Full-Genome Hepatitis B Virus Genotyping: A Juxtaposition of Next-Generation and Clone-Based Sequencing Approaches—Comparing Genotyping Methods of Hepatitis B Virus
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Subjects and Sample Collection
2.2. Serological Testing
2.3. Measurement of Serum Viral Loads
2.4. Nested Polymerase Chain Reaction (PCR) for HBV DNA
2.5. Clone-Based Sequencing
2.6. Workflow for Next-Generation Sequencing Analysis
2.7. NGS Data Preprocessing and Sample Genotyping
2.8. Haplotype Inference and Quasispecies Diversity Assessment
2.8.1. HBV Genotype Determination
2.8.2. Detection of Recombination
3. Results
3.1. General Information
3.1.1. Comparison of CBS and NGS for Genotype/Subgenotype Analysis Based on Complete Genome Sequences
3.1.2. Comparison of Genotype/Subgenotypes Based on the S ORF Sequences Derived Using NGS, CBS, and Direct Sequencing
3.1.3. Comparison of NGS and CBS for Detection of Mutations in the Complete HBV Genome
3.1.4. Analysis of Genetic Recombination and Putative Breakpoint Locations
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| NGS | Next-Generation Sequencing |
| CBS | Clone-Based Sequencing |
| HBV | Hepatitis B Virus |
| ORF | Open Reading Frame |
| HIV-1 | Human Immunodeficiency Virus Type 1 |
| HCV | Hepatitis C Virus |
| EIA | Enzyme Immunoassays |
| ALT | Alanine Aminotransferase |
| PCR | Polymerase Chain Reaction |
| RFLP | Restriction Fragment Length Polymorphism |
| RFMP | Restriction Fragment Mass Polymorphism |
| MS | Mass Spectrometry |
| INNO-LiPA | INNO-LIPA (A commercial line probe assay) |
| HBsAg | Hepatitis B Surface Antigen |
| HBeAg | Hepatitis B e Antigen |
| anti-HBe | Antibody to Hepatitis B e Antigen |
| HCC | Hepatocellular Carcinoma |
| DNA | Deoxyribonucleic Acid |
| nt | Nucleotide(s) |
| BCP | Basal Core Promoter |
| RT | Reverse Transcriptase |
| PreC | Pre-Core |
| PreS | Pre-Surface |
| S | Surface |
| P | Polymerase |
| C | Core |
References
- Kramvis, A. Genotypes and genetic variability of hepatitis B virus. Intervirology 2014, 57, 141–150. [Google Scholar] [CrossRef] [PubMed]
- Tian, Q.; Jia, J. Hepatitis B virus genotypes: Epidemiological and clinical relevance in Asia. Hