. Nutr. Diet. 2016, 29, 118–123. [Google Scholar] [CrossRef]
- Monteleone, P.; Bifulco, M.; Di Filippo, C.; Gazzerro, P.; Canestrelli, B.; Monteleone, F.; Proto, M.C.; Di Genio, M.; Grimaldi, C.; Maj, M. Association of CNR1 and FAAH Endocannabinoid Gene Polymorphisms with Anorexia Nervosa and Bulimia Nervosa: Evidence for Synergistic Effects. Genes Brain Behav. 2009, 8, 728–732. [Google Scholar] [CrossRef]
- Haughey, H.M.; Marshall, E.; Schacht, J.P.; Louis, A.; Hutchison, K.E. Marijuana Withdrawal and Craving: Influence of the Cannabinoid Receptor 1 (CNR1) and Fatty Acid Amide Hydrolase (FAAH) Genes. Addiction 2008, 103, 1678–1686. [Google Scholar] [CrossRef] [PubMed]
- Kantae, V.; Nahon, K.J.; Straat, M.E.; Bakker, L.E.H.; Harms, A.C.; Van Der Stelt, M.; Hankemeier, T.; Jazet, I.M.; Boon, M.R.; Rensen, P.C.N. Endocannabinoid Tone Is Higher in Healthy Lean South Asian than White Caucasian Men. Sci. Rep. 2017, 7, 7558. [Google Scholar] [CrossRef]
- Monteleone, A.M.; Di Marzo, V.; Monteleone, P.; Dalle Grave, R.; Aveta, T.; Ghoch, M.E.; Piscitelli, F.; Volpe, U.; Calugi, S.; Maj, M. Responses of Peripheral Endocannabinoids and Endocannabinoid-Related Compounds to Hedonic Eating in Obesity. Eur. J. Nutr. 2016, 55, 1799–1805. [Google Scholar] [CrossRef] [PubMed]
- Katona, I.; Freund, T.F. Multiple Functions of Endocannabinoid Signaling in the Brain. Annu. Rev. Neurosci. 2012, 35, 529–558. [Google Scholar] [CrossRef] [PubMed]
- Pertwee, R.G.; Howlett, A.C.; Abood, M.E.; Alexander, S.P.H.; Di Marzo, V.; Elphick, M.R.; Greasley, P.J.; Hansen, H.S.; Kunos, G.; Mackie, K.; et al. International Union of Basic and Clinical Pharmacology. LXXIX. Cannabinoid Receptors and Their Ligands: Beyond CB1 and CB2. Pharmacol. Rev. 2010, 62, 588–631. [Google Scholar] [CrossRef]
- Bellocchio, L.; Lafentre, P.; Cannich, A.; Cota, D.; Puente, N.; Grandes, P.; Chaouloff, F.; Piazza, P.V.; Marsicano, G. Bimodal Control of Stimulated Food Intake by the Endocannabinoid System. Nat. Neurosci. 2010, 13, 281–283. [Google Scholar] [CrossRef]
- Silva, M.H. Chlorpyrifos and Δ9 Tetrahydrocannabinol Exposure and Effects on Parameters Associated with the Endocannabinoid System and Risk Factors for Obesity. Curr. Res. Toxicol. 2021, 2, 296–308. [Google Scholar] [CrossRef]
- Tian, S.; Yan, S.; Meng, Z.; Huang, S.; Sun, W.; Jia, M.; Teng, M.; Zhou, Z.; Zhu, W. New Insights into Bisphenols Induced Obesity in Zebrafish (Danio Rerio): Activation of Cannabinoid Receptor CB1. J. Hazard. Mater. 2021, 418, 126100. [Google Scholar] [CrossRef] [PubMed]
- Calvino, C.; de Almeida, M.M.; Reis-Gomes, C.F.; Andrade, B.d.S.; Neves, G.A.; Pazos-Moura, C.C.; Trevenzoli, I.H. Maternal Obesity Induces Sex-Specific Changes in the Endocannabinoid System of the Hypothalamus and Dorsal Hippocampus of Offspring Associated with Anxiety-like Behavior in Adolescent Female Rats. Horm. Behav. 2024, 166, 105648. [Google Scholar] [CrossRef]
- Fassarella, L.B.; Neto, J.G.O.; Woyames, J.; Santos, G.R.C.; Pereira, H.M.G.; Pazos-Moura, C.C.; Trevenzoli, I.H. Fish Oil Supplementation during Pregnancy Decreases Liver Endocannabinoid System and Lipogenic Markers in Newborn Rats Exposed to Maternal High-Fat Diet. Eur. J. Nutr. 2024, 63, 1565–1579. [Google Scholar] [CrossRef] [PubMed]
- Dias-Rocha, C.P.; Almeida, M.M.; Santana, E.M.; Costa, J.C.B.; Franco, J.G.; Pazos-Moura, C.C.; Trevenzoli, I.H. Maternal High-Fat Diet Induces Sex-Specific Endocannabinoid System Changes in Newborn Rats and Programs Adiposity, Energy Expenditure and Food Preference in Adulthood. J. Nutr. Biochem. 2018, 51, 56–68. [Google Scholar] [CrossRef] [PubMed]
- Dias-Rocha, C.P.; Costa, J.C.B.; Oliveira, Y.S.; Fassarella, L.B.; Woyames, J.; Atella, G.C.; Santos, G.R.C.; Pereira, H.M.G.; Pazos-Moura, C.C.; Almeida, M.M.; et al. Maternal High-Fat Diet Decreases Milk Endocannabinoids with Sex-Specific Changes in the Cannabinoid and Dopamine Signaling and Food Preference in Rat Offspring. Front. Endocrinol. 2023, 14, 1087999. [Google Scholar] [CrossRef]
- Miranda, R.A.; De Almeida, M.M.; Rocha, C.P.D.D.; de Brito Fassarella, L.; De Souza, L.L.; Souza, A.F.P.D.; Andrade, C.B.V.D.; Fortunato, R.S.; Pazos-Moura, C.C.; Trevenzoli, I.H. Maternal High-Fat Diet Consumption Induces Sex-Dependent Alterations of the Endocannabinoid System and Redox Homeostasis in Liver of Adult Rat Offspring. Sci. Rep. 2018, 8, 14751. [Google Scholar] [CrossRef]
- Shen, S.Y.; Yu, R.; Li, W.; Liang, L.F.; Han, Q.Q.; Huang, H.J.; Li, B.; Xu, S.F.; Wu, G.C.; Zhang, Y.Q.; et al. The Neuroprotective Effects of GPR55 against Hippocampal Neuroinflammation and Impaired Adult Neurogenesis in CSDS Mice. Neurobiol. Dis. 2022, 169, 105743. [Google Scholar] [CrossRef]
- Dohnalová, L.; Lundgren, P.; Carty, J.R.E.; Goldstein, N.; Wenski, S.L.; Nanudorn, P.; Thiengmag, S.; Huang, K.P.; Litichevskiy, L.; Descamps, H.C.; et al. A Microbiome-Dependent Gut–Brain Pathway Regulates Motivation for Exercise. Nature 2022, 612, 739–747. [Google Scholar] [CrossRef]
- Ghislain, J.; Poitout, V. Targeting Lipid GPCRs to Treat Type 2 Diabetes Mellitus—Progress and Challenges. Nat. Rev. Endocrinol. 2021, 17, 162–175. [Google Scholar] [CrossRef] [PubMed]
- Aguilera Vasquez, N.; Nielsen, D.E. The Endocannabinoid System and Eating Behaviours: A Review of the Current State of the Evidence. Curr. Nutr. Rep. 2022, 11, 665–674. [Google Scholar] [CrossRef]
- Alexander, S.P.H.; Christopoulos, A.; Davenport, A.P.; Kelly, E.; Marrion, N.V.; Peters, J.A.; Faccenda, E.; Harding, S.D.; Pawson, A.J.; Sharman, J.L.; et al. THE CONCISE GUIDE TO PHARMACOLOGY 2017/18: G Protein-Coupled Receptors. Br. J. Pharmacol. 2017, 174 (Suppl. 2), S23–S144. [Google Scholar] [CrossRef]
- Ye, L.; Cao, Z.; Wang, W.; Zhou, N. New Insights in Cannabinoid Receptor Structure and Signaling. Curr. Mol. Pharmacol. 2019, 12, 239–248. [Google Scholar] [CrossRef]
- Huang, S.; Xiao, P.; Sun, J. Structural Basis of Signaling of Cannabinoids Receptors: Paving a Way for Rational Drug Design in Controling Mutiple Neurological and Immune Diseases. Signal Transduct. Target. Ther. 2020, 5, 127. [Google Scholar] [CrossRef]
- Krishna Kumar, K.; Shalev-Benami, M.; Robertson, M.J.; Hu, H.; Banister, S.D.; Hollingsworth, S.A.; Latorraca, N.R.; Kato, H.E.; Hilger, D.; Maeda, S.; et al. Structure of a Signaling Cannabinoid Receptor 1-G Protein Complex. Cell 2019, 176, 448–458. [Google Scholar] [CrossRef]
- Brust, C.A.; Swanson, M.A.; Bohn, L.M. Structural and Functional Insights into the G Protein-Coupled Receptors: CB1 and CB2. Biochem. Soc. Trans. 2023, 51, 1533–1543. [Google Scholar] [CrossRef]
- Al-Zoubi, R.; Morales, P.; Reggio, P.H. Structural Insights into Cb1 Receptor Biased Signaling. Int. J. Mol. Sci. 2019, 20, 1837. [Google Scholar] [CrossRef]
- Chen, X.; Yang, W.; Fan, Y.; Luo, J.; Hong, K.; Wang, Z.; Yan, J.; Chen, X.; Lu, J.; Benovic, J.; et al. Structural Determinants in the Second Intracellular Loop of the Human Cannabinoid CB 1 Receptor Mediate Selective Coupling to G s and G i. Br. J. Pharmacol. 2010, 161, 1817–1834. [Google Scholar] [CrossRef]
- Munro, S.; Thomas, K.L.; Abu-Shaar, M. Molecular Characterization of a Peripheral Receptor for Cannabinoids. Nature 1993, 365, 61–65. [Google Scholar] [CrossRef] [PubMed]
- Bietar, B.; Tanner, S.; Lehmann, C. Neuroprotection and Beyond: The Central Role of CB1 and CB2 Receptors in Stroke Recovery. Int. J. Mol. Sci. 2023, 24, 16728. [Google Scholar] [CrossRef] [PubMed]
- Howlett, A.C.; Abood, M.E. CB1 and CB2 Receptor Pharmacology. Adv. Pharmacol. 2017, 80, 169–206. [Google Scholar] [CrossRef]
