Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,642)

Search Parameters:
Keywords = CB1/CB2

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 4030 KB  
Article
Selenoether-Linked Liquid Crystal Trimers and the Twist-Bend Nematic Phase
by Yuki Arakawa and Takuma Shiba
Crystals 2026, 16(1), 69; https://doi.org/10.3390/cryst16010069 (registering DOI) - 21 Jan 2026
Abstract
Bent-shaped liquid crystal (LC) dimers, trimers, and oligomers are intriguing because of their unique liquid crystallinities, which have gained further impetus after the identification of the twist-bend nematic (NTB) phase in these molecules. LC trimers exhibiting the NTB phase still [...] Read more.
Bent-shaped liquid crystal (LC) dimers, trimers, and oligomers are intriguing because of their unique liquid crystallinities, which have gained further impetus after the identification of the twist-bend nematic (NTB) phase in these molecules. LC trimers exhibiting the NTB phase still remain relatively rare compared to the predominant LC dimers. We report the first homologs of selenium-linked LC trimers, 4,4′-bis[ω-(4-cyanobiphenyl-4′-ylseleno)alkoxy]biphenyls (CBSenOBOnSeCB) with carbon numbers in the alkyl-chain spacers, n = 7 or 9). Polarizing optical microscopy, differential scanning calorimetry, and X-ray diffraction (XRD) measurements were performed to investigate the phase transition behavior and mesophase structures of the trimers. Both CBSenOBOnSeCB trimers exhibited nematic (N) and NTB phases. The XRD measurements revealed the presence of smectic A-like cybotactic clusters with a triply intercalated structure in the N and NTB phases. The LC phase transition temperatures of CBSenOBOnSeCB were lower than those of the already-known ether-linked CBOnOBOnOCB and thioether-linked CBSnOBOnSCB counterparts. This trend is ascribed to the enhanced molecular bending and molecular flexibility of CBSenOBOnSeCB, which are caused by the smaller bond angle and greater bond flexibility of C–Se–C compared to C–O–C and C–S–C. This study offers a new molecular design for multiply linked LC oligomers with heavier chalcogen atoms. Full article
(This article belongs to the Special Issue State-of-the-Art Liquid Crystals Research in Japan (2nd Edition))
Show Figures

Figure 1

24 pages, 479 KB  
Article
Corporate Social Responsibility and ESG as Institutional Innovations for Sustainable Finance: Complexity and Competitive Mediation in the Insurance Sector in Developing Economies
by Edosa Getachew Taera, Maria Fekete Farkas, Zoltán Bujdosó and Zoltán Lakner
World 2026, 7(1), 16; https://doi.org/10.3390/world7010016 - 20 Jan 2026
Abstract
This study examines how corporate social responsibility (CSR) influences sustainable finance outcomes (SFO) in the Ethiopian Insurance industry through environmental, social, and governance (ESG) practices and institutional challenges (IC). Using covariance-based structural equation modelling (CB-SEM) with data collected from a primary survey, the [...] Read more.
This study examines how corporate social responsibility (CSR) influences sustainable finance outcomes (SFO) in the Ethiopian Insurance industry through environmental, social, and governance (ESG) practices and institutional challenges (IC). Using covariance-based structural equation modelling (CB-SEM) with data collected from a primary survey, the results show that CSR has both a direct and an indirect positive effect on SFO through ESG. However, the adoption of ESG practices also tends to increase institutional challenges, which in turn negatively influences SFO. This interaction produces a competitive partial mediation effect. The serial mediation path CSR–ESG–IC–SFO is found to be negative, suggesting that enabling and constraining forces operate simultaneously. From a theoretical point of view, the study combines stakeholder, legitimacy, and institutional theories to explain this competitive mediation within a less-studied Sub-Saharan African (SSA) frontier market. On the practical side, the findings highlight the importance of establishing ESG disclosure standards, investing in capacity building, and strengthening governance systems to reduce institutional frictions and make CSR a stronger driver of sustainable finance. Full article
Show Figures

