Effects of Cannabidiol on Bone Health: A Comprehensive Scoping Review
Abstract
1. Introduction
2. Methods
2.1. Identifying the Research Question
2.2. Identifying Relevant Studies
2.3. Study Selection
2.4. Charting the Data
2.5. Collating, Summarising, and Reporting the Results
3. Results
3.1. Study Characteristics
3.2. Effects of CBD on Bone Formation and Osteoblast Activity
3.3. Effects of CBD on Bone Resorption and Osteoclast Activity
3.4. Human Clinical Evidence
3.5. Mechanisms of Action Across Studies
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Blebea, N.; Pricopie, A.-I.; Vlad, R.; Hancu, G. Phytocannabinoids: Exploring Pharmacological Profiles and Their Impact on Therapeutical Use. Int. J. Mol. Sci. 2024, 25, 4204. [Google Scholar] [CrossRef]
- Stella, N. THC and CBD: Similarities and differences between siblings. Neuron 2023, 111, 302–327. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.; Fan, M.; An, C.; Ni, F.; Huang, W.; Luo, J. A narrative review of molecular mechanism and therapeutic effect of cannabidiol (CBD). Basic Clin. Pharmacol. Toxicol. 2022, 130, 439–456. [Google Scholar] [CrossRef]
- O’Sullivan, S.E.; Jensen, S.S.; Nikolajsen, G.N.; Bruun, H.Z.; Bhuller, R.; Hoeng, J. The therapeutic potential of purified cannabidiol. J. Cannabis Res. 2023, 5, 21. [Google Scholar] [CrossRef]
- Urreola, G.; Le, M.; Harris, A.; Castillo, J.A., Jr.; Saiz, A.M.; Shahzad, H.; Martin, A.R.; Kim, K.D.; Khan, S.; Price, R. The Cannabinoid Pharmacology of Bone Healing: Developments in Fusion Medicine. Biomedicines 2025, 13, 1891. [Google Scholar] [CrossRef] [PubMed]
- Xin, Y.; Tang, A.; Pan, S.; Zhang, J. Components of the Endocannabinoid System and Effects of Cannabinoids Against Bone Diseases: A Mini-Review. Front. Pharmacol. 2022, 12, 793750. [Google Scholar] [CrossRef] [PubMed]
- Ekeuku, S.O.; Chin, K.Y. Application of Propolis in Protecting Skeletal and Periodontal Health—A Systematic Review. Molecules 2021, 26, 3156. [Google Scholar] [CrossRef]
- Ekeuku, S.O.; Pang, K.L.; Chin, K.Y. Effects of Caffeic Acid and Its Derivatives on Bone: A Systematic Review. Drug Des. Dev. Ther. 2021, 15, 259–275. [Google Scholar] [CrossRef]
- Ekeuku, S.O.; Pang, K.L.; Chin, K.Y. The Skeletal Effects of Tanshinones: A Review. Molecules 2021, 26, 2319. [Google Scholar] [CrossRef]
- Rezende, B.; Alencar, A.K.N.; de Bem, G.F.; Fontes-Dantas, F.L.; Montes, G.C. Endocannabinoid System: Chemical Characteristics and Biological Activity. Pharmaceuticals 2023, 16, 148. [Google Scholar] [CrossRef]
- Kogan, N.M.; Melamed, E.; Wasserman, E.; Raphael, B.; Breuer, A.; Stok, K.S.; Sondergaard, R.; Escudero, A.V.; Baraghithy, S.; Attar-Namdar, M.; et al. Cannabidiol, a Major Non-Psychotropic Cannabis Constituent Enhances Fracture Healing and Stimulates Lysyl Hydroxylase Activity in Osteoblasts. J. Bone Miner. Res. 2015, 30, 1905–1913. [Google Scholar] [CrossRef]
- Khajuria, D.K.; Karuppagounder, V.; Nowak, I.; Sepulveda, D.E.; Lewis, G.S.; Norbury, C.C.; Raup-Konsavage, W.M.; Vrana, K.E.; Kamal, F.; Elbarbary, R.A. Cannabidiol and Cannabigerol, Nonpsychotropic Cannabinoids, as Analgesics that Effectively Manage Bone Fracture Pain and Promote Healing in Mice. J. Bone Miner. Res. 2023, 38, 1560–1576. [Google Scholar] [CrossRef]
- Apostu, D.; Lucaciu, O.; Mester, A.; Benea, H.; Oltean-Dan, D.; Onisor, F.; Baciut, M.; Bran, S. Cannabinoids and bone regeneration. Drug Metab. Rev. 2019, 51, 65–75. [Google Scholar] [CrossRef]
- Patricio, F.; Morales-Andrade, A.A.; Patricio-Martínez, A.; Limón, I.D. Cannabidiol as a Therapeutic Target: Evidence of its Neuroprotective and Neuromodulatory Function in Parkinson’s Disease. Front. Pharmacol. 2020, 11, 595635. [Google Scholar] [CrossRef] [PubMed]
- Atalay, S.; Jarocka-Karpowicz, I.; Skrzydlewska, E. Antioxidative and Anti-Inflammatory Properties of Cannabidiol. Antioxidants 2020, 9, 21. [Google Scholar] [CrossRef]