- Ashton, J.; Wright, J.; McPartland, J.; Tyndall, J. Cannabinoid CB1 and CB2 Receptor Ligand Specificity and the Development of CB2-Selective Agonists. Curr. Med. Chem. 2008, 15, 1428–1443. [Google Scholar] [CrossRef]
- Krishna Kumar, K.; Robertson, M.J.; Thadhani, E.; Wang, H.; Suomivuori, C.M.; Powers, A.S.; Ji, L.; Nikas, S.P.; Dror, R.O.; Inoue, A.; et al. Structural Basis for Activation of CB1 by an Endocannabinoid Analog. Nat. Commun. 2023, 14, 2672. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Shen, L.; Hua, T.; Liu, Z.J. Structural and Functional Insights into Cannabinoid Receptors. Trends Pharmacol. Sci. 2020, 41, 665–677. [Google Scholar] [CrossRef] [PubMed]
- Hua, T.; Vemuri, K.; Nikas, S.P.; Wu, Y.; Qu, L.; Pu, M.; Korde, A.; Jiang, S.; Ho, J.-H.; Han, G.W.; et al. Crystal Structures of Agonist-Bound Human Cannabinoid Receptor CB1. Nature 2025. online ahead of print. [Google Scholar] [CrossRef]
- Li, X.; Hua, T.; Vemuri, K.; Ho, J.H.; Wu, Y.; Wu, L.; Popov, P.; Benchama, O.; Zvonok, N.; Locke, K.; et al. Crystal Structure of the Human Cannabinoid Receptor CB2. Cell 2019, 176, 459–467. [Google Scholar] [CrossRef] [PubMed]
- Xing, C.; Zhuang, Y.; Xu, T.H.; Feng, Z.; Zhou, X.E.; Chen, M.; Wang, L.; Meng, X.; Xue, Y.; Wang, J.; et al. Cryo-EM Structure of the Human Cannabinoid Receptor CB2-Gi Signaling Complex. Cell 2020, 180, 645–654. [Google Scholar] [CrossRef] [PubMed]
- Busquets-Garcia, A.; Bains, J.; Marsicano, G. CB 1 Receptor Signaling in the Brain: Extracting Specificity from Ubiquity. Neuropsychopharmacology 2018, 43, 4–20. [Google Scholar] [CrossRef]
- Yang, X.; Wang, X.; Xu, Z.; Wu, C.; Zhou, Y.; Wang, Y.; Lin, G.; Li, K.; Wu, M.; Xia, A.; et al. Molecular Mechanism of Allosteric Modulation for the Cannabinoid Receptor CB1. Nat. Chem. Biol. 2022, 18, 831–840. [Google Scholar] [CrossRef]
- Li, X.; Chang, H.; Bouma, J.; de Paus, L.V.; Mukhopadhyay, P.; Paloczi, J.; Mustafa, M.; van der Horst, C.; Kumar, S.S.; Wu, L.; et al. Structural Basis of Selective Cannabinoid CB2 Receptor Activation. Nat. Commun. 2023, 14, 1447. [Google Scholar] [CrossRef]
- Di Marzo, V.; De Petrocellis, L. Why Do Cannabinoid Receptors Have More than One Endogenous Ligand? Philos. Trans. R. Soc. Lond. B Biol. Sci. 2012, 367, 3216–3228. [Google Scholar] [CrossRef]
- De Petrocellis, L.; Di Marzo, V. Non-CB1, Non-CB2 Receptors for Endocannabinoids, Plant Cannabinoids, and Synthetic Cannabimimetics: Focus on G-Protein-Coupled Receptors and Transient Receptor Potential Channels. J. Neuroimmune Pharmacol. 2010, 5, 103–121. [Google Scholar] [CrossRef]
- De Petrocellis, L.; Nabissi, M.; Santoni, G.; Ligresti, A. Actions and Regulation of Ionotropic Cannabinoid Receptors. Adv. Pharmacol. 2017, 80, 249–289. [Google Scholar] [CrossRef]
- Liu, J.; Wang, L.; Harvey-White, J.; Osei-Hyiaman, D.; Razdan, R.; Gong, Q.; Chan, A.C.; Zhou, Z.; Huang, B.X.; Kim, H.Y.; et al. A Biosynthetic Pathway for Anandamide. Proc. Natl. Acad. Sci. USA 2006, 103, 13345–13350. [Google Scholar] [CrossRef]
- Murataeva, N.; Straiker, A.; MacKie, K. Parsing the Players: 2-Arachidonoylglycerol Synthesis and Degradation in the CNS. Br. J. Pharmacol. 2014, 171, 1379–1391. [Google Scholar] [CrossRef]
- Kano, M.; Ohno-Shosaku, T.; Hashimotodani, Y.; Uchigashima, M.; Watanabe, M. Endocannabinoid-Mediated Control of Synaptic Transmission. Physiol. Rev. 2009, 89, 309–380. [Google Scholar] [CrossRef]
- Katona, I.; Freund, T.F. Endocannabinoid Signaling as a Synaptic Circuit Breaker in Neurological Disease. Nat. Med. 2008, 14, 923–930. [Google Scholar] [CrossRef]
- Castillo, P.E.; Younts, T.J.; Chávez, A.E.; Hashimotodani, Y. Endocannabinoid Signaling and Synaptic Function. Neuron 2012, 76, 70–81. [Google Scholar] [CrossRef]
- Rouzer, C.A.; Marnett, L.J. Endocannabinoid Oxygenation by Cyclooxygenases, Lipoxygenases, and Cytochromes P450: Cross-Talk between the Eicosanoid and Endocannabinoid Signaling Pathways. Chem. Rev. 2011, 111, 5899–5921. [Google Scholar] [CrossRef] [PubMed]
- Fezza, F.; Bari, M.; Florio, R.; Talamonti, E.; Feole, M.; Maccarrone, M. Endocannabinoids, Related Compounds and Their Metabolic Routes. Molecules 2014, 19, 17078–17106. [Google Scholar] [CrossRef] [PubMed]
- Tsuboi, K.; Sun, Y.X.; Okamoto, Y.; Araki, N.; Tonai, T.; Ueda, N. Molecular Characterization of N-Acylethanolamine-Hydrolyzing Acid Amidase, a Novel Member of the Choloylglycine Hydrolase Family with Structural and Functional Similarity to Acid Ceramidase. J. Biol. Chem. 2005, 280, 11082–11092. [Google Scholar] [CrossRef]
- Blankman, J.L.; Simon, G.M.; Cravatt, B.F. A Comprehensive Profile of Brain Enzymes That Hydrolyze the Endocannabinoid 2-Arachidonoylglycerol. Chem. Biol. 2007, 14, 1347–1356. [Google Scholar] [CrossRef] [PubMed]
- Parsons, L.H.; Hurd, Y.L. Endocannabinoid Signalling in Reward and Addiction. Nat. Rev. Neurosci. 2015, 16, 579–594. [Google Scholar] [CrossRef]
- Srivastava, R.K.; Ruiz de Azua, I.; Conrad, A.; Purrio, M.; Lutz, B. Cannabinoid CB1 Receptor Deletion from Catecholaminergic Neurons Protects from Diet-Induced Obesity. Int. J. Mol. Sci. 2022, 23, 12635. [Google Scholar] [CrossRef]
- Ravinet Trillou, C.; Delgorge, C.; Menet, C.; Arnone, M.; Soubrié, P. CB1 Cannabinoid Receptor Knockout in Mice Leads to Leanness, Resistance to Diet-Induced Obesity and Enhanced Leptin Sensitivity. Int. J. Obes. 2004, 28, 640–648. [Google Scholar] [CrossRef]
- Cota, D.; Marsicano, G.; Tschöp, M.; Grübler, Y.; Flachskamm, C.; Schubert, M.; Auer, D.; Yassouridis, A.; Thöne-Reineke, C.; Ortmann, S.; et al. The Endogenous Cannabinoid System Affects Energy Balance via Central Orexigenic Drive and Peripheral Lipogenesis. J. Clin. Investig. 2003, 112, 423–431. [Google Scholar] [CrossRef]
- De Azua, I.R.; Mancini, G.; Srivastava, R.K.; Rey, A.A.; Cardinal, P.; Tedesco, L.; Zingaretti, C.M.; Sassmann, A.; Quarta, C.; Schwitter, C.; et al. Adipocyte Cannabinoid Receptor CB1 Regulates Energy Homeostasis and Alternatively Activated Macrophages. J. Clin. Investig. 2017, 127, 4148–4162. [Google Scholar] [CrossRef] [PubMed]
- Cardinal, P.; Bellocchio, L.; Clark, S.; Cannich, A.; Klugmann, M.; Lutz, B.; Marsicano, G.; Cota, D. Hypothalamic CB1 Cannabinoid Receptors Regulate Energy Balance in Mice. Endocrinology 2012, 153, 4136–4143. [Google Scholar] [CrossRef] [PubMed]
- Quarta, C.; Bellocchio, L.; Mancini, G.; Mazza, R.; Cervino, C.; Braulke, L.J.; Fekete, C.; Latorre, R.; Nanni, C.; Bucci, M.; et al. CB1 Signaling in Forebrain and Sympathetic Neurons Is a Key Determinant of Endocannabinoid Actions on Energy Balance. Cell Metab. 2010, 11, 273–285. [Google Scholar] [CrossRef]
- Bordicchia, M.; Battistoni, I.; Mancinelli, L.; Giannini, E.; Refi, G.; Minardi, D.; Muzzonigro, G.; Mazzucchelli, R.; Montironi, R.; Piscitelli, F.; et al. Cannabinoid CB1 Receptor Expression in Relation to Visceral Adipose Depots, Endocannabinoid Levels, Microvascular Damage, and the Presence of the Cnr1 A3813G Variant in Humans. Metabolism 2010, 59, 734–741. [Google Scholar] [CrossRef]
- Tiwari, A.K.; Zai, C.C.; Likhodi, O.; Lisker, A.; Singh, D.; Souza, R.P.; Batra, P.; Zaidi, S.H.E.; Chen, S.; Liu, F.; et al. A Common Polymorphism in the Cannabinoid Receptor 1 (CNR1) Gene Is Associated with Antipsychotic-Induced Weight Gain in Schizophrenia. Neuropsychopharmacology 2010, 35, 1315–1324. [Google Scholar] [CrossRef]