Figure 1

21 pages, 7411 KB  
Article
Potential of Conversion of Cassava Processing Residues by Yeasts to Produce Value-Added Bioproducts
by Andreia Massamby, Johanna Blomqvist, Su-lin L. Leong, Yashaswini Nagaraj, Bettina Müller, Volkmar Passoth, Lucas Tivana, Custódia Macuamule and Mats Sandgren
Fermentation 2026, 12(1), 56; https://doi.org/10.3390/fermentation12010056 - 19 Jan 2026
Abstract
Cassava is a major starch crop in Africa, generating substantial amounts of solid (peels and fibres) and liquid (process press water) residues that remain underutilised, particularly in smallholder and semi-industrial processing units. In Mozambique, where cassava is a staple and processed primarily by [...] Read more.
Cassava is a major starch crop in Africa, generating substantial amounts of solid (peels and fibres) and liquid (process press water) residues that remain underutilised, particularly in smallholder and semi-industrial processing units. In Mozambique, where cassava is a staple and processed primarily by local farmer associations, these residues—readily available and low-cost feedstocks—have significant potential for value-added applications. This study evaluated the potential of enzymatically hydrolysed cassava residues—peel and fibre hydrolysates—as substrates for independent yeast fermentations targeting microbial lipid and ethanol production. Rhodotorula toruloides CBS 14 efficiently converted sugars from both hydrolysates, producing up to 17.14 g L−1 of cell dry weight (CDW) and 35% intracellular lipid content from the peel hydrolysate, and 16.5 g L−1 CDW with 50% lipids from the fibre hydrolysate. Supplementation with ammonium sulphate accelerated sugar utilisation and reduced fermentation time but did not significantly increase the biomass or lipid yields. Saccharomyces cerevisiae J672 fermented the available sugars anaerobically, achieving ethanol yields of 0.45 ± 0.03 g g−1 glucose from peels and 0.37 ± 0.06 g g−1 glucose from fibres. These findings highlight the regional relevance of valorising cassava processing residues in Mozambique and demonstrate a dual-product valorisation strategy, whereby the same feedstocks are converted into either microbial lipids or ethanol through independent fermentations. This approach supports the sustainable, low-cost utilisation of agro-industrial residues, contributing to circular bioeconomy principles and enhancing the environmental and economic value of local cassava value chains. Full article
Show Figures

Figure 1

23 pages, 1032 KB  
Review
Effects of Cannabidiol on Bone Health: A Comprehensive Scoping Review
by Shabbir Adnan Shakir and Kok-Yong Chin
Biomedicines 2026, 14(1), 208; https://doi.org/10.3390/biomedicines14010208 - 18 Jan 2026
Viewed by 54
Abstract
Background/objectives: Cannabidiol (CBD) is a non-psychoactive constituent of Cannabis sativa, which has potential skeletal benefits through modulation of bone cell function and inflammatory signalling. However, evidence of its effects and mechanisms in bone health remains fragmented. This scoping review summarised the current [...] Read more.
Background/objectives: Cannabidiol (CBD) is a non-psychoactive constituent of Cannabis sativa, which has potential skeletal benefits through modulation of bone cell function and inflammatory signalling. However, evidence of its effects and mechanisms in bone health remains fragmented. This scoping review summarised the current findings on the impact of CBD on bone outcomes and its mechanisms of action. Methods: A systematic search of PubMed, Scopus, and Web of Science was conducted in October 2025 for original studies published in English, with the primary objective of examining the effects of CBD on bone health, regardless of study design. After applying inclusion and exclusion criteria, 24 primary studies were included. Data on model design, CBD formulation, treatment parameters, bone-related outcomes, and proposed mechanisms were extracted and analysed descriptively. Results: Among the studies included, eleven demonstrated beneficial effects of CBD on bone formation, mineralisation, callus quality, or strength; eleven showed mixed outcomes; and two demonstrated no apparent benefit. Previous studies have shown that CBD suppresses bone resorption by reducing osteoclast differentiation and activity while promoting osteoblast proliferation and matrix deposition. Mechanistically, CBD’s effects involve activation of cannabinoid receptor 2, modulation of the receptor activator of nuclear factor-κB ligand/osteoprotegerin pathway, and regulation of osteoblastogenic and osteoclastogenic signalling through bone morphogenetic protein, Wnt, mitogen-activated protein kinase, nuclear factor-κB, and peroxisome proliferator-activated receptor signalling. The anti-inflammatory and antioxidant actions of CBD further contribute to a favourable bone microenvironment. Conclusions: Preclinical evidence suggests that CBD has a bone-protective role through multifaceted pathways that enhance osteoblast function and suppress osteoclast activity. Nevertheless, robust human trials are necessary to confirm its efficacy, determine its optimal dosing, and clarify its long-term safety. Full article
Show Figures