- Ihejirika-Lomedico, R.; Patel, K.; Buchalter, D.B.; Kirby, D.J.; Mehta, D.; Dankert, J.F.; Muiños-López, E.; Ihejirika, Y.; Leucht, P. Non-psychoactive Cannabidiol Prevents Osteoporosis in an Animal Model and Increases Cell Viability, Proliferation, and Osteogenic Gene Expression in Human Skeletal Stem and Progenitor Cells. Calcif. Tissue Int. 2023, 112, 716–726. [Google Scholar] [CrossRef]
- de Oliveira, A.C.; Macedo, A.P.; Shimano, A.C. Effects of Cannabidiol on Bone Quality in Ovariectomized Rats. Calcif. Tissue Int. 2024, 115, 700–711. [Google Scholar] [CrossRef]
- Fogel, H.; Yeritsyan, D.; Momenzadeh, K.; Kheir, N.; Yeung, C.M.; Abbasian, M.; Lozano, E.M.; Nazarian, R.M.; Nazarian, A. The effect of cannabinoids on single-level lumbar arthrodesis outcomes in a rat model. Spine J. 2024, 24, 1759–1772. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Lin, Z.; Meng, Q.; Wang, K.; Wu, J.; Yan, H. Cannabidiol administration reduces sublesional cancellous bone loss in rats with severe spinal cord injury. Eur. J. Pharmacol. 2017, 809, 13–19. [Google Scholar] [CrossRef]
- Kamali, A.; Oryan, A.; Hosseini, S.; Ghanian, M.H.; Alizadeh, M.; Eslaminejad, M.B.; Baharvand, H. Cannabidiol-loaded microspheres incorporated into osteoconductive scaffold enhance mesenchymal stem cell recruitment and regeneration of critical-sized bone defects. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 101, 64–75. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Feng, J.; Sun, L.; Xuan, Y.W.; Wen, L.; Li, Y.X.; Yang, S.; Zhu, B.; Tian, X.Y.; Li, S.; et al. Cannabidiol Promotes Osteogenic Differentiation of Bone Marrow Mesenchymal Stem Cells in the Inflammatory Microenvironment via the CB2-dependent p38 MAPK Signaling Pathway. Int. J. Stem Cells 2022, 15, 405–414. [Google Scholar] [CrossRef]
- Kang, M.A.; Lee, J.; Park, S.H. Cannabidiol induces osteoblast differentiation via angiopoietin1 and p38 MAPK. Environ. Toxicol. 2020, 35, 1318–1325. [Google Scholar] [CrossRef]
- Chen, H.; Liu, Y.; Yu, S.; Li, C.; Gao, B.; Zhou, X. Cannabidiol attenuates periodontal inflammation through inhibiting TLR4/NF-κB pathway. J. Periodontal Res. 2023, 58, 697–707. [Google Scholar] [CrossRef]
- Napimoga, M.H.; Benatti, B.B.; Lima, F.O.; Alves, P.M.; Campos, A.C.; Pena-Dos-Santos, D.R.; Severino, F.P.; Cunha, F.Q.; Guimarães, F.S. Cannabidiol decreases bone resorption by inhibiting RANK/RANKL expression and pro-inflammatory cytokines during experimental periodontitis in rats. Int. Immunopharmacol. 2009, 9, 216–222. [Google Scholar] [CrossRef] [PubMed]
- Pagano, C.; Savarese, B.; Coppola, L.; Navarra, G.; Avilia, G.; Laezza, C.; Bifulco, M. Cannabinoids in the Modulation of Oxidative Signaling. Int. J. Mol. Sci. 2023, 24, 2513. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.C.; Otalora-Alcaraz, A.; Prenderville, J.A.; Downer, E.J. Toll-like receptor signalling as a cannabinoid target. Biochem. Pharmacol. 2024, 222, 116082. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, B.L.; Springs, A.E.; Kaminski, N.E. The profile of immune modulation by cannabidiol (CBD) involves deregulation of nuclear factor of activated T cells (NFAT). Biochem. Pharmacol. 2008, 76, 726–737. [Google Scholar] [CrossRef]
- Ehrenkranz, J.; Levine, M.A. Bones and Joints: The Effects of Cannabinoids on the Skeleton. J. Clin. Endocrinol. Metab. 2019, 104, 4683–4694. [Google Scholar] [CrossRef]
- Clouse, G.; Penman, S.; Hadjiargyrou, M.; Komatsu, D.E.; Thanos, P.K. Examining the role of cannabinoids on osteoporosis: A review. Arch. Osteoporos. 2022, 17, 146. [Google Scholar] [CrossRef]
- Arksey, H.; O’Malley, L. Scoping studies: Towards a methodological framework. Int. J. Soc. Res. Methodol. 2005, 8, 19–32. [Google Scholar] [CrossRef]
- Tricco, A.C.; Lillie, E.; Zarin, W.; O’Brien, K.K.; Colquhoun, H.; Levac, D.; Moher, D.; Peters, M.D.J.; Horsley, T.; Weeks, L.; et al. PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Ann. Intern. Med. 2018, 169, 467–473. [Google Scholar] [CrossRef]
- Baines, D.K.; Platania, V.; Tavernaraki, N.N.; Wright, K.; Chatzinikolaidou, M.; Douglas, T.E.L. Whey Protein Isolate Hydrogels Containing Cannabidiol Support the Proliferation of Pre-Osteoblasts. Gels 2025, 11, 418. [Google Scholar] [CrossRef] [PubMed]