- Mutombo, P.B.w.B.; Yamasaki, M.; Nabika, T.; Shiwaku, K. Cannabinoid Receptor 1 (CNR1) 4895 C/T Genetic Polymorphism Was Associated with Obesity in Japanese Men. J. Atheroscler. Thromb. 2012, 19, 779–785. [Google Scholar] [CrossRef] [PubMed]
- Peeters, A.; Beckers, S.; Mertens, I.; Hul, W.; Gaal, L. The G1422A Variant of the Cannabinoid Receptor Gene (CNR1) Is Associated with Abdominal Adiposity in Obese Men. Endocrine 2007, 31, 138–141. [Google Scholar] [CrossRef] [PubMed]
- Doris, J.M.; Millar, S.A.; Idris, I.; O’Sullivan, S.E. Genetic Polymorphisms of the Endocannabinoid System in Obesity and Diabetes. Diabetes Obes. Metab. 2019, 21, 382–387. [Google Scholar] [CrossRef]
- Jaeger, J.P.; Mattevi, V.S.; Callegari-Jacques, S.M.; Hutz, M.H. Cannabinoid Type-1 Receptor Gene Polymorphisms Are Associated with Central Obesity in a Southern Brazilian Population. Dis. Markers 2008, 25, 67–74. [Google Scholar] [CrossRef]
- Schleinitz, D.; Carmienke, S.; Böttcher, Y.; Tnjes, A.; Berndt, J.; Klöting, N.; Enigk, B.; Müller, I.; Dietrich, K.; Breitfeld, J.; et al. Role of Genetic Variation in the Cannabinoid Type 1 Receptor Gene (CNR1) in the Pathophysiology of Human Obesity. Pharmacogenomics 2010, 11, 693–702. [Google Scholar] [CrossRef]
- Ishiguro, H.; Carpio, O.; Horiuchi, Y.; Shu, A.; Higuchi, S.; Schanz, N.; Benno, R.; Arinami, T.; Onaivi, E.S. A Nonsynonymous Polymorphism in Cannabinoid CB2 Receptor Gene Is Associated with Eating Disorders in Humans and Food Intake Is Modified in Mice by Its Ligands. Synapse 2010, 64, 92–96. [Google Scholar] [CrossRef] [PubMed]
- Verty, A.N.A.; Stefanidis, A.; McAinch, A.J.; Hryciw, D.H.; Oldfield, B. Anti-Obesity Effect of the CB2 Receptor Agonist JWH-015 in Diet-Induced Obese Mice. PLoS ONE 2015, 10, e0140592. [Google Scholar] [CrossRef]
- Agudo, J.; Martin, M.; Roca, C.; Molas, M.; Bura, A.S.; Zimmer, A.; Bosch, F.; Maldonado, R. Deficiency of CB2 Cannabinoid Receptor in Mice Improves Insulin Sensitivity but Increases Food Intake and Obesity with Age. Diabetologia 2010, 53, 2629–2640. [Google Scholar] [CrossRef]
- Schmitz, K.; Mangels, N.; Häussler, A.; Ferreirós, N.; Fleming, I.; Tegeder, I. Pro-Inflammatory Obesity in Aged Cannabinoid-2 Receptor-Deficient Mice. Int. J. Obes. 2016, 40, 366–379. [Google Scholar] [CrossRef]
- Rossi, F.; Bellini, G.; Luongo, L.; Manzo, I.; Tolone, S.; Tortora, C.; Bernardo, M.E.; Grandone, A.; Conforti, A.; Docimo, L.; et al. Cannabinoid Receptor 2 as Antiobesity Target: Inflammation, Fat Storage, and Browning Modulation. J. Clin. Endocrinol. Metab. 2016, 101, 3469–3478. [Google Scholar] [CrossRef] [PubMed]
- de Luis, D.A.; Izaola, O.; Primo, D.; de la Fuente, B.; Aller, R. Polymorphism Rs3123554 in the Cannabinoid Receptor Gene Type 2 (CNR2) Reveals Effects on Body Weight and Insulin Resistance in Obese Subjects. Endocrinol. Diabetes Nutr. 2017, 64, 440–445. [Google Scholar] [CrossRef] [PubMed]
- Tourĩo, C.; Oveisi, F.; Lockney, J.; Piomelli, D.; Maldonado, R. FAAH Deficiency Promotes Energy Storage and Enhances the Motivation for Food. Int. J. Obes. 2010, 34, 557–568. [Google Scholar] [CrossRef]
- Brown, W.H.; Gillum, M.P.; Lee, H.Y.; Camporez, J.P.G.; Zhang, X.M.; Jeong, J.K.; Alves, T.C.; Erion, D.M.; Guigni, B.A.; Kahn, M.; et al. Fatty Acid Amide Hydrolase Ablation Promotes Ectopic Lipid Storage and Insulin Resistance Due to Centrally Mediated Hypothyroidism. Proc. Natl. Acad. Sci. USA 2012, 109, 14966–14971. [Google Scholar] [CrossRef]
- Vaitheesvaran, B.; Yang, L.; Hartil, K.; Glaser, S.; Yazulla, S.; Bruce, J.E.; Kurland, I.J. Peripheral Effects of FAAH Deficiency on Fuel and Energy Homeostasis: Role of Dysregulated Lysine Acetylation. PLoS ONE 2012, 7, e33717. [Google Scholar] [CrossRef]
- Balsevich, G.; Petrie, G.N.; Heinz, D.E.; Singh, A.; Aukema, R.J.; Hunker, A.C.; Vecchiarelli, H.A.; Yau, H.; Sticht, M.; Thompson, R.J.; et al. A Genetic Variant of Fatty Acid Amide Hydrolase (FAAH) Exacerbates Hormone-Mediated Orexigenic Feeding in Mice. Elife 2023, 12, e81919. [Google Scholar] [CrossRef] [PubMed]
- Sipe, J.C.; Scott, T.M.; Murray, S.; Harismendy, O.; Simon, G.M.; Cravatt, B.F.; Waalen, J. Biomarkers of Endocannabinoid System Activation in Severe Obesity. PLoS ONE 2010, 5, e8792. [Google Scholar] [CrossRef] [PubMed]
- De Moraes Martins, C.J.; Genelhu, V.; Pimentel, M.M.G.; Celoria, B.M.J.; Mangia, R.F.; Aveta, T.; Silvestri, C.; Di Marzo, V.; Francischetti, E.A. Circulating Endocannabinoids and the Polymorphism 385C>A in Fatty Acid Amide Hydrolase (FAAH) Gene May Identify the Obesity Phenotype Related to Cardiometabolic Risk: A Study Conducted in a Brazilian Population of Complex Interethnic Admixture. PLoS ONE 2015, 10, e0142728. [Google Scholar] [CrossRef]
- Zhang, Y.; Sonnenberg, G.E.; Baye, T.M.; Littrell, J.; Gunnell, J.; DeLaForest, A.; MacKinney, E.; Hillard, C.J.; Kissebah, A.H.; Olivier, M.; et al. Obesity-Related Dyslipidemia Associated with FAAH, Independent of Insulin Response, in Multigenerational Families of Northern European Descent. Pharmacogenomics 2009, 10, 1929–1939. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Cortes, O.D.; Trujillo-Sánchez, F.; Sierra-Ruelas, E.; Martinez-Lopez, E.; Di Marzo, V.; Vizmanos, B. Association between the FAAH C385A Variant (Rs324420) and Obesity-Related Traits: A Systematic Review. Int. J. Obes. 2024, 48, 188–201. [Google Scholar] [CrossRef]
- Balsevich, G.; Sticht, M.; Bowles, N.P.; Singh, A.; Lee, T.T.Y.; Li, Z.; Chelikani, P.K.; Lee, F.S.; Borgland, S.L.; Hillard, C.J.; et al. Role for Fatty Acid Amide Hydrolase (Faah) in the Leptin-Mediated Effects on Feeding and Energy Balance. Proc. Natl. Acad. Sci. USA 2018, 115, 7605–7610. [Google Scholar] [CrossRef]
- Yagin, N.L.; Aliasgari, F.; Aliasgharzadeh, S.; Mahdavi, R.; Akbarzadeh, M. The Influence of the Fatty Acid Amide Hydrolase 385C>A Single Nucleotide Polymorphisms on Obesity Susceptibility. Mol. Biol. Rep. 2019, 46, 5049–5055. [Google Scholar] [CrossRef]
- Thethi, T.K.; Sigel, A.; Japa, S.; Katalenich, B.; Liu, S.; Nguyen, T.; Larrazolo, J.; Syu, S.; Carefoot, E.; McDuffie, R.; et al. Racial and Sex Differences in the Polymorphisms of the Endocannabinoid Receptor Genes in Obesity. J. Diabetes Complicat. 2020, 34, 107682. [Google Scholar] [CrossRef]
- Mansouri, E.; Nobrega, J.N.; Hill, M.N.; Tyndale, R.F.; Lee, F.S.; Hendershot, C.S.; Best, L.M.; Di Ciano, P.; Balsevich, G.; Sloan, M.E.; et al. D3 Dopamine Receptors and a Missense Mutation of Fatty Acid Amide Hydrolase Linked in Mouse and Men: Implication for Addiction. Neuropsychopharmacology 2020, 45, 745–752. [Google Scholar] [CrossRef]
- Vinci, M.; Greco, D.; Treccarichi, S.; Musumeci, A.; Gloria, A.; Federico, C.; Saccone, S.; Calì, F.; Sirrs, S. Investigating the Role of a Novel Hemizygous FAAH2 Variant in Neurological and Metabolic Disorders. Gene 2025, 966, 149703. [Google Scholar] [CrossRef]
- Chon, S.H.; Douglass, J.D.; Zhou, Y.X.; Malik, N.; Dixon, J.L.; Brinker, A.; Quadro, L.; Storch, J. Over-Expression of Monoacylglycerol Lipase (MGL) in Small Intestine Alters Endocannabinoid Levels and Whole Body Energy Balance, Resulting in Obesity. PLoS ONE 2012, 7, e43962. [Google Scholar] [CrossRef]
- Jung, K.M.; Clapper, J.R.; Fu, J.; D’Agostino, G.; Guijarro, A.; Thongkham, D.; Avanesian, A.; Astarita, G.; DiPatrizio, N.V.; Frontini, A.; et al. 2-Arachidonoylglycerol Signaling in Forebrain Regulates Systemic Energy Metabolism. Cell Metab. 2012, 15, 299–310. [Google Scholar] [CrossRef] [PubMed]