Graphical abstract

21 pages, 388 KB  
Article
Evaluating Intercropping Indices in Grass–Clover Mixtures and Their Impact on Maize Silage Yield
by Marko Zupanič, Miran Podvršnik, Vilma Sem, Boštjan Kristan, Ludvik Rihter, Tomaž Žnidaršič and Branko Kramberger
Plants 2026, 15(2), 293; https://doi.org/10.3390/plants15020293 (registering DOI) - 18 Jan 2026
Viewed by 60
Abstract
A field experiment was conducted in 2019–2020 and 2020–2021 at Rogoza, Fala, and Brežice in Slovenia to examine the biological viability of a mixed intercropping system and the effect of winter catch crops (WCCs) on maize growth parameters. The experiment included Italian ryegrass [...] Read more.
A field experiment was conducted in 2019–2020 and 2020–2021 at Rogoza, Fala, and Brežice in Slovenia to examine the biological viability of a mixed intercropping system and the effect of winter catch crops (WCCs) on maize growth parameters. The experiment included Italian ryegrass (IR) in pure stands, fertilized with nitrogen (N) in spring (70 kg N ha−1), mixtures of crimson clover and red clover 50:50 (C), and intercropping between IR and C (IR+C). Neither mixture was fertilized with N in spring. We evaluated different competition indices and biological efficiency. Relative crowding coefficient (RCC) and actual yield loss (AYL) exceeded 1, indicating a benefit of IR+C intercropping. The IR in intercropping was more aggressive, as indicated by positive aggressivity (A) and a competitive ratio (CR) > 1, and it dominated over C in IR+C (that had negative A values and CR < 1). The competitive balance index (Cb) differed from zero, the relative yield total (RYT) was 2.24, the land equivalent coefficient (LEC) exceeded 0.25, the area–time equivalent ratio (ATER) exceeded 1, and land use efficiency (LUE) exceeded 100%. IR+C exhibited the highest total aboveground dry matter yield of maize (29.22 t ha−1), the highest nitrogen content in dry matter grain yield of maize (206.35 kg ha−1), the highest nitrogen and potassium content in maize stover (105.7 and 105.7 kg ha−1, respectively), and the highest nitrogen and potassium content in the total aboveground dry matter of maize (312 and 267.3 kg ha−1, respectively). The C/N ratio in dry matter yield of IR was 45.35, and in IR+C it was 33.43, which means that the mixture had a positive effect on nutrient release in maize. The ryegrass–clover mixture, according to the calculated biological indices, had advantages over pure stands and had a positive effect on maize yield. Full article
(This article belongs to the Section Crop Physiology and Crop Production)
26 pages, 5913 KB  
Article
Differential Regulatory Effects of Cannabinoids and Vitamin E Analogs on Cellular Lipid Homeostasis and Inflammation in Human Macrophages
by Mengrui Li, Sapna Deo, Sylvia Daunert and Jean-Marc Zingg
Antioxidants 2026, 15(1), 119; https://doi.org/10.3390/antiox15010119 - 16 Jan 2026
Viewed by 111
Abstract
Cannabinoids can bind to several cannabinoid receptors and modulate cellular signaling and gene expression relevant to inflammation and lipid homeostasis. Likewise, several vitamin E analogs can modulate inflammatory signaling and foam cell formation in macrophages by antioxidant and non-antioxidant mechanisms. We analyzed the [...] Read more.
Cannabinoids can bind to several cannabinoid receptors and modulate cellular signaling and gene expression relevant to inflammation and lipid homeostasis. Likewise, several vitamin E analogs can modulate inflammatory signaling and foam cell formation in macrophages by antioxidant and non-antioxidant mechanisms. We analyzed the regulatory effects on the expression of genes involved in cellular lipid homeostasis (e.g., CD36/FAT cluster of differentiation/fatty acid transporter and scavenger receptor SR-B1) and inflammation (e.g., inflammatory cytokines, TNFα, IL1β) by cannabinoids (cannabidiol (CBD) and Δ9-tetrahydrocannabinol (THC)) in human THP-1 macrophages with/without co-treatment with natural alpha-tocopherol (RRR-αT), natural RRR-αTA (αTAn), and synthetic racemic all-rac-αTA (αTAr). In general, αTAr inhibited both lipid accumulation and the inflammatory response (TNFα, IL6, IL1β) more efficiently compared to αTAn. Our results suggest that induction of CD36/FAT mRNA expression after treatment with THC can be prevented, albeit incompletely, by αTA (either αTAn or αTAr) or CBD. A similar response pattern was observed with genes involved in lipid efflux (ABCA1, less with SR-B1), suggesting an imbalance between uptake, metabolism, and efflux of lipids/αTA, increasing macrophage foam cell formation. THC increased reactive oxygen species (ROS), and co-treatment with αTAn or αTAr only partially prevented this. To study the mechanisms by which inflammatory and lipid-related genes are modulated, HEK293 cells overexpressing cannabinoid receptors (CB1 or TRPV-1) were transfected with luciferase reporter plasmids containing the human CD36 promoter or response elements for transcription factors involved in its regulation (e.g., LXR and NFκB). In cells overexpressing CB1, we observed activation of NFκB by THC that was inhibited by αTAr. Full article
(This article belongs to the Special Issue Health Implications of Vitamin E and Its Analogues and Metabolites)
26 pages, 1512 KB  
Review
Cinobufagin as a Potential Intervention Against Liver Cancer—A Comprehensive Review
by Nicole Simone de Lima Coelho, Victória Dogani Rodrigues, Otávio Simões Girotto, Renato César Moretti Júnior, Vítor Engrácia Valenti, Maria Angélica Miglino, Mônica Duarte da Silva, Caio Sérgio Galina Spilla, Ana Luiza Decanini Miranda de Souza, Sandra Maria Barbalho and Lucas Fornari Laurindo
Pharmaceuticals 2026, 19(1), 158; https://doi.org/10.3390/ph19010158 - 15 Jan 2026
Viewed by 172
Abstract
Liver cancer remains a significant global health challenge, with hepatocellular carcinoma (HCC) being the most prevalent form. Despite advancements in treatment, high recurrence rates and the limited efficacy of conventional therapies highlight the need for novel interventions. Cinobufagin (CB), a bufadienolide extracted from [...] Read more.
Liver cancer remains a significant global health challenge, with hepatocellular carcinoma (HCC) being the most prevalent form. Despite advancements in treatment, high recurrence rates and the limited efficacy of conventional therapies highlight the need for novel interventions. Cinobufagin (CB), a bufadienolide extracted from the parotid secretion of Bufo gargarizans and B. melanostictus, has emerged as a promising compound with multiple antitumor mechanisms. This comprehensive review assesses the current evidence regarding CB and its containing medicine, cinobufacini, in liver cancer models. Cinobufacini is a traditional Chinese medicine extract, whereas CB refers specifically to one of its active components. The pharmacodynamic actions of CB include induction of apoptosis, DNA damage, inhibition of proliferation and migration, and modulation of key oncogenic pathways such as PI3K/Akt/mTOR, Akt/ERK, and AURKA-mTOR-eIF4E. Additionally, CB disrupts tumor metabolism and induces oxidative stress. Preclinical studies, both in vitro and in vivo, demonstrate significant antitumor efficacy. However, concerns remain regarding CB’s toxicity profile at high doses. This review emphasizes the therapeutic potential of CB in HCC treatment and advocates for further translational research to optimize its clinical applicability, dosage, and safety. Full article
(This article belongs to the Special Issue Animal-Derived Venom Compounds for Cancer Prevention and Intervention)
Show Figures