- Fukawa, Y.; Kayamori, K.; Tsuchiya, M.; Ikeda, T. IL-1 Generated by Oral Squamous Cell Carcinoma Stimulates Tumor-Induced and RANKL-Induced Osteoclastogenesis: A Possible Mechanism of Bone Resorption Induced by the Infiltration of Oral Squamous Cell Carcinoma. Int. J. Mol. Sci. 2022, 24, 688. [Google Scholar] [CrossRef]
- Nielsen, S.S.R.; Pedersen, J.A.Z.; Sharma, N.; Wasehuus, P.K.; Hansen, M.S.; Møller, A.M.; Borggaard, X.G.; Rauch, A.; Frost, M.; Sondergaard, T.E.; et al. Human osteoclasts in vitro are dose dependently both inhibited and stimulated by cannabidiol (CBD) and Δ9-tetrahydrocannabinol (THC). Bone 2024, 181, 117035. [Google Scholar] [CrossRef]
- Schmuhl, E.; Ramer, R.; Salamon, A.; Peters, K.; Hinz, B. Increase of mesenchymal stem cell migration by cannabidiol via activation of p42/44 MAPK. Biochem. Pharmacol. 2014, 87, 489–501. [Google Scholar] [CrossRef]
- Tsuchiya, M.; Kayamori, K.; Wada, A.; Komaki, M.; Ohata, Y.; Hamagaki, M.; Sakamoto, K.; Ikeda, T. A Novel, Tumor-Induced Osteoclastogenesis Pathway Insensitive to Denosumab but Interfered by Cannabidiol. Int. J. Mol. Sci. 2019, 20, 6211. [Google Scholar] [CrossRef]
- Yu, L.; Zeng, L.; Zhang, Z.; Zhu, G.; Xu, Z.; Xia, J.; Weng, J.; Li, J.; Pathak, J.L. Cannabidiol Rescues TNF-α-Inhibited Proliferation, Migration, and Osteogenic/Odontogenic Differentiation of Dental Pulp Stem Cells. Biomolecules 2023, 13, 118. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.W.; Shrestha, S.K.; Chuluunbaatar, B.A.; Soh, Y. Combination of Cannabidiol with Taurine Synergistically Treated Periodontitis in Rats. Biomol. Ther. 2025, 33, 203–209. [Google Scholar] [CrossRef]
- Liu, F.; Wu, Q.; Liu, Q.; Chen, B.; Liu, X.; Pathak, J.L.; Watanabe, N.; Li, J. Dental pulp stem cells-derived cannabidiol-treated organoid-like microspheroids show robust osteogenic potential via upregulation of WNT6. Commun. Biol. 2024, 7, 972. [Google Scholar] [CrossRef]
- Whyte, L.S.; Ryberg, E.; Sims, N.A.; Ridge, S.A.; Mackie, K.; Greasley, P.J.; Ross, R.A.; Rogers, M.J. The putative cannabinoid receptor GPR55 affects osteoclast function in vitro and bone mass in vivo. Proc. Natl. Acad. Sci. USA 2009, 106, 16511–16516. [Google Scholar] [CrossRef] [PubMed]
- Bradley, S.; Young, S.; Bakke, A.M.; Holcombe, L.; Waller, D.; Hunt, A.; Pinfold, K.; Watson, P.; Logan, D.W. Long-term daily feeding of cannabidiol is well-tolerated by healthy dogs. Front. Vet. Sci. 2022, 9, 977457. [Google Scholar] [CrossRef]
- Sui, K.; Tveter, K.M.; Bawagan, F.G.; Buckendahl, P.; Martinez, S.A.; Jaffri, Z.H.; MacDonell, A.T.; Wu, Y.; Duran, R.M.; Shapses, S.A.; et al. Cannabidiol-Treated Ovariectomized Mice Show Improved Glucose, Energy, and Bone Metabolism with a Bloom in Lactobacillus. Front. Pharmacol. 2022, 13, 900667. [Google Scholar] [CrossRef] [PubMed]
- Trivedi, M.K.; Mondal, S.; Jana, S. Cannabidiol improves thyroid function via modulating vitamin D3 receptor in vitamin D3 deficiency diet-induced rat model. J. Food Sci. Technol. 2022, 59, 3237–3244. [Google Scholar] [CrossRef]
- Kulpa, J.; Harrison, A.; Rudolph, L.; Eglit, G.M.L.; Turcotte, C.; Bonn-Miller, M.O.; Peters, E.N. Oral Cannabidiol Treatment in Two Postmenopausal Women with Osteopenia: A Case Series. Cannabis Cannabinoid Res. 2023, 8, S83–S89. [Google Scholar] [CrossRef] [PubMed]
- Idris, A.I.; Ralston, S.H. Cannabinoids and bone: Friend or foe? Calcif. Tissue Int. 2010, 87, 285–297. [Google Scholar] [CrossRef] [PubMed]
- Idris, A.I.; Ralston, S.H. Role of cannabinoids in the regulation of bone remodeling. Front. Endocrinol. 2012, 3, 136. [Google Scholar] [CrossRef]
- Ofek, O.; Karsak, M.; Leclerc, N.; Fogel, M.; Frenkel, B.; Wright, K.; Tam, J.; Attar-Namdar, M.; Kram, V.; Shohami, E.; et al. Peripheral cannabinoid receptor, CB2, regulates bone mass. Proc. Natl. Acad. Sci. USA 2006, 103, 696–701. [Google Scholar] [CrossRef]
- Sophocleous, A.; Landao-Bassonga, E.; Van’t Hof, R.J.; Idris, A.I.; Ralston, S.H. The type 2 cannabinoid receptor regulates bone mass and ovariectomy-induced bone loss by affecting osteoblast differentiation and bone formation. Endocrinology 2011, 152, 2141–2149. [Google Scholar] [CrossRef]