- Douglass, J.D.; Zhou, Y.X.; Wu, A.; Zadrogra, J.A.; Gajda, A.M.; Lackey, A.I.; Lang, W.; Chevalier, K.M.; Sutton, S.W.; Zhang, S.P.; et al. Global Deletion of MGL in Mice Delays Lipid Absorption and Alters Energy Homeostasis and Diet-Induced Obesity. J. Lipid Res. 2015, 56, 1153–1171. [Google Scholar] [CrossRef]
- Yoshida, K.; Kita, Y.; Tokuoka, S.M.; Hamano, F.; Yamazaki, M.; Sakimura, K.; Kano, M.; Shimizu, T. Monoacylglycerol Lipase Deficiency Affects Diet-Induced Obesity, Fat Absorption, and Feeding Behavior in CB1 Cannabinoid Receptor-Deficient Mice. FASEB J. 2019, 33, 2484–2497. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.M.; Kanoski, S.E. Homeostatic and Non-Homeostatic Controls of Feeding Behavior: Distinct vs. Common Neural Systems. Physiol. Behav. 2018, 193 Pt B, 223–231. [Google Scholar] [CrossRef]
- Romano, A.; Friuli, M.; Cifani, C.; Gaetani, S. Oxytocin in the Neural Control of Eating: At the Crossroad between Homeostatic and Non-Homeostatic Signals. Neuropharmacology 2020, 171, 108082. [Google Scholar] [CrossRef] [PubMed]
- Ruiz de Azua, I.; Lutz, B. Multiple Endocannabinoid-Mediated Mechanisms in the Regulation of Energy Homeostasis in Brain and Peripheral Tissues. Cell. Mol. Life Sci. 2019, 76, 1341–1363. [Google Scholar] [CrossRef]
- Gropp, E.; Shanabrough, M.; Borok, E.; Xu, A.W.; Janoschek, R.; Buch, T.; Plum, L.; Balthasar, N.; Hampel, B.; Waisman, A.; et al. Agouti-Related Peptide-Expressing Neurons Are Mandatory for Feeding. Nat. Neurosci. 2005, 8, 1289–1291. [Google Scholar] [CrossRef]
- Balthasar, N.; Dalgaard, L.T.; Lee, C.E.; Yu, J.; Funahashi, H.; Williams, T.; Ferreira, M.; Tang, V.; McGovern, R.A.; Kenny, C.D.; et al. Divergence of Melanocortin Pathways in the Control of Food Intake and Energy Expenditure. Cell 2005, 123, 493–505. [Google Scholar] [CrossRef] [PubMed]
- Waterson, M.J.; Horvath, T.L. Neuronal Regulation of Energy Homeostasis: Beyond the Hypothalamus and Feeding. Cell Metab. 2015, 22, 962–970. [Google Scholar] [CrossRef] [PubMed]
- Timper, K.; Brüning, J.C. Hypothalamic Circuits Regulating Appetite and Energy Homeostasis: Pathways to Obesity. Dis. Model. Mech. 2017, 10, 679–689. [Google Scholar] [CrossRef]
- Morales, I.; Berridge, K.C. ‘Liking’ and ‘Wanting’ in Eating and Food Reward: Brain Mechanisms and Clinical Implications. Physiol. Behav. 2020, 227, 113152. [Google Scholar] [CrossRef]
- Yeung, A.Y.; Tadi, P. Physiology, Obesity Neurohormonal Appetite And Satiety Control. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Ceccarini, J.; Weltens, N.; Ly, H.G.; Tack, J.; Van Oudenhove, L.; Van Laere, K. Association between Cerebral Cannabinoid 1 Receptor Availability and Body Mass Index in Patients with Food Intake Disorders and Healthy Subjects: A [18F]MK-9470 PET Study. Transl. Psychiatry 2016, 6, e853. [Google Scholar] [CrossRef]
- Zeltser, L.M.; Seeley, R.J.; Tschöp, M.H. Synaptic Plasticity in Neuronal Circuits Regulating Energy Balance. Nat. Neurosci. 2012, 15, 1336–1342. [Google Scholar] [CrossRef] [PubMed]
- Cardinal, P.; André, C.; Quarta, C.; Bellocchio, L.; Clark, S.; Elie, M.; Leste-Lasserre, T.; Maitre, M.; Gonzales, D.; Cannich, A.; et al. CB1 Cannabinoid Receptor in SF1-Expressing Neurons of the Ventromedial Hypothalamus Determines Metabolic Responses to Diet and Leptin. Mol. Metab. 2014, 3, 705–716. [Google Scholar] [CrossRef] [PubMed]
- Di Marzo, V.; Goparaju, S.K.; Wang, L.; Liu, J.; Bátkai, S.; Járai, Z.; Fezza, F.; Miura, G.I.; Palmiter, R.D.; Sugiura, T.; et al. Leptin-Regulated Endocannabinoids Are Involved in Maintaining Food Intake. Nature 2001, 410, 822–825. [Google Scholar] [CrossRef]
- O’Hare, J.D.; Zieliński, E.; Cheng, B.; Scherer, T.; Buettner, C. Central Endocannabinoid Signaling Regulates Hepatic Glucose Production and Systemic Lipolysis. Diabetes 2011, 60, 1055–1062. [Google Scholar] [CrossRef]
- Romero-Zerbo, S.Y.; Bermúdez-Silva, F.J. Cannabinoids, Eating Behaviour, and Energy Homeostasis. Drug Test. Anal. 2014, 6, 52–58. [Google Scholar] [CrossRef]
- Saucisse, N.; Mazier, W.; Simon, V.; Binder, E.; Catania, C.; Bellocchio, L.; Romanov, R.A.; Léon, S.; Matias, I.; Zizzari, P.; et al. Functional Heterogeneity of POMC Neurons Relies on MTORC1 Signaling. Cell Rep. 2021, 37, 109800. [Google Scholar] [CrossRef] [PubMed]
- Morozov, Y.M.; Koch, M.; Rakic, P.; Horvath, T.L. Cannabinoid Type 1 Receptor-Containing Axons Innervate NPY/AgRP Neurons in the Mouse Arcuate Nucleus. Mol. Metab. 2017, 6, 374–381. [Google Scholar] [CrossRef] [PubMed]
- Jais, A.; Brüning, J.C. Arcuate Nucleus-Dependent Regulation of Metabolism-Pathways to Obesity and Diabetes Mellitus. Endocr. Rev. 2022, 43, 314–328. [Google Scholar] [CrossRef] [PubMed]
- Scerif, M.; Füzesi, T.; Thomas, J.D.; Kola, B.; Grossman, A.B.; Fekete, C.; Korbonits, M. CB1 Receptor Mediates the Effects of Glucocorticoids on AMPK Activity in the Hypothalamus. J. Endocrinol. 2013, 219, 79–88. [Google Scholar] [CrossRef]
- Huang, H.; Acuna-Goycolea, C.; Li, Y.; Cheng, H.M.; Obrietan, K.; Van Den Pol, A.N. Cannabinoids Excite Hypothalamic Melanin-Concentrating Hormone but Inhibit Hypocretin/Orexin Neurons: Implications for Cannabinoid Actions on Food Intake and Cognitive Arousal. J. Neurosci. 2007, 27, 4870–4881. [Google Scholar] [CrossRef]
- Cristino, L.; Busetto, G.; Imperatore, R.; Ferrandino, I.; Palomba, L.; Silvestri, C.; Petrosino, S.; Orlando, P.; Bentivoglio, M.; Mackie, K.; et al. Obesity-Driven Synaptic Remodeling Affects Endocannabinoid Control of Orexinergic Neurons. Proc. Natl. Acad. Sci. USA 2013, 110, E2229–E2238. [Google Scholar] [CrossRef]
- Jo, Y.H.; Chen, Y.J.J.; Chua, S.C.; Talmage, D.A.; Role, L.W. Integration of Endocannabinoid and Leptin Signaling in an Appetite-Related Neural Circuit. Neuron 2005, 48, 1055–1066. [Google Scholar] [CrossRef]
- Crosby, K.M.; Inoue, W.; Pittman, Q.J.; Bains, J.S. Endocannabinoids Gate State-Dependent Plasticity of Synaptic Inhibition in Feeding Circuits. Neuron 2011, 71, 529–541. [Google Scholar] [CrossRef]
- Jamshidi, N.; Taylor, D.A. Anandamide Administration into the Ventromedial Hypothalamus Stimulates Appetite in Rats. Br. J. Pharmacol. 2001, 134, 1151–1154. [Google Scholar] [CrossRef]
- Koch, M.; Varela, L.; Kim, J.G.; Kim, J.D.; Hernández-Nuño, F.; Simonds, S.E.; Castorena, C.M.; Vianna, C.R.; Elmquist, J.K.; Morozov, Y.M.; et al. Hypothalamic POMC Neurons Promote Cannabinoid-Induced Feeding. Nature 2015, 519, 45–50. [Google Scholar] [CrossRef]
- Cruz-Martínez, A.M.; Tejas-Juárez, J.G.; Mancilla-Díaz, J.M.; Florán-Garduño, B.; López-Alonso, V.E.; Escartín-Pérez, R.E. CB1 Receptors in the Paraventricular Nucleus of the Hypothalamus Modulate the Release of 5-HT and GABA to Stimulate Food Intake in Rats. Eur. Neuropsychopharmacol. 2018, 28, 1247–1259. [Google Scholar] [CrossRef] [PubMed]
- Tasker, J.G.; Di, S.; Malcher-Lopes, R. Minireview: Rapid Glucocorticoid Signaling via Membrane-Associated Receptors. Endocrinology 2006, 147, 5549–5556. [Google Scholar] [CrossRef]
- Bassareo, V.; De Luca, M.A.; Di Chiara, G. Differential Expression of Motivational Stimulus Properties by Dopamine in Nucleus Accumbens Shell versus Core and Prefrontal Cortex. J. Neurosci. 2002, 22, 4709–4719. [Google Scholar] [CrossRef]
- Dazzi, L.; Talani, G.; Biggio, F.; Utzeri, C.; Lallai, V.; Licheri, V.; Lutzu, S.; Mostallino, M.C.; Secci, P.P.; Biggio, G.; et al. Involvement of the Cannabinoid CB1 Receptor in Modulation of Dopamine Output in the Prefrontal Cortex Associated with Food Restriction in Rats. PLoS ONE 2014, 9, e92224. [Google Scholar] [CrossRef] [PubMed]