Figure 1

21 pages, 8190 KB  
Article
Female Aging Affects Coilin Pattern in Mouse Cumulus Cells
by Alexey S. Anisimov, Dmitry S. Bogolyubov and Irina O. Bogolyubova
J. Dev. Biol. 2026, 14(1), 6; https://doi.org/10.3390/jdb14010006 - 15 Jan 2026
Viewed by 153
Abstract
Cumulus cells (CCs) are a distinct population of granulosa cells (GCs) that surround the developing and ovulated mammalian oocyte. The features of their structural organization and the expression pattern of key genes significantly affect oocyte viability. Changes in the functional activity of the [...] Read more.
Cumulus cells (CCs) are a distinct population of granulosa cells (GCs) that surround the developing and ovulated mammalian oocyte. The features of their structural organization and the expression pattern of key genes significantly affect oocyte viability. Changes in the functional activity of the nucleus are often expressed in changes in the structure of nuclear bodies (NBs), including Cajal bodies (CBs). The diagnostic protein of CBs is coilin, which maintains their structural integrity. Using fluorescent and electron microscopy, we examined maternal aging-associated changes in coilin pattern in mouse CCs. We found that older mice had a decrease in the number of coilin-positive bodies, while external transcriptome data analysis revealed no significant changes in Coil and Smn1 gene expression. We hypothesized that the age-related dynamics of coilin-containing bodies are determined not by changes in the expression level of key components of these bodies, but by age-related changes in CC metabolism. Considering that CCs are a by-product of IVF protocols, making them available for analysis in sufficient quantities, age-related changes in the number and size of coilin-positive NBs in CCs may serve as a promising biomarker for assessing ovarian functional aging. Full article
Show Figures