- McPartland, J.M.; Duncan, M.; Di Marzo, V.; Pertwee, R.G. Are cannabidiol and Δ9-tetrahydrocannabivarin negative modulators of the endocannabinoid system? A systematic review. Br. J. Pharmacol. 2015, 172, 737–753. [Google Scholar] [CrossRef]
- Mechoulam, R.; Parker, L.A. The endocannabinoid system and the brain. Annu. Rev. Psychol. 2013, 64, 21–47. [Google Scholar] [CrossRef]
- Pertwee, R.G. The diverse CB1 and CB2 receptor pharmacology of three plant cannabinoids: Δ9-tetrahydrocannabinol, cannabidiol and Δ9-tetrahydrocannabivarin. Br. J. Pharmacol. 2008, 153, 199–215. [Google Scholar] [CrossRef]
- Martínez-Pinilla, E.; Varani, K.; Reyes-Resina, I.; Angelats, E.; Vincenzi, F.; Ferreiro-Vera, C.; Oyarzabal, J.; Canela, E.I.; Lanciego, J.L.; Nadal, X.; et al. Binding and Signaling Studies Disclose a Potential Allosteric Site for Cannabidiol in Cannabinoid CB2 Receptors. Front. Pharmacol. 2017, 8, 744. [Google Scholar] [CrossRef]
- Swenson, K. Beyond the hype: A comprehensive exploration of CBD’s biological impacts and mechanisms of action. J. Cannabis Res. 2025, 7, 24. [Google Scholar] [CrossRef]
- Raphael-Mizrahi, B.; Gabet, Y. The Cannabinoids Effect on Bone Formation and Bone Healing. Curr. Osteoporos. Rep. 2020, 18, 433–438. [Google Scholar] [CrossRef]
- Campana, M.D.; de Paolis, G.; Sammartino, G.; Bucci, P.; Aliberti, A.; Gasparro, R. Cannabinoids: Therapeutic Perspectives for Management of Orofacial Pain, Oral Inflammation and Bone Healing-A Systematic Review. Int. J. Mol. Sci. 2025, 26, 3766. [Google Scholar] [CrossRef] [PubMed]
- David, C.; de Souza, J.F.; Silva, A.F.; Grazioli, G.; Barboza, A.S.; Lund, R.G.; Fajardo, A.R.; Moraes, R.R. Cannabidiol-loaded microparticles embedded in a porous hydrogel matrix for biomedical applications. J. Mater. Sci. Mater. Med. 2024, 35, 14. [Google Scholar] [CrossRef] [PubMed]
- Qi, J.; Zheng, Z.; Hu, L.; Wang, H.; Tang, B.; Lin, L. Development and characterization of cannabidiol-loaded alginate copper hydrogel for repairing open bone defects in vitro. Colloids Surf. B Biointerfaces 2022, 212, 112339. [Google Scholar] [CrossRef] [PubMed]
- Buchaim, R.L.; Dias, L.C.; de Sousa, F.; Morais, S.S.; Jacintho, A.J.; Paulini, M.R.; Issa, J.P.M.; Buchaim, D.V. Exploring Cannabidiol’s Role in Regenerative Medicine: Focus on Neural and Skeletal Tissues. Biomedicines 2025, 13, 2490. [Google Scholar] [CrossRef]
- Ortona, E.; Pagano, M.T.; Capossela, L.; Malorni, W. The Role of Sex Differences in Bone Health and Healing. Biology 2023, 12, 993. [Google Scholar] [CrossRef]
- Mastinu, A.; Ribaudo, G.; Ongaro, A.; Bonini, S.A.; Memo, M.; Gianoncelli, A. Critical Review on the Chemical Aspects of Cannabidiol (CBD) and Harmonization of Computational Bioactivity Data. Curr. Med. Chem. 2021, 28, 213–237. [Google Scholar] [CrossRef]
- Hawes, E.M.; Lee, C.R.; Brackney, D.E.; Ensley, T.G.; Kidd, J.; Page, C. Cannabidiol Products: Review of the Regulatory and Clinical Considerations. J. Nurse Pract. 2020, 16, 747–755. [Google Scholar] [CrossRef]
- Taylor, L.; Gidal, B.; Blakey, G.; Tayo, B.; Morrison, G. A Phase I, Randomized, Double-Blind, Placebo-Controlled, Single Ascending Dose, Multiple Dose, and Food Effect Trial of the Safety, Tolerability and Pharmacokinetics of Highly Purified Cannabidiol in Healthy Subjects. CNS Drugs 2018, 32, 1053–1067. [Google Scholar] [CrossRef]
- Grayson, L.; Vines, B.; Nichol, K.; Szaflarski, J.P. An interaction between warfarin and cannabidiol, a case report. Epilepsy Behav. Case Rep. 2018, 9, 10–11. [Google Scholar] [CrossRef]
- Gaston, T.E.; Bebin, E.M.; Cutter, G.R.; Liu, Y.; Szaflarski, J.P. Interactions between cannabidiol and commonly used antiepileptic drugs. Epilepsia 2017, 58, 1586–1592. [Google Scholar] [CrossRef] [PubMed]
- Nader, F.D.; Lopes, L.P.N.; Ramos-Silva, A.; Matheus, M.E. Evidence of Potential Drug Interactions Between Cannabidiol and Other Drugs: A Scoping Review to Guide Pharmaceutical Care. Planta Medica 2025, 91, 488–495. [Google Scholar] [CrossRef] [PubMed]