- Solinas, M.; Justinova, Z.; Goldberg, S.R.; Tanda, G. Anandamide Administration Alone and after Inhibition of Fatty Acid Amide Hydrolase (FAAH) Increases Dopamine Levels in the Nucleus Accumbens Shell in Rats. J. Neurochem. 2006, 98, 408–419. [Google Scholar] [CrossRef] [PubMed]
- Winters, B.D.; Krüger, J.M.; Huang, X.; Gallaher, Z.R.; Ishikawa, M.; Czaja, K.; Krueger, J.M.; Huang, Y.H.; Schlüter, O.M.; Dong, Y. Cannabinoid Receptor 1-Expressing Neurons in the Nucleus Accumbens. Proc. Natl. Acad. Sci. USA 2012, 109, E2717–E2725. [Google Scholar] [CrossRef] [PubMed]
- Labouèbe, G.; Liu, S.; Dias, C.; Zou, H.; Wong, J.C.Y.; Karunakaran, S.; Clee, S.M.; Phillips, A.G.; Boutrel, B.; Borgland, S.L. Insulin Induces Long-Term Depression of Ventral Tegmental Area Dopamine Neurons via Endocannabinoids. Nat. Neurosci. 2013, 16, 300–308. [Google Scholar] [CrossRef]
- Ruiz de Azua, I.; Martin-Garcia, E.; Domingo-Rodriguez, L.; Aparisi Rey, A.; Pascual Cuadrado, D.; Islami, L.; Turunen, P.; Remmers, F.; Lutz, B.; Maldonado, R. Cannabinoid CB1 Receptor in Dorsal Telencephalic Glutamatergic Neurons Drives Overconsumption of Palatable Food and Obesity. Neuropsychopharmacology 2021, 46, 982–3991. [Google Scholar] [CrossRef]
- Massa, F.; Mancini, G.; Schmidt, H.; Steindel, F.; Mackie, K.; Angioni, C.; Oliet, S.H.R.; Geisslinger, G.; Lutz, B. Alterations in the Hippocampal Endocannabinoid System in Diet-Induced Obese Mice. J. Neurosci. 2010, 30, 6273–6281. [Google Scholar] [CrossRef]
- Chen, Y.; Lin, Y.C.; Kuo, T.W.; Knight, Z.A. Sensory Detection of Food Rapidly Modulates Arcuate Feeding Circuits. Cell 2015, 160, 829–841. [Google Scholar] [CrossRef]
- Pelchat, M.L.; Johnson, A.; Chan, R.; Valdez, J.; Ragland, J.D. Images of Desire: Food-Craving Activation during FMRI. Neuroimage 2004, 23, 1486–1493. [Google Scholar] [CrossRef]
- Soria-Gómez, E.; Bellocchio, L.; Reguero, L.; Lepousez, G.; Martin, C.; Bendahmane, M.; Ruehle, S.; Remmers, F.; Desprez, T.; Matias, I.; et al. The Endocannabinoid System Controls Food Intake via Olfactory Processes. Nat. Neurosci. 2014, 17, 407–415. [Google Scholar] [CrossRef]
- Martin-Garcia, E.; Domingo-Rodriguez, L.; Lutz, B.; Maldonado, R.; Ruiz de Azua, I. Cannabinoid Type-1 Receptors in CaMKII Neurons Drive Impulsivity in Pathological Eating Behavior. Mol. Metab. 2025, 92, 102096. [Google Scholar] [CrossRef]
- Sharkey, K.A.; Wiley, J.W. The Role of the Endocannabinoid System in the Brain–Gut Axis. Gastroenterology 2016, 151, 252–266. [Google Scholar] [CrossRef] [PubMed]
- Burdyga, G.; Varro, A.; Dimaline, R.; Thompson, D.G.; Dockray, G.J. Expression of Cannabinoid CB1 Receptors by Vagal Afferent Neurons: Kinetics and Role in Influencing Neurochemical Phenotype. Am. J. Physiol. Gastrointest. Liver Physiol. 2010, 299, G63–G69. [Google Scholar] [CrossRef] [PubMed]
- Ishac, E.J.N.; Jiang, L.; Lake, K.D.; Varga, K.; Abood, M.E.; Kunos, G. Inhibition of Exocytotic Noradrenaline Release by Presynaptic Cannabinoid CB1 Receptors on Peripheral Sympathetic Nerves. Br. J. Pharmacol. 1996, 118, 2023–2028. [Google Scholar] [CrossRef] [PubMed]
- Coutts, A.A.; Pertwee, R.G. Inhibition by Cannabinoid Receptor Agonists of Acetylcholine Release from the Guinea-Pig Myenteric Plexus. Br. J. Pharmacol. 1997, 121, 1557–1566. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, R.; Niki, M.; Jyotaki, M.; Sanematsu, K.; Shigemura, N.; Ninomiya, Y. Modulation of Sweet Responses of Taste Receptor Cells. Semin. Cell Dev. Biol. 2013, 24, 226–231. [Google Scholar] [CrossRef]
- Adami, M.; Frati, P.; Bertini, S.; Kulkarni-Narla, A.; Brown, D.R.; De Caro, G.; Coruzzi, G.; Soldani, G. Gastric Antisecretory Role and Immunohistochemical Localization of Cannabinoid Receptors in the Rat Stomach. Br. J. Pharmacol. 2002, 135, 1598–1606. [Google Scholar] [CrossRef]
- Abalo, R.; Cabezos, P.A.; Vera, G.; López-miranda, V.; Herradón, E.; Martín-fontelles, M.I. Cannabinoid-Induced Delayed Gastric Emptying Is Selectively Increased upon Intermittent Administration in the Rat: Role of CB1 Receptors. Neurogastroenterol. Motil. 2011, 23, 457-e177. [Google Scholar] [CrossRef]
- Senin, L.L.; Al-Massadi, O.; Folgueira, C.; Castelao, C.; Pardo, M.; Barja-Fernandez, S.; Roca-Rivada, A.; Amil, M.; Crujeiras, A.B.; Garcia-Caballero, T.; et al. The Gastric CB1 Receptor Modulates Ghrelin Production through the MTOR Pathway to Regulate Food Intake. PLoS ONE 2013, 8, e80339. [Google Scholar] [CrossRef]
- Cluny, N.L.; Keenan, C.M.; Duncan, M.; Fox, A.; Lutz, B.; Sharkey, K.A. Naphthalen-1-Yl-(4-Pentyloxynaphthalen-1-Yl)Methanone (SAB378), a Peripherally Restricted Cannabinoid CB1/CB2 Receptor Agonist, Inhibits Gastrointestinal Motility but Has No Effect on Experimental Colitis in Mice. J. Pharmacol. Exp. Ther. 2010, 334, 973–980. [Google Scholar] [CrossRef] [PubMed]
- Keenan, C.M.; Storr, M.A.; Thakur, G.A.; Wood, J.T.; Wager-Miller, J.; Straiker, A.; Eno, M.R.; Nikas, S.P.; Bashashati, M.; Hu, H.; et al. AM841, a Covalent Cannabinoid Ligand, Powerfully Slows Gastrointestinal Motility in Normal and Stressed Mice in a Peripherally Restricted Manner. Br. J. Pharmacol. 2015, 172, 2406–2418. [Google Scholar] [CrossRef]
- Christie, S.; O’Rielly, R.; Li, H.; Wittert, G.A.; Page, A.J. Biphasic Effects of Methanandamide on Murine Gastric Vagal Afferent Mechanosensitivity. J. Physiol. 2020, 598, 139–150. [Google Scholar] [CrossRef]
- Avalos, B.; Argueta, D.A.; Perez, P.A.; Wiley, M.; Wood, C.; Dipatrizio, N.V. Cannabinoid Cb1 Receptors in the Intestinal Epithelium Are Required for Acute Western-Diet Preferences in Mice. Nutrients 2020, 12, 2874. [Google Scholar] [CrossRef]
- Cinar, R.; Iyer, M.R.; Kunos, G. The Therapeutic Potential of Second and Third Generation CB1R Antagonists. Pharmacol. Ther. 2020, 208, 107477. [Google Scholar] [CrossRef]
- Osei-Hyiaman, D.; Liu, J.; Zhou, L.; Godlewski, G.; Harvey-White, J.; Jeong, W.I.; Bátkai, S.; Marsicano, G.; Lutz, B.; Buettner, C.; et al. Hepatic CB1 Receptor Is Required for Development of Diet-Induced Steatosis, Dyslipidemia, and Insulin and Leptin Resistance in Mice. J. Clin. Investig. 2008, 118, 3160–3169. [Google Scholar] [CrossRef] [PubMed]
- González-Mariscal, I.; Krzysik-Walker, S.M.; Doyle, M.E.; Liu, Q.R.; Cimbro, R.; Santa-Cruz Calvo, S.; Ghosh, S.; Cieala, A.; Moaddel, R.; Carlson, O.D.; et al. Human CB1 Receptor Isoforms, Present in Hepatocytes and β-Cells, Are Involved in Regulating Metabolism. Sci. Rep. 2016, 6, 33302. [Google Scholar] [CrossRef]
- Cortes-Justo, E.; Garfias-Ramírez, S.H.; Vilches-Flores, A. The Function of the Endocannabinoid System in the Pancreatic Islet and Its Implications on Metabolic Syndrome and Diabetes. Islets 2023, 15, 1–11. [Google Scholar] [CrossRef]
- Tam, J.; Szanda, G.; Drori, A.; Liu, Z.; Cinar, R.; Kashiwaya, Y.; Reitman, M.L.; Kunos, G. Peripheral Cannabinoid-1 Receptor Blockade Restores Hypothalamic Leptin Signaling. Mol. Metab. 2017, 6, 1113–1125. [Google Scholar] [CrossRef] [PubMed]
- Argueta, D.A.; Perez, P.A.; Makriyannis, A.; Di Patrizio, N.V. Cannabinoid CB1 Receptors Inhibit Gut-Brain Satiation Signaling in Diet-Induced Obesity. Front. Physiol. 2019, 10, 704. [Google Scholar] [CrossRef]
- Iannotti, F.A.; Di Marzo, V. The Gut Microbiome, Endocannabinoids and Metabolic Disorders. J. Endocrinol. 2021, 248, R83–R97. [Google Scholar] [CrossRef]
- Permyakova, A.; Rothner, A.; Knapp, S.; Nemirovski, A.; Ben-Zvi, D.; Tam, J. Renal Endocannabinoid Dysregulation in Obesity-Induced Chronic Kidney Disease in Humans. Int. J. Mol. Sci. 2023, 24, 13636. [Google Scholar] [CrossRef]