Graphical abstract

21 pages, 4904 KB  
Article
Full-Genome Hepatitis B Virus Genotyping: A Juxtaposition of Next-Generation and Clone-Based Sequencing Approaches—Comparing Genotyping Methods of Hepatitis B Virus
by Li-Ping Hu, Qin-Yan Chen, Mei-Lin Huang, Wen-Jia Zhang, Xiao-Qian Huang, Xian-Feng Yi and Hui-Hua Jia
Viruses 2026, 18(1), 112; https://doi.org/10.3390/v18010112 - 15 Jan 2026
Viewed by 226
Abstract
Background: The enhanced sensitivity of next-generation sequencing (NGS) for assessing hepatitis B virus (HBV) quasispecies heterogeneity over clone-based sequencing (CBS) is well documented. However, its comparative reliability for genotype determination remains an open question. Objective: This study aimed to directly compare the performance [...] Read more.
Background: The enhanced sensitivity of next-generation sequencing (NGS) for assessing hepatitis B virus (HBV) quasispecies heterogeneity over clone-based sequencing (CBS) is well documented. However, its comparative reliability for genotype determination remains an open question. Objective: This study aimed to directly compare the performance of NGS and CBS for genotyping HBV using the entire viral genome. Methods: We selected five challenging clinical samples that previously could not be subgenotyped or showed conflicting results when using direct sequencing of the S open reading frame (ORF). The full HBV genome from these subjects was amplified and then analyzed in parallel by both NGS and CBS. Phylogenetic analysis was subsequently used to assign genotypes. Results: Both methods identified a range of genotypes, including B, C, and I, as well as aberrant and recombinant forms. For three of the five subjects, genotyping results were identical between the two platforms. In the remaining two cases, however, CBS revealed greater complexity, identifying additional subgenotypes and recombinant/aberrant strains not detected by NGS. Notably, for three individuals, the genotypes determined by both modern methods contradicted earlier results from 2011 based on direct S ORF sequencing. Furthermore, the specific mutations detected were incongruent between the platforms, with CBS identifying a higher number of variants than NGS. Conclusions: Our findings indicate that genotyping results from NGS and CBS can be discordant. Contrary to expectations, CBS may uncover more genetic diversity, including a greater number of subgenotypes and mutations, than NGS in certain contexts. The study also confirms that genotyping based solely on direct sequencing of the S ORF can be unreliable and lead to misclassification. Full article
(This article belongs to the Section Human Virology and Viral Diseases)
Show Figures

Figure 1

15 pages, 2859 KB  
Article
An Investigation into Removing Zinc from the Zinc-Bearing Dusts Using the Cold Briquetting-Direct Reduction Process
by Gen Li, Deqing Zhu, Jian Pan, Congcong Yang and Mingzhou Hou
Metals 2026, 16(1), 91; https://doi.org/10.3390/met16010091 - 14 Jan 2026
Viewed by 94
Abstract
This study developed a composite binder cold briquetting-direct reduction process for zinc removal and resource recovery from zinc-containing dust. Through systematic briquetting and reduction experiments, the optimal briquette parameters were identified, and the mechanisms of zinc migration and removal during reduction were discussed. [...] Read more.
This study developed a composite binder cold briquetting-direct reduction process for zinc removal and resource recovery from zinc-containing dust. Through systematic briquetting and reduction experiments, the optimal briquette parameters were identified, and the mechanisms of zinc migration and removal during reduction were discussed. The results showed that under optimized reduction conditions at 1275 °C for 25 min and with 4% carbon content in the briquettes, the process achieved a zinc removal rate of 98.25% and an iron metallization rate of 90.54%, indicating high Zn removal performance under the tested conditions. Notably, compared with briquettes prepared with conventional organic binders (OB1), the composite binder (CB1) briquettes exhibited higher compressive strength while maintaining comparable Zn removal and metallization performance. The CB1 offers both economic advantages and improved mechanical strength, being successfully applied in industrial lines. Moreover, this process offers an industrially applicable route for the efficient treatment and resource utilization of zinc-bearing dust in the steel industry. Full article
Show Figures