- Idris, A.I. Role of cannabinoid receptors in bone disorders: Alternatives for treatment. Drug News Perspect. 2008, 21, 533–540. [Google Scholar] [CrossRef]
- Li, J.; Feng, Q.; Xu, Y. Pharmacokinetic and safety profile of cannabidiol in humans. Front. Pharmacol. 2022, 13, 871684. [Google Scholar]
- Grifoni, L.; Vanti, G.; Donato, R.; Sacco, C.; Bilia, A.R. Promising Nanocarriers to Enhance Solubility and Bioavailability of Cannabidiol for a Plethora of Therapeutic Opportunities. Molecules 2022, 27, 6070. [Google Scholar] [CrossRef] [PubMed]


| Authors (Year) | Subject and Model Characteristics | Treatment Characteristics | Findings | ||
|---|---|---|---|---|---|
| Increased vs. Negative Control | Decreased vs. Negative Control | Unchanged vs. Negative Control | |||
| Baines et al. (2025) [32] | MC3T3-E1 cells seeded on 40% (w/v) whey protein isolate (WHI) hydrogels. | CBD in hydrogels at 10–50 µM. Negative controls included WPI hydrogels without CBD. Positive control: n/a. | Mechanical properties. Cell proliferation. ALP and collagen protein expression. | Hydrogel mass loss. | Hydrogel swelling mass. Mineral deposition. |
| Fukawa et al. (2023) [33] | Human oral squamous cell carcinoma (OSCC) lines co-cultured with osteoclast precursor cells (OPCs) from 5-week-old ddY mouse bone marrow. OPCs generated with M-CSF → RANKL (100 ng/mL). Human OSCC lines: NEM, NEM-F, NEM-K, 3A, Ca, HSC-2/3/6, NA, NU, OMI, SH, Toh. Models: (a) OSCC supernatant exposure (40% supernatant). (b) conventional RANKL (100 ng/mL) osteoclastogenesis. | CBD at 5 µM (other treatment not reported). | n/a. | OSCC culture supernatant-stimulated osteoclast formation. Pit formation. GR55 agonist abolished the effects of CBD. | RANKL-induced osteoclastogenesis (TRAP+ cell counts and pit formation). Cell viability of OPCs. |
| Kang et al. (2020) [22] | U2OS and MG-63 human osteoblast-like cell lines. | CBD at 0.125, 0.25, and 0.5 µM. Negative control: vehicle only. Positive control: n/a. | Angiopoietin-1, tight-junction protein, ALP protein expression. Cell migration. Mineralisation Expression of osteogenic markers: DLX5 (mRNA), BSP (mRNA), OCN (mRNA), COL1 (mRNA), RUNX2 (protein), OSX (protein). p38 MAPK activation. Protein–protein interaction: RUNX2–OSX–pp38. | n/a. | Angiopoietin-2. Cell morphology normal. |
| Li et al. (2022) [21] | BMSCs from 5-week-old male C57BL/6 mice; passages 3–5. Inflammatory model: LPS 10 µg/mL. | CBD 0.1–10 µM, with maximal effects at 2.5 µM. Co-treatments included AM630 (10 µM-CB2 antagonist) and SB203580 (20 µM-p38antagonist). Negative control: LPS and vehicle. Positive control: n/a. | ALP production. Proteins and mRNA expression of RUNX2, ALP, and OCN. Mineralisation. CB2 protein expression. AM630 and SB203580 reverse the effects. | TNF-α and IL-6 mRNA expression. | BMSC viability (CBD alone). CB1 protein expression. |
| Nielsen et al. (2024) [34] | Human osteoclast precursors = CD14+ monocytes (>50-year-old male donors). Human osteoblast-lineage cells = trabecular bone outgrowths from OA patients. | CBD 0.3–30 µM during 7–10-day differentiation assays, 3-day resorption assays, and 72 h cocultures. Negative control: vehicle. Positive control: none. | ES/BS, pit surface, trench surface. | Osteoclast fusion. Multinucleated osteoclasts. Bone resorption. Osteoblasts. ALP protein expression Proliferative expansion. (long-term 3 µM). | Percentage trench surface per eroded surface. |
| Schmuhl et al. (2013) [35] | Human MSCs from liposuction adipose tissue; CD34+ selected. Short-term assays in serum-free DMEM; long-term ≤35 days in DMEM + 1% FCS + osteogenic supplements. | CBD 0.01–3 µM. Negative control: vehicle. Positive control: n/a. | MSC migration. MAPK, Akt, FAK, ALP protein expression. Mineralisation. Upregulate osteogenic genes. | IL-1β secretion. NLRP3, ASC, and pro-Caspase-1 protein expression. TGF-β1/Smad2/3 protein expression. Fibrosis markers: HYP, α-SMA, and OPN protein expression. Fibrosis score. | Cell viability. |