- Meye, F.J.; Trezza, V.; Vanderschuren, L.J.M.J.; Ramakers, G.M.J.; Adan, R.A.H. Neutral Antagonism at the Cannabinoid 1 Receptor: A Safer Treatment for Obesity. Mol. Psychiatry 2013, 18, 1294–1301. [Google Scholar] [CrossRef]
- Christensen, R.; Kristensen, P.K.; Bartels, E.M.; Bliddal, H.; Astrup, A. Efficacy and Safety of the Weight-Loss Drug Rimonabant: A Meta-Analysis of Randomised Trials. Lancet 2007, 370, 1706–1713. [Google Scholar] [CrossRef]
- Witkamp, R.F. Current and Future Drug Targets in Weight Management. Pharm. Res. 2011, 28, 1792–1818. [Google Scholar] [CrossRef] [PubMed]
- Cohen, Y.; Kolodziej, A.; Morningstar, M. Seventeen Years since Rimonabant’s Downfall: Reassessing Its Suicidality Risk Profile. Obesity 2024, 32, 1235–1244. [Google Scholar] [CrossRef]
- Udi, S.; Hinden, L.; Earley, B.; Drori, A.; Reuveni, N.; Hadar, R.; Cinar, R.; Nemirovski, A.; Tam, J. Proximal Tubular Cannabinoid-1 Receptor Regulates Obesity-Induced CKD. J. Am. Soc. Nephrol. 2017, 28, 3518–3532. [Google Scholar] [CrossRef] [PubMed]
- Pagotto, U.; Marsicano, G.; Cota, D.; Lutz, B.; Pasquali, R. The Emerging Role of the Endocannabinoid System in Endocrine Regulation and Energy Balance. Endocr. Rev. 2006, 27, 73–100. [Google Scholar] [CrossRef] [PubMed]
- Murphy, T.; Foll, B. Le Targeting the Endocannabinoid CB1 Receptor to Treat Body Weight Disorders: A Preclinical and Clinical Review of the Therapeutic Potential of Past and Present CB1 Drugs. Biomolecules 2020, 10, 855. [Google Scholar] [CrossRef]
- Amato, G.; Khan, N.S.; Maitra, R. A Patent Update on Cannabinoid Receptor 1 Antagonists (2015–2018). Expert. Opin. Ther. Pat. 2019, 29, 261–269. [Google Scholar] [CrossRef] [PubMed]
- Tam, J.; Vemuri, V.K.; Liu, J.; Bátkai, S.; Mukhopadhyay, B.; Godlewski, G.; Osei-Hyiaman, D.; Ohnuma, S.; Ambudkar, S.V.; Pickel, J.; et al. Peripheral CB1 Cannabinoid Receptor Blockade Improves Cardiometabolic Risk in Mouse Models of Obesity. J. Clin. Investig. 2010, 120, 2953–2966. [Google Scholar] [CrossRef]
- Tam, J.; Cinar, R.; Liu, J.; Godlewski, G.; Wesley, D.; Jourdan, T.; Szanda, G.; Mukhopadhyay, B.; Chedester, L.; Liow, J.S.; et al. Peripheral Cannabinoid-1 Receptor Inverse Agonism Reduces Obesity by Reversing Leptin Resistance. Cell Metab. 2012, 16, 167–179. [Google Scholar] [CrossRef]
- Cluny, N.L.; Chambers, A.P.; Vemuri, V.K.; Wood, J.T.; Eller, L.K.; Freni, C.; Reimer, R.A.; Makriyannis, A.; Sharkey, K.A. The Neutral Cannabinoid CB1 Receptor Antagonist AM4113 Regulates Body Weight through Changes in Energy Intake in the Rat. Pharmacol. Biochem. Behav. 2011, 97, 537–543. [Google Scholar] [CrossRef]
- Sink, K.S.; Vemuri, V.K.; Wood, J.; Makriyannis, A.; Salamone, J.D. Oral Bioavailability of the Novel Cannabinoid CB1 Antagonist AM6527: Effects on Food-Reinforced Behavior and Comparisons with AM4113. Pharmacol. Biochem. Behav. 2009, 91, 303–306. [Google Scholar] [CrossRef]
- Merroun, I.; Sánchez-González, C.; Martínez, R.; López-Chaves, C.; Porres, J.M.; Aranda, P.; Llopis, J.; Galisteo, M.; Zarzuelo, A.; Errami, M.; et al. Novel Effects of the Cannabinoid Inverse Agonist AM 251 on Parameters Related to Metabolic Syndrome in Obese Zucker Rats. Metabolism 2013, 62, 1641–1650. [Google Scholar] [CrossRef]
- Deeba, F.; Yar, M.S.; Haidar, M.R.; Sharma, A.K.; Sharma, M. Synthesis, Molecular Docking, and Pharmacological Evaluation of 5-(4-(2-(5-Ethylpyridine-2-Yl)Ethoxy)Benzyl)-3-(Phenylsulfonyl) Thiazolidine-2, 4-Dione against HFD-Induced Diabesity via Interaction with the CB1 Receptor. Iran. J. Basic. Med. Sci. 2022, 25, 1028–1036. [Google Scholar] [CrossRef]
- O’Keefe, L.; Vu, T.; Simcocks, A.C.; Jenkin, K.A.; Mathai, M.L.; Hryciw, D.H.; Hutchinson, D.S.; McAinch, A.J. CB1 Ligand AM251 Induces Weight Loss and Fat Reduction in Addition to Increased Systemic Inflammation in Diet-Induced Obesity. Int. J. Mol. Sci. 2022, 23, 11447. [Google Scholar] [CrossRef]
- Noerregaard, P.K.; Fridberg, M.; Elling, C.E. TM38837–a Novel Second Generation Peripheral Selective CB1 Receptor Antagonist with Efficacy and Potency in Rodent Obesity Models Equal to Brain-Penetrant CB1 Antagonist Rimonabant. In Proceedings of the 20th Annual Symposium of the International Cannabinoid Research Society, Lund, Sweden, 23–27 July 2010; p. 39. [Google Scholar]
- Klumpers, L.E.; Fridberg, M.; De Kam, M.L.; Little, P.B.; Jensen, N.O.; Kleinloog, H.D.; Elling, C.E.; Van Gerven, J.M.A. Peripheral Selectivity of the Novel Cannabinoid Receptor Antagonist TM38837 in Healthy Subjects. Br. J. Clin. Pharmacol. 2013, 76, 846–857. [Google Scholar] [CrossRef] [PubMed]
- Micale, V.; Drago, F.; Noerregaard, P.K.; Elling, C.E.; Wotjak, C.T. The Cannabinoid CB1 Antagonist TM38837 with Limited Penetrance to the Brain Shows Reduced Fear-Promoting Effects in Mice. Front. Pharmacol. 2019, 10, 207. [Google Scholar] [CrossRef] [PubMed]
- Crater, G.D.; Lalonde, K.; Ravenelle, F.; Harvey, M.; Després, J.P. Effects of CB1R Inverse Agonist, INV-202, in Patients with Features of Metabolic Syndrome. A Randomized, Placebo-Controlled, Double-Blind Phase 1b Study. Diabetes Obes. Metab. 2024, 26, 642–649. [Google Scholar] [CrossRef]
- Morris, C.R.; Chandrasekaran, R.; Butzirus, I.M.; Daphtary, N.; Aliyeva, M.; Manuel, A.M.; Tharp, W.G.; Bates, J.H.T.; Anathy, V.; Poynter, M.E.; et al. A Cannabinoid Receptor 1 Inverse Agonist Induces Weight Loss and Reduces Airway Hyperresponsiveness in a Mouse Model of Obese Asthma. Am. J. Physiol. Lung Cell. Mol. Physiol. 2025, 329, L327–L340. [Google Scholar] [CrossRef]
- Matheson, J.; Tertigas, D.; Malik, S.; Taylor, V.; Chavez, S.; Sharkey, K.A.; Silvestri, C.; Surette, M.; Le Foll, B. Feasibility and Tolerability of Nabilone for the Treatment of Obesity: A Randomized Controlled Pilot Trial. Cannabis Cannabinoid Res. 2025. [Google Scholar] [CrossRef] [PubMed]
- Eitan, A.; Gover, O.; Sulimani, L.; Meiri, D.; Schwartz, B. The Effect of Orally Administered Δ9-Tetrahydrocannabinol (THC) and Cannabidiol (CBD) on Obesity Parameters in Mice. Int. J. Mol. Sci. 2023, 24, 13797. [Google Scholar] [CrossRef] [PubMed]
- Eitan, A.; Gover, O.; Sulimani, L.; Meiri, D.; Shterzer, N.; Mills, E.; Schwartz, B. The Effect of Oil-Based Cannabis Extracts on Metabolic Parameters and Microbiota Composition of Mice Fed a Standard and a High-Fat Diet. Int. J. Mol. Sci. 2024, 25, 1073. [Google Scholar] [CrossRef]
- Provensi, G.; Coccurello, R.; Umehara, H.; Munari, L.; Giacovazzo, G.; Galeotti, N.; Nosi, D.; Gaetani, S.; Romano, A.; Moles, A.; et al. Satiety Factor Oleoylethanolamide Recruits the Brain Histaminergic System to Inhibit Food Intake. Proc. Natl. Acad. Sci. USA 2014, 111, 11527–11532. [Google Scholar] [CrossRef]
- Raso, G.M.; Santoro, A.; Russo, R.; Simeoli, R.; Paciello, O.; Di Carlo, C.; Diano, S.; Calignano, A.; Meli, R. Palmitoylethanolamide Prevents Metabolic Alterations and Restores Leptin Sensitivity in Ovariectomized Rats. Endocrinology 2014, 155, 1291–1301. [Google Scholar] [CrossRef]
- Gao, Y.; Vasilyev, D.V.; Goncalves, M.B.; Howell, F.V.; Hobbs, C.; Reisenberg, M.; Shen, R.; Zhang, M.Y.; Strassle, B.W.; Lu, P.; et al. Loss of Retrograde Endocannabinoid Signaling and Reduced Adult Neurogenesis in Diacylglycerol Lipase Knock-out Mice. J. Neurosci. 2010, 30, 2017–2024. [Google Scholar] [CrossRef]
- Powell, D.R.; Gay, J.P.; Wilganowski, N.; Doree, D.; Savelieva, K.V.; Lanthorn, T.H.; Read, R.; Vogel, P.; Hansen, G.M.; Brommage, R.; et al. Diacylglycerol Lipase α Knockout Mice Demonstrate Metabolic and Behavioral Phenotypes Similar to Those of Cannabinoid Receptor 1 Knockout Mice. Front. Endocrinol. 2015, 6, 86. [Google Scholar] [CrossRef] [PubMed]