Figure 1

29 pages, 2810 KB  
Article
PAIR: A Hybrid A* with PPO Path Planner for Multi-UAV Navigation in 2-D Dynamic Urban MEC Environments
by Bahaa Hussein Taher, Juan Luo, Ying Qiao and Hussein Ridha Sayegh
Drones 2026, 10(1), 58; https://doi.org/10.3390/drones10010058 - 13 Jan 2026
Viewed by 137
Abstract
Emerging multi-unmanned aerial vehicle (multi-UAV) applications in smart cities must navigate cluttered airspace while meeting tight mobile edge computing (MEC) deadlines. Classical grid planners, including A-star (A*), D-star Lite (D* Lite), and conflict-based search with D-star Lite (CBS-D*) and metaheuristics such asparticle swarm [...] Read more.
Emerging multi-unmanned aerial vehicle (multi-UAV) applications in smart cities must navigate cluttered airspace while meeting tight mobile edge computing (MEC) deadlines. Classical grid planners, including A-star (A*), D-star Lite (D* Lite), and conflict-based search with D-star Lite (CBS-D*) and metaheuristics such asparticle swarm optimization (PSO), either replan too slowly in dynamic scenes or waste energy on long detours. This paper presents PPO-adjusted incremental refinement (PAIR), a decentralized hybrid planner that couples an A* global backbone with a continuous PPO refinement module for multi-UAV navigation on two-dimensional (2-D) urban grids. A* produces feasible waypoint routes, while a shared risk-aware PPO policy applies local offsets from a compact state encoding. MEC tasks are allocated by a separate heterogeneous scheduler; PPO optimizes geometric objectives (path length, risk, and a normalized propulsion-energy surrogate). Across nine benchmark scenarios with static and Markovian dynamic obstacles, PAIR achieves 100% mission success (matching the strongest baselines) while delivering the best energy surrogate (104.9 normalized units) and shortest mean travel time (207.8 s) on a reproducible 100×100 grid at fixed UAV speed. Relative to the strongest non-learning baseline (PSO), PAIR reduces energy by about 4% and travel time by about 3%, and yields roughly 10–20% gains over the remaining planners. An obstacle-density sweep with 5–30 moving obstacles further shows that PAIR maintains shorter paths and the lowest cumulative replanning time, supporting real-time multi-UAV navigation in dynamic urban MEC environments. Full article
(This article belongs to the Special Issue Path Planning, Trajectory Tracking and Guidance for UAVs: 3rd Edition)
Show Figures