| Tsuchiya et al. (2019) [36] | OPCs from 5-week-old female ddy mouse BMMs (M-CSF + short RANKL). Human OSCC lines: 3A, NEM, HO-1-N1. Model compares osteoclastogenic vs. non-osteoclastogenic OSCC lines. | CBD 1–5 µM, with inhibitory effects observed at ≥4 µM over four days of coculture. Negative control: vehicle. Positive control: denosumab. | n/a. | Osteoclast formation (TRAP+ multinucleated cells). Tumour-induced osteoclastogenesis by 3A OSCC cells. | RANKL-induced osteoclastogenesis. NFATc1 mRNA expression. |
| Yu et al. (2023) [37] | Human DPSCs from 20 healthy donors (12–20 years). Basal and inflammatory conditions (TNF-α 20 or 50 ng/mL). Osteogenic/odontogenic induction × 28 days. | CBD at 0.1–12.5 µM, with 2.5 µM optimal across assays lasting 4–28 days. Negative control: TNF-α without CBD. Positive control: n/a. | Cell proliferation. ALP protein expression. Mineralisation. Osteogenic/Odontogenic gene expression: RUNX2, COL-I, OPN, CB1/CB2. | Cell viability. TNF-α-induced IL-1β, IL-6 and TNF-α mRNA expression. | RUNX2. |
| * Chen et al. (2023) [23] | Primary human PDLCs from healthy orthodontic premolars (16–20 y); passages 3–5. Stimulated with 1 µg/mL LPS. | CBD 1–8 µM. Negative control: no CBD. Positive control: n/a. | Cell viability. | Gene expression of TNF-α (2–8 µM), IL-1β (8 µM), TLR4 (2–8 µM). Protein expression of TNF-α (1–8 µM), IL-1β (2–8 µM), TLR4 (1–8 µM) p-NF-κB (1–8 µM), p-ERK (8 µM). | Cell viability (not stimulated by LPS). |
| * Ihejirika-Lomedico et al. (2023) [16] | Human skeletal stem/progenitor cells (SSPCs) from discarded femoral heads (hip replacement). | CBD 1–10 µg/mL. | Viability and Proliferation. OCN mRNA expression. | n/a. | RUNX2 and Osterix mRNA expression. |
| * Kamali et al. (2019) [20] | Bone marrow-derived MSCs seeded on a scaffold. | CBD encapsulated into PLGA microspheres and incorporated into a gelatin/nano-hydroxyapatite scaffold. Negative control: Scaffolds without CBD. Positive control: n/a. | MSC migration. ALP, Col1, and OCN mRNA expression. | Fibroblast/fibrocyte density. ALP mRNA (late timepoint). | MSC viability. |
| * Kim et al. (2025) [38] | RAW264.7 murine macrophages + mouse bone-marrow-derived macrophages (BMMs). | CBD (10 µM) for 30 min before LPS stimulation. Negative control: LPS + vehicle. Positive control: n/a. | n/a. | Only for CBD + taurine: protein expression of iNOS, COX-2, TNF-α, IL-1β. TRAP+ osteoclasts. Resorption pit area. | Cell viability (≤ 12 µM CBD). |
| * Kogan et al. (2015) [11] | Primary newborn mouse calvarial osteoblasts. | CBD at 10−12–10−10 M for 24 h before gene analysis. | Plod1 mRNA. | n/a. | n/a |
| * Liu et al. (2024) [39] | Human dental pulp stem cells (DPSCs) grown as 2D monolayers and 3D microspheroids (≈70 µm) using PDMS-agarose microwells. | CBD 0–12.5 µM CBD 2.5 µM during osteogenic induction. | ALP production. Mineralisation. Osteogenic gene and protein expression (for microspheroids): ALP, BMP2, RUNX2, OCN. WNT6, β-catenin protein expression. | n/a. | Cell viability unaffected at 0.1–2.5 µM. |
| * Whyte et al. (2009) [40] | Human osteoclasts from peripheral blood monocytes; mouse osteoclasts from WT and GPR55−/− BMMs. | CBD 0.5 and 1 µM. | Osteoclast number. | Osteoclast polarisation (F-actin rings). Resorption pit area (human osteoclasts). Activated Rho and p-ERK protein expression. | Osteoblast differentiation and mineralisation. |
| Authors (Year) | Subject and Model Characteristics | Treatment Characteristics | Findings | ||
|---|---|---|---|---|---|
| Increased vs. Negative Control | Decreased vs. Negative Control | Unchanged vs. Negative Control | |||
| Bradley et al. (2022) [41] | Clinically healthy dogs. Breeds/age/weight: 17 Labrador Retrievers (1.4–9.4 y; 19–36 kg), 8 Beagles (1.2–6.6 y; 11–18 kg), 15 Norfolk Terriers (1.4–4.4 y; 4–8.5 kg). | Treatment (n = 20): CBD distillate soft gel capsules at ~4 mg/kg/day (3.38–4.44 mg/kg/day) for 26 weeks. Negative control (n = 20): placebo capsules. Positive control: n/a. | ALP and BALP protein expression. | Total protein level. Calcium level. | Liver profile. Serum C-terminal telopeptide. Haematological profile. Urine profile. Quality-of-life measures. |