- Bisogno, T.; Mahadevan, A.; Coccurello, R.; Chang, J.W.; Allarà, M.; Chen, Y.; Giacovazzo, G.; Lichtman, A.; Cravatt, B.; Moles, A.; et al. A Novel Fluorophosphonate Inhibitor of the Biosynthesis of the Endocannabinoid 2-Arachidonoylglycerol with Potential Anti-Obesity Effects. Br. J. Pharmacol. 2013, 169, 784–793. [Google Scholar] [CrossRef]
- Pérez-Morales, M.; López-Colomé, A.M.; Méndez-Díaz, M.; Ruiz-Contreras, A.E.; Prospéro-García, O. Inhibition of Diacylglycerol Lipase (DAGL) in the Lateral Hypothalamus of Rats Prevents the Increase in REMS and Food Ingestion Induced by PAR1 Stimulation. Neurosci. Lett. 2014, 578, 117–121. [Google Scholar] [CrossRef] [PubMed]
- Taschler, U.; Radner, F.P.W.; Heier, C.; Schreiber, R.; Schweiger, M.; Schoiswohl, G.; Preiss-Landl, K.; Jaeger, D.; Reiter, B.; Koefeler, H.C.; et al. Monoglyceride Lipase Deficiency in Mice Impairs Lipolysis and Attenuates Diet-Induced Insulin Resistance. J. Biol. Chem. 2011, 286, 17467–17477. [Google Scholar] [CrossRef] [PubMed]
- O’Keefe, L.; Vu, T.; Simcocks, A.C.; Jenkin, K.A.; Mathai, M.L.; McAinch, A.J.; Hutchinson, D.S.; Hryciw, D.H. Treatment of Diet-Induced Obese Rats with CB2 Agonist AM1241 or CB2 Antagonist AM630 Reduces Leptin and Alters Thermogenic MRNA in Adipose Tissue. Int. J. Mol. Sci. 2023, 24, 7601. [Google Scholar] [CrossRef]
- Mendoza, S. The Role of Tetrahydrocannabivarin (THCV) in Metabolic Disorders: A Promising Cannabinoid for Diabetes and Weight Management. AIMS Neurosci. 2025, 12, 32–43. [Google Scholar] [CrossRef]
- Haghdoost, M.; Peters, E.N.; Roberts, M.; Bonn-Miller, M.O. Tetrahydrocannabivarin Is Not Tetrahydrocannabinol. Cannabis Cannabinoid Res. 2024, 10, 1–5. [Google Scholar] [CrossRef]
- Jadoon, K.A.; Ratcliffe, S.H.; Barrett, D.A.; Thomas, E.L.; Stott, C.; Bell, J.D.; O’Sullivan, S.E.; Tan, G.D. Efficacy and Safety of Cannabidiol and Tetrahydrocannabivarin on Glycemic and Lipid Parameters in Patients with Type 2 Diabetes: A Randomized, Double-Blind, Placebo-Controlled, Parallel Group Pilot Study. Diabetes Care 2016, 39, 1777–1786. [Google Scholar] [CrossRef]
- Tudge, L.; Williams, C.; Cowen, P.J.; McCabe, C. Neural Effects of Cannabinoid CB1 Neutral Antagonist Tetrahydrocannabivarin on Food Reward and Aversion in Healthy Volunteers. Int. J. Neuropsychopharmacol. 2015, 18, pyu094. [Google Scholar] [CrossRef] [PubMed]
- Smith, G. Weight Loss and Therapeutic Metabolic Effects of Tetrahydrocannabivarin (THCV)-Infused Mucoadhesive Strips. Cannabis 2024, 8, 109–120. [Google Scholar] [CrossRef]
- LoVerme, J.; Duranti, A.; Tontini, A.; Spadoni, G.; Mor, M.; Rivara, S.; Stella, N.; Xu, C.; Tarzia, G.; Piomelli, D. Synthesis and Characterization of a Peripherally Restricted CB1 Cannabinoid Antagonist, URB447, That Reduces Feeding and Body-Weight Gain in Mice. Bioorg. Med. Chem. Lett. 2009, 19, 639–643. [Google Scholar] [CrossRef]
- Horswill, J.G.; Bali, U.; Shaaban, S.; Keily, J.F.; Jeevaratnam, P.; Babbs, A.J.; Reynet, C.; Wong Kai In, P. PSNCBAM-1, a Novel Allosteric Antagonist at Cannabinoid CB 1 Receptors with Hypophagic Effects in Rats. Br. J. Pharmacol. 2007, 152, 805–814. [Google Scholar] [CrossRef]
- Leone, S.; Ferrante, C.; Recinella, L.; Chiavaroli, A.; Mollica, A.; Tömböly, C.; Stefanucci, A.; Dimmito, M.P.; Dvorácskó, S.; Verratti, V.; et al. Effects of RVD-Hemopressin (α) on Feeding and Body Weight after Standard or Cafeteria Diet in Rats. Neuropeptides 2018, 72, 38–46. [Google Scholar] [CrossRef] [PubMed]
- Udi, S.; Hinden, L.; Ahmad, M.; Drori, A.; Iyer, M.R.; Cinar, R.; Herman-Edelstein, M.; Tam, J. Dual Inhibition of Cannabinoid CB1 Receptor and Inducible NOS Attenuates Obesity-Induced Chronic Kidney Disease. Br. J. Pharmacol. 2020, 177, 110–127. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharjee, P.; Dvorácskó, S.; Pointeau, O.; Kundu, B.; Rutland, N.; Puhl, H.; Liu, J.; Godlewski, G.; Hassan, S.A.; Jourdan, T.; et al. Evaluation of Tetrahydropyridazine-Based Peripherally Restricted Dual Inhibitors of CB1R and Inducible Nitric Oxide Synthase (INOS) for Treating Metabolic Syndrome Disorders. Metabolism 2025, 170, 156291. [Google Scholar] [CrossRef] [PubMed]
- Palomares, B.; Ruiz-Pino, F.; Navarrete, C.; Velasco, I.; Sánchez-Garrido, M.A.; Jimenez-Jimenez, C.; Pavicic, C.; Vazquez, M.J.; Appendino, G.; Bellido, M.L.; et al. VCE-004.8, A Multitarget Cannabinoquinone, Attenuates Adipogenesis and Prevents Diet-Induced Obesity. Sci. Rep. 2018, 8, 16092. [Google Scholar] [CrossRef]
- Cotrim, B.A.; Joglar, J.; Rojas, M.J.L.; Del Olmo, J.M.D.; MacIas-González, M.; Cuevas, M.R.; Fitó, M.; Muñoz-Aguayo, D.; Covas Planells, M.I.; Farré, M.; et al. Unsaturated Fatty Alcohol Derivatives of Olive Oil Phenolic Compounds with Potential Low-Density Lipoprotein (LDL) Antioxidant and Antiobesity Properties. J. Agric. Food Chem. 2012, 60, 1067–1074. [Google Scholar] [CrossRef]
- Decara, J.M.; Pavón, F.J.; Suárez, J.; Romero-Cuevas, M.; Baixeras, E.; Vázquez, M.; Rivera, P.; Gavito, A.L.; Almeida, B.; Joglar, J.; et al. Treatment with a Novel Oleic-Acid-Dihydroxyamphetamine Conjugation Ameliorates Non-Alcoholic Fatty Liver Disease in Obese Zucker Rats. Dis. Model. Mech. 2015, 8, 1213–1225. [Google Scholar] [CrossRef]
- Stefanucci, A.; Macedonio, G.; Dvorácskó, S.; Tömböly, C.; Mollica, A. Novel Fubinaca/Rimonabant Hybrids as Endocannabinoid System Modulators. Amino Acids 2018, 50, 1595–1605. [Google Scholar] [CrossRef]
- Bononi, G.; Tuccinardi, T.; Rizzolio, F.; Granchi, C. α/β-Hydrolase Domain (ABHD) Inhibitors as New Potential Therapeutic Options against Lipid-Related Diseases. J. Med. Chem. 2021, 64, 9759–9785. [Google Scholar] [CrossRef]
- Kim, J.; Li, Y.; Watkins, B.A. Fat to Treat Fat: Emerging Relationship between Dietary PUFA, Endocannabinoids, and Obesity. Prostaglandins Other Lipid Mediat. 2013, 104–105, 32–41. [Google Scholar] [CrossRef]
- Pintus, S.; Murru, E.; Carta, G.; Cordeddu, L.; Batetta, B.; Accossu, S.; Pistis, D.; Uda, S.; Ghiani, M.E.; Mele, M.; et al. Sheep Cheese Naturally Enriched in α-Linolenic, Conjugated Linoleic and Vaccenic Acids Improves the Lipid Profile and Reduces Anandamide in the Plasma of Hypercholesterolaemic Subjects. Br. J. Nutr. 2013, 109, 1453–1462. [Google Scholar] [CrossRef]
- Berge, K.; Piscitelli, F.; Hoem, N.; Silvestri, C.; Meyer, I.; Banni, S.; Di Marzo, V. Chronic Treatment with Krill Powder Reduces Plasma Triglyceride and Anandamide Levels in Mildly Obese Men. Lipids Health Dis. 2013, 12, 78. [Google Scholar] [CrossRef]
- Sierra-Ruelas, E.; Torres-Castillo, N.; Vizmanos, B.; Campos-Pérez, W.; Lopez-Cortes, O.D.; Di Marzo, V.; Martínez-López, E. FAAH Pro129Thr Variant Is Associated with Increased Cholesterol Levels in Normal-Weight Metabolically Unhealthy Subjects. Metab. Syndr. Relat. Disord. 2023, 21, 435–442. [Google Scholar] [CrossRef]
- Schutte, S.; Esser, D.; Siebelink, E.; Michielsen, C.J.R.; Daanje, M.; Matualatupauw, J.C.; Boshuizen, H.C.; Mensink, M.; Afman, L.A. Diverging Metabolic Effects of 2 Energy-Restricted Diets Differing in Nutrient Quality: A 12-Week Randomized Controlled Trial in Subjects with Abdominal Obesity. Am. J. Clin. Nutr. 2022, 116, 132–150. [Google Scholar] [CrossRef]
- Wang, Y.; Balvers, M.G.J.; Esser, D.; Schutte, S.; Vincken, J.P.; Afman, L.A.; Witkamp, R.F.; Meijerink, J. Nutrient Composition of Different Energy-Restricted Diets Determines Plasma Endocannabinoid Profiles and Adipose Tissue DAGL-α Expression; a 12-Week Randomized Controlled Trial in Subjects with Abdominal Obesity. J. Nutr. Biochem. 2024, 128, 109605. [Google Scholar] [CrossRef]