Figure 1

20 pages, 4450 KB  
Article
Modulating One-Carbon Metabolism with B-Vitamins to Protect the Retinal Barrier and Prevent Retinal Degeneration
by Hossameldin Abouhish, Lamiaa Shalaby, Omar Elzayat, Neelesh Peddireddy and Amany Tawfik
Nutrients 2026, 18(2), 236; https://doi.org/10.3390/nu18020236 - 12 Jan 2026
Viewed by 177
Abstract
Background/Objectives: Vitamin B12 deficiency is increasingly recognized as a contributor in both vascular and neurodegenerative aging-related disorders. Its deficiency disrupts one-carbon metabolism, leading to impaired homocysteine (Hcy) cycling. Elevated Hcy is a well-established risk factor for vascular dysfunction. Previously, we established that [...] Read more.
Background/Objectives: Vitamin B12 deficiency is increasingly recognized as a contributor in both vascular and neurodegenerative aging-related disorders. Its deficiency disrupts one-carbon metabolism, leading to impaired homocysteine (Hcy) cycling. Elevated Hcy is a well-established risk factor for vascular dysfunction. Previously, we established that elevated Hcy contributes to aging retinal diseases and plays a central role in blood retinal barrier (BRB) dysfunction. Building on this foundation, the present study examines how B-vitamin deficiency disrupts one-carbon metabolism and whether restoring these vitamins can serve as a preventive or therapeutic strategy. Since B-vitamins (B6, B9, and B12) are crucial cofactors in the metabolism of Hcy, we investigated how dietary changes in these vitamins affect serum Hcy levels and retinal vascular integrity in mice. Methods: C57BL/6- Wild-type (WT) and cbs+/− mice (Cystathionine Beta-Synthase heterozygotes, common mouse model for elevated Hcy) were fed specially formulated diets, which contained different levels of B-vitamins (normal, deficient (B-Vit (−)) or enriched (B-Vit (+)). Initially, two groups of mice were placed on either a normal or a deficient diet. After 12–16 weeks, the success of the diet regimes was confirmed by observing serum B12 deficiency in the B-Vit (−) group, along with elevated Hcy levels. Subsequently, a subgroup of the B-Vit (−) mice was switched to an enriched diet. The BRB integrity was evaluated in living mice using fluorescein angiography (FA), optical coherence tomography (OCT), and in the perfused mice retinas with Western blot analysis of leaked retinal albumin and tight junction proteins (occludin and ZO-1) levels. Results: The B-vitamin deficiency caused significant drop in serum vitamin B12 and an increase in plasma Hcy, leading to vascular leakage, altered retinal thickness, choroidal neovascular changes, increased retinal albumin leak, and decreased tight junction protein expression, indicating BRB disruption, which was restored with B-vitamin supplementation. Conclusions: a long-term deficiency of vitamins B6, B9, and B12 can lead to disruptions in the BRB. However, supplementation with these B-vitamins has the potential to reverse these effects and help maintain the integrity of BRB. This under-score the significance of one-carbon metabolism for retinal health and suggests that ensuring adequate levels of B-vitamins may aid in preventing aging retinal diseases with BRB disruption such as diabetic retinopathy and age-related macular degeneration. Full article
Show Figures

Graphical abstract

12 pages, 3579 KB  
Article
Protective Effects of Cord Blood Serum (CBS) on Retinal Pigment Epithelium (ARPE-19) and Retinal Photoreceptor-like (661W) Cell Line Viability Under In Vitro Oxidative Stress
by Ilenia Motta, Francesca Corsi, Ilaria Piano, Silvia Bisti, Elisa Bergantin, Marina Buzzi, Maria Claudia Gargini and Piera Versura
Biomolecules 2026, 16(1), 131; https://doi.org/10.3390/biom16010131 - 12 Jan 2026
Viewed by 157
Abstract
Neuroprotection represents a promising approach for mitigating retinal degeneration. Cord blood serum (CBS), rich in trophic factors such as the brain-derived neurotrophic factor (BDNF), has shown therapeutic potential for ocular surface diseases; however, its role in retinal neuroprotection remains underexplored. This study evaluates [...] Read more.
Neuroprotection represents a promising approach for mitigating retinal degeneration. Cord blood serum (CBS), rich in trophic factors such as the brain-derived neurotrophic factor (BDNF), has shown therapeutic potential for ocular surface diseases; however, its role in retinal neuroprotection remains underexplored. This study evaluates the protective effects of CBS on retinal pigment epithelium (ARPE-19) and photoreceptor-like (661W) cells exposed to oxidative stress. Cells were cultured in media supplemented with fetal bovine serum (FBS) or CBS with either high (CBS-H) or low (CBS-L) BDNF content. Oxidative stress was induced using hydrogen peroxide (H2O2), and cell viability was measured via an MTS assay. ZO-1 expression was analyzed in ARPE-19 cells to assess tight junction integrity, while mitochondrial function in 661W cells was examined using MitoRed staining. TrkB receptor involvement was investigated using the inhibitor K252a and Western blot analysis. CBS significantly improved cell viability under oxidative conditions. CBS-H increased ZO-1 expression in ARPE-19 cells, indicating preserved epithelial integrity. In 661W cells, CBS maintained mitochondrial integrity and enhanced TrkB phosphorylation, while TrkB inhibition reduced its protective effect. These findings indicate that CBS confers neuroprotection through BDNF-TrkB signaling together with other trophic factors, supporting its potential as a multifactorial therapeutic strategy for retinal degeneration that deserves further exploration. Full article
(This article belongs to the Special Issue State of the Art and Perspectives in Retinal Pigment Epithelium)
Show Figures