| de Oliveira et al. (2024) [17] | OVX Female Sprague–Dawley rats, 8 weeks, ~200 g. | Treatment (n = 12): CBD at 5 mg/kg (i.p.), five days per week for three weeks (15 total doses), given 9 weeks after OVX. Negative control (n = 12): vehicle. Positive control: n/a. | BMD, BV/TV, Tb.N, Strength, B.Ar/Tt.Ar, Osteoblast count. | Osteoclast count. | Femoral neck BMD. RANKL and OPG mRNA expression. Cortical thickness. |
| Fogel et al. (2024) [18] | Female Sprague–Dawley rats, 13 weeks. Model: L4–L5 posterolateral inter-transverse lumbar spinal fusion; transverse processes decorticated; graft placed bilaterally. | Treatment (n = 18/treatment): CBD, THC, or CBD + THC (NIDA) at 5 mg/kg once weekly for eight weeks. Negative control (n = 18): vehicle. Positive control: n/a. | Histology score ALPL, BMP4, and SOST protein expression. Fusion rate. | RANKL/OPG ratio RANK, RANKL protein expression. | Micro-CT-BV/TV, BMD and TMD. mRNA expression (2 weeks): RUNX2 and β-catenin (CTNNB1). Col1A1 and MMP13. Gene expression (8 weeks): ALPL, BMP4 [mRNA] and SOST. RUNX2 & β-catenin (CTNNB1). |
| Khajuria et al. (2023) [12] | Male C57BL/6J mice, 14 weeks (~30 g). Model: open mid-diaphyseal tibial fracture with intramedullary nail fixation. In vitro: periosteal progenitors of the mice (PDGFRα+). | Treatment (n = 6): CBD 5 mg/kg/day (i.p.) beginning 24 h after fracture. Negative control (n = 6): vehicle. Positive control (n = 6/group): indomethacin (2.5 mg/kg) and celecoxib (3 mg/kg) for hypersensitivity test. | Pain thresholds. Gait parameters. Collagen I, OCN, and SP7 staining area. BV/TV, BMD, Tb.Th, Tb.N. No. of osteoblasts. Biomechanics. PDGFRα+ progenitors. | No. of TUNEL+ cells. | Inflammatory phase markers (IHH, Col X, MMP13). Bone stiffness. |
| Li et al. (2017) [19] | Male Wistar rats (~3 months). Thoracic (T3–T4) complete spinal cord transection—severe sublesional bone loss. | Treatment (n = 9): CBD 0.5 or 5 mg/kg/day for 14 days, beginning 12 h after spinal cord transection. Negative control (n = 9): vehicle. Positive control: n/a. | Only at 5 mg/kg: OCN, ALP, and OPG protein expression. BMD, BV/TV, Tb.Th, Tb.N. Ultimate compressive load, stiffness, and energy to max force of femoral diaphysis. wnt3a, Lrp5, and ctnnb1 mRNA in femurs. | Only 5 mg/kg group: CTX level. Tb.Sp. RANKL. TRAP. | Sost, Wnt1 mRNA. Displacement at the ultimate load. |
| Napimoga et al. (2009) [24] | Male Wistar rats. Ligature-induced periodontitis (mandibular 1st molars, 30 days). | Treatment (n = 10): CBD 5 mg/kg/day (i.p.) for 30 days beginning the day after ligature placement. Negative control (n = 10): vehicle. Positive control: n/a. | n/a. | Alveolar bone loss. RANKL, RANK staining. Neutrophil infiltration (MPO expression). TNF-α, IL-1β production. | OPG protein expression. |
| Sui et al. (2022) [42] | Female C57BL/6J mice; OVX at 12 weeks. | Treatment (n = 9): CBD at 25 mg/kg/day for 18 weeks, started 2 weeks after OVX. Negative control (n = 8–9): vehicle. Positive control: n/a. | Whole-body BMD, BMC, BV/TV, Tb.Th, vBMD, and CB2/TGR5 genes. O2 consumption. EE. Lactobacillus in the gut. | Femoral RANKL (Tnfrsf11) mRNA. Femoral IL-6 mRNA. | Acp5 (TRAP), OPG (Tnfrsf11b) and RANK (Tnfrsf11a) mRNA. Tb.N and Tb.Sp. Ct.Ar/Tt.Ar, Ct.Th, and tissue mineral density. |
| Trivedi et al. (2022) [43] | Male Sprague–Dawley rats. Vitamin D3 deficiency induced by VDD diet × 3 weeks (↓25-OH D3 by ~50–60%). | Treatment (n = 6/group): CBD 15, 30 or 60 mg/kg for 56 days. Negative control (n = 6): vehicle. Positive control (n = 6): calcitriol (0.5 µg/kg). | CB2 mRNA, VDR mRNA 25(OH)D, and 1,25(OH) in the kidney, liver, and serum (at 60mg/kg) T4. Calcitonin | TSH, PTH | n/a. |
| * Chen et al. (2023) [23] | Male Sprague–Dawley rats, 8 weeks old. Periodontitis induced via bilateral maxillary first-molar nylon ligature. | Treatment (n = 10): CBD (5% w/w) was incorporated into a beeswax/porcine fat paste, applied topically at ~5 mg/kg/day to ligature sites for four weeks. Negative control (n = 10): ligature without CBD. Positive control: n/a. | BV/TV. Collagen organisation. | Alveolar bone loss. TNF-α, IL-1β, and TLR4 protein expression. Tissue destruction | n/a. |