- Alptekin, İ.M.; Çakıroğlu, F.P.; Reçber, T.; Nemutlu, E. Inulin May Prevent the High-Fat Diet Induced-Obesity via Suppressing Endocannabinoid System in the Prefrontal Cortex in Wistar Rats. Int. J. Food Sci. Nutr. 2024, 75, 800–811. [Google Scholar] [CrossRef]
- Guess, N.D.; Dornhorst, A.; Oliver, N.; Bell, J.D.; Thomas, E.L.; Frost, G.S. A Randomized Controlled Trial: The Effect of Inulin on Weight Management and Ectopic Fat in Subjects with Prediabetes. Nutr. Metab. 2015, 12, 36. [Google Scholar] [CrossRef] [PubMed]
- Cocci, P.; Moruzzi, M.; Martinelli, I.; Maggi, F.; Micioni Di Bonaventura, M.V.; Cifani, C.; Mosconi, G.; Tayebati, S.K.; Damiano, S.; Lupidi, G.; et al. Tart Cherry (Prunus cerasus L.) Dietary Supplement Modulates Visceral Adipose Tissue CB1 MRNA Levels along with Other Adipogenesis-Related Genes in Rat Models of Diet-Induced Obesity. Eur. J. Nutr. 2021, 60, 2695–2707. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Sun, S.; Liu, W.; Liu, Q.; Wang, J. Hypoxia Training Improves Hepatic Steatosis Partly by Downregulation of CB1 Receptor in Obese Mice. Biochem. Biophys. Res. Commun. 2020, 525, 639–645. [Google Scholar] [CrossRef]
- Yang, Q.; Huang, G.; Tian, Q.; Liu, W.; Sun, X.; Li, N.; Sun, S.; Zhou, T.; Wu, N.; Wei, Y.; et al. “Living High-Training Low” Improved Weight Loss and Glucagon-like Peptide-1 Level in a 4-Week Weight Loss Program in Adolescents with Obesity. Medicine 2018, 97, e9943. [Google Scholar] [CrossRef] [PubMed]
- Kong, Z.; Zang, Y.; Hu, Y. Normobaric Hypoxia Training Causes More Weight Loss than Normoxia Training after a 4-Week Residential Camp for Obese Young Adults. Sleep Breath. 2014, 18, 591–597. [Google Scholar] [CrossRef]
- Wences Chirino, T.; Rangel López, E.; Luna Angulo, A.; Carrillo Mora, P.; Landa Solis, C.; Samudio Cruz, M.A.; Fuentes Bello, A.C.; Paniagua Pérez, R.; Ríos Martínez, J.; Sánchez Chapul, L. Crosstalk between Exercise-Derived Endocannabinoidome and Kynurenines: Potential Target Therapies for Obesity and Depression Symptoms. Pharmaceuticals 2023, 16, 1421. [Google Scholar] [CrossRef] [PubMed]
- Gamelin, F.X.; Aucouturier, J.; Iannotti, F.A.; Piscitelli, F.; Mazzarella, E.; Aveta, T.; Leriche, M.; Dupont, E.; Cieniewski-Bernard, C.; Montel, V.; et al. Effects of Chronic Exercise on the Endocannabinoid System in Wistar Rats with High-Fat Diet-Induced Obesity. J. Physiol. Biochem. 2016, 72, 183–199. [Google Scholar] [CrossRef] [PubMed]
- Elisei, L.; Moraes, T.; Malta, I.; Rodríguez, J.; Di Marzo, V.; Galdino, G. Involvement of the Endocannabinoid System in the Control of Pain and Obesity by Exercise in Rodents: A Systematic Review. Cannabis Cannabinoid Res. 2023, 8, 389–407. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.; Watkins, B.A. Dietary PUFAs and Exercise Dynamic Actions on Endocannabinoids in Brain: Consequences for Neural Plasticity and Neuroinflammation. Adv. Nutr. 2022, 13, 1989–2001. [Google Scholar] [CrossRef]
- Pucci, M.; Micioni Di Bonaventura, M.V.; Vezzoli, V.; Zaplatic, E.; Massimini, M.; Mai, S.; Sartorio, A.; Scacchi, M.; Persani, L.; Maccarrone, M.; et al. Preclinical and Clinical Evidence for a Distinct Regulation of Mu Opioid and Type 1 Cannabinoid Receptor Genes Expression in Obesity. Front. Genet. 2019, 10, 523. [Google Scholar] [CrossRef]
- He, F.; Berg, A.; Imamura Kawasawa, Y.; Bixler, E.O.; Fernandez-Mendoza, J.; Whitsel, E.A.; Liao, D. Association between DNA Methylation in Obesity-Related Genes and Body Mass Index Percentile in Adolescents. Sci. Rep. 2019, 9, 2079. [Google Scholar] [CrossRef]
Term | Definition | ID | |
---|---|---|---|
Large for gestational age | This applies to babies whose birth weight lies above the 90th percentile for that gestational age. | HP:0001520 | |
Obesity | Accumulation of substantial excess body fat. | HP:0001513 | |
Abdominal obesity | Excessive fat around the stomach and abdomen. | HP:0012743 | |
Class III obesity | Obesity with a body mass index of 40 kg per square meter or higher. | HP:0025501 | |
Class II obesity | Obesity with a body mass index of 35 to 39.9 kg per square meter. | HP:0025500 | |
Class I obesity | Obesity with a body mass index of 30 to 34.9 kg per square meter. | HP:0025499 | |
Truncal obesity | Obesity located preferentially in the trunk of the body as opposed to the extremities. | HP:0001956 | |
Overweight | Increased body weight with a body mass index of 25–29.9 kg per square meter. | HP:0025502 |
Receptor | Ligand (Agonist) | Complexed Protein | Resolution | PDB ID | Structure | Ref. |
---|---|---|---|---|---|---|
CB1 | MDMB-Fubinaca | Gi | 3.0 Å | 6N4B | PDB doi.org/10.2210/pdb6N4B/pdb | [82] |
AMG315 | Gi | 2.80 Å | 8GHV | PDB doi.org/10.2210/pdb8GHV/pdb | [90] | |
ZCZ011 | Gi | 3.36 Å | 7WV9 | PDB doi.org/10.2210/pdb7WV9/pdb | [96] | |
CB2 | WIN 55,212-2 | Gi | 3.2 Å | 6PT0 | PDB doi.org/10.2210/pdb6PT0/pdb | [94] |
LEI-102 | Gi | 2.98 Å | 8GUT | PDB doi.org/10.2210/pdb8gut/pdb | [97] |
Strategy | Mechanism of action | Example compounds | Research status | Advantages | Limitations |
---|---|---|---|---|---|
CB1 antagonists/inverse agonists | Appetite suppression, reduction of lipogenesis | AM6545, JD5037, TM38837, Rimonabant | Clinical/preclinical | Strong anorectic effect | Psychiatric adverse events (if crossing the CNS) |
CB2 agonists | Anti-inflammatory effect, improved metabolism | Tetrahydrocannabivarin, URB447 | Preclinical | Lack of neuropsychiatric effects | Inconsistent findings |
Allosteric CB1 modulators | Selective regulation of receptor activity | PSNCBAM-1, RVD-hemopressin | Preclinical | Potentially safer profile | Early research stage |
Enzyme inhibitors (FAAH, MGL, DAGL) | Modulation of endocannabinoid levels | O-7460, tetrahydrolipstatin | Preclinical | Endogenous regulation | Mixed/ambiguous results, lack of selectivity |
Hybrid compounds (dual target) | CB1 antagonism with additional target (e.g., PPARγ, iNOS) | VCE-004.8, MRI-1867 | Preclinical | Synergistic action | No clinical data |
Non-pharmacological interventions | ECS modulation via diet and lifestyle | Mediterranean diet, omega-3, inulin, exercise, hypoxia training | Experimental/clinical | Safe, low-cost | Less potent than pharmacotherapy |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Serefko, A.; Lachowicz-Radulska, J.; Jach, M.E.; Świąder, K.; Szopa, A. The Endocannabinoid System in the Development and Treatment of Obesity: Searching for New Ideas. Int. J. Mol. Sci. 2025, 26, 9549. https://doi.org/10.3390/ijms26199549
Serefko A, Lachowicz-Radulska J, Jach ME, Świąder K, Szopa A. The Endocannabinoid System in the Development and Treatment of Obesity: Searching for New Ideas. International Journal of Molecular Sciences. 2025; 26(19):9549. https://doi.org/10.3390/ijms26199549
Chicago/Turabian StyleSerefko, Anna, Joanna Lachowicz-Radulska, Monika Elżbieta Jach, Katarzyna Świąder, and Aleksandra Szopa. 2025. "The Endocannabinoid System in the Development and Treatment of Obesity: Searching for New Ideas" International Journal of Molecular Sciences 26, no. 19: 9549. https://doi.org/10.3390/ijms26199549
APA StyleSerefko, A., Lachowicz-Radulska, J., Jach, M. E., Świąder, K., & Szopa, A. (2025). The Endocannabinoid System in the Development and Treatment of Obesity: Searching for New Ideas. International Journal of Molecular Sciences, 26(19), 9549. https://doi.org/10.3390/ijms26199549