Figure 1

12 pages, 2275 KB  
Article
Penicillium bialowiezense Causing Blue Mold on Bag-Cultivated Shiitake (Lentinula edodes) in China: Morphological, Molecular and Pathogenic Characterization
by Tan Wang, Enping Zhou, Caixia Wang, Zhifeng Zhang, Yingjun Zhang, Siliang Huang and Qiuhong Niu
Horticulturae 2026, 12(1), 86; https://doi.org/10.3390/horticulturae12010086 - 12 Jan 2026
Viewed by 181
Abstract
Lentinula edodes (shiitake) is a major edible and medicinal mushroom and a key component of the horticultural mushroom industry in East Asia. During April–June 2024 cropping season, a widespread blue mold outbreak was observed on bag-cultivated shiitake in Xixia County, Henan Province, China. [...] Read more.
Lentinula edodes (shiitake) is a major edible and medicinal mushroom and a key component of the horticultural mushroom industry in East Asia. During April–June 2024 cropping season, a widespread blue mold outbreak was observed on bag-cultivated shiitake in Xixia County, Henan Province, China. Affected cultivation rooms showed extensive blue-green sporulation on the exposed surfaces of substrate blocks and on developing and mature fruiting bodies, leading to rapid loss of marketability. To clarify the etiology of this disease, we coupled field surveys with morphological, molecular, and pathogenicity analyses. Fifty-five Penicillium isolates were obtained from symptomatic cultivation bags. Three representative isolates (LE06, LE15, and LE26) were characterized in detail. Colonies on PDA produced velutinous to floccose mycelia with blue-green conidial masses and terverticillate penicilli bearing smooth-walled, globose conidia. Sequencing of four loci—the internal transcribed spacer (ITS1-5.8S-ITS2), β-tubulin (benA), calmodulin gene (CaM), and RNA polymerase II second largest subunit (rpb2)—followed by multilocus phylogenetic analysis placed all three isolates in a well-supported clade with the ex-type CBS 227.28 of Penicillium bialowiezense. Inoculation of healthy shiitake cultivation bags with conidial suspensions (1 × 106 conidia mL−1) reproduced typical blue mold symptoms on substrate surfaces and fruiting bodies within 40 days post inoculation, whereas mock-inoculated controls remained symptomless. The pathogen was consistently reisolated from diseased tissues and showed identical ITS and benA sequences to the inoculated strains, thereby fulfilling Koch’s postulates. This is the first confirmed report of P. bialowiezense causing blue mold on shiitake, and it expands the known host range of this species. Our findings highlight the vulnerability of bag cultivation systems to airborne Penicillium contaminants and underscore the need for improved hygiene, environmental management, and targeted diagnostics in commercial shiitake production. Full article
(This article belongs to the Special Issue Sustainable Management of Pathogens in Horticultural Crops)
Show Figures

Figure 1

27 pages, 848 KB  
Article
Model of Acceptance of Artificial Intelligence Devices in Higher Education
by Luis Salazar and Luis Rivera
Computers 2026, 15(1), 46; https://doi.org/10.3390/computers15010046 - 12 Jan 2026
Viewed by 207
Abstract
Artificial intelligence (AI) has become a highly relevant tool in higher education. However, its acceptance by university students depends not only on technical or functional characteristics, but also on cognitive, contextual, and emotional factors. This study proposes and validates a model of acceptance [...] Read more.
Artificial intelligence (AI) has become a highly relevant tool in higher education. However, its acceptance by university students depends not only on technical or functional characteristics, but also on cognitive, contextual, and emotional factors. This study proposes and validates a model of acceptance of the use of AI devices (MIDA) in the university context. The model considers contextual variables such as anthropomorphism (AN), perceived value (PV) and perceived risk (PR). It also considers cognitive variables such as performance expectancy (PEX) and perceived effort expectancy (PEE). In addition, it considers emotional variables such as anxiety (ANX), stress (ST) and trust (TR). For its validation, data were collected from 517 university students and analysed using structural equations (CB-SEM). The results indicate that perceived value, anthropomorphism and perceived risk influence the willingness to accept the use of AI devices indirectly through performance expectancy and perceived effort. Likewise, performance expectancy significantly reduces anxiety and stress and increases trust, while effort expectancy increases both anxiety and stress. Trust is the main predictor of willingness to accept the use of AI devices, while stress has a significant negative effect on this willingness. These findings contribute to the literature on the acceptance of AI devices by highlighting the mediating role of emotions and offer practical implications for the design of AI devices aimed at improving their acceptance in educational contexts. Full article
(This article belongs to the Section Human–Computer Interactions)
Show Figures

Figure 1

Back to TopTop