| * Ihejirika-Lomedico et al. (2023) [16] | C57BL/6 mice: Phase 1—12-week-old males; Phase 2—8-week-old females. Bone-loss induction: fluoxetine (10 mg/kg/day) or ovariectomy (OVX). Fracture model: standardised mid-shaft femoral fracture with screw fixation. | Treatment (n = 5–7): CBD 5 mg/kg/day for three weeks using osmotic pumps implanted pre- or post-fracture. Negative control (n = 5–7): Vehicle pumps + OVX or Fluoxetine. Positive control: n/a. | OVX model, fractured bone: bone formation staining (post-fracture treatment) OVX model, unfractured bone, pre-treatment: Tb.N, BMD Fluoxetine model: BMD after 4 weeks of treatment. | OVX model, fractured bone: Tb. Sp. (post-fracture treatment). Cartilage persistence. | OVX model, fractured bone, pre- and post-fracture treatment: BV/TV, Tb.Th, Tb.N, Tb.Sp (pre-fracture treatment). Bone formation staining (pre-fracture treatment), cartilage area. OVX model, unfractured bone, post-treatment: Tb.N, Tb, Th, Tb.Sp, BMD. Pre-treatment: Tb.Th, Tb.Sp. Fluoxetine model: Stiffness, ultimate stress, ultimate load, elastic modulus. Collagen staining. |
| * Kamali et al. (2019) [20] | In vivo: Adult male Wistar rats. Model: Bilateral 5 mm critical-sized radial defect | Treatment (n = 10): CBD-PLGA-G/nHAp scaffold was implanted into bone defects. Negative control (n = 10): Empty defect + scaffold. Positive control (n = 10): autografts. | BV/TV. Union (X-ray). Osseous and cartilaginous tissue density. Collagen I, OCN and OPN staining. MSC recruitment. Ultimate load, stress, and stiffness. | n/a. | Scaffold porosity and mechanical properties. |
| * Kim et al. (2025) [38] | 6-week-old male Sprague–Dawley rats with ligature-induced periodontitis (P. gingivalis–soaked ligatures, 7 days). | Treatment (n = 9): CBD (2 or 20 mg/kg) + taurine (100 mg/kg) p.o. for 14 days. Negative control (n = 9): vehicle only. Positive control: n/a. | n/a. | Only for 20 mg/kg CBD + taurine: Serum TNF-α and IL-1β. Distance from cementoenamel junction to alveolar bone crest. Periodontal pocket depth. | n/a. |
| * Kogan et al. (2015) [11] | Male Sprague–Dawley rats with stabilised unilateral femoral fracture (1.1 mm pin). | Treatment (n = 5–13): CBD 5 mg/kg/day (i.p.) after fracture for up to eight weeks. Negative control (n = 5–13): vehicle. Positive control: n/a. | Maximal load, work-to-failure. Callus formation. Collagen cross-linking ratio. | Total callus volume at week 4. | Callus material density/mineralisation. Stiffness. |
| * Liu et al. (2024) [39] | Male nude mice (6–8 weeks, 19–26 g) with 3 mm calvarial defects implanted with GelMA constructs ± CBD-pretreated DPSCs. | Treatment (n = 8): GelMA constructs containing CBD-pretreated DPSCs were implanted for eight weeks. Negative control (n = 8): GelMA scaffold without cells. Positive control: n/a. | (microspheroids > DPSCs) BV/TV, BS/TV, BMD, Tb.N. Osteoid/bone formation. | n/a. | Tb.Sp, Tb.Th. |
| * Whyte et al. (2009) [40] | Male C57BL/6 mice (12 weeks) ± CBD. | Treatment (n = 5): CBD 10 mg/kg three times/week for eight weeks. Negative control (n = 5): vehicle. Positive control: n/a. | BV/TV, Tb.N. | Serum CTX level. | n/a. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Shakir, S.A.; Chin, K.-Y. Effects of Cannabidiol on Bone Health: A Comprehensive Scoping Review. Biomedicines 2026, 14, 208. https://doi.org/10.3390/biomedicines14010208
Shakir SA, Chin K-Y. Effects of Cannabidiol on Bone Health: A Comprehensive Scoping Review. Biomedicines. 2026; 14(1):208. https://doi.org/10.3390/biomedicines14010208
Chicago/Turabian StyleShakir, Shabbir Adnan, and Kok-Yong Chin. 2026. "Effects of Cannabidiol on Bone Health: A Comprehensive Scoping Review" Biomedicines 14, no. 1: 208. https://doi.org/10.3390/biomedicines14010208
APA StyleShakir, S. A., & Chin, K.-Y. (2026). Effects of Cannabidiol on Bone Health: A Comprehensive Scoping Review. Biomedicines, 14(1), 208. https://doi.org/10.3390/biomedicines14010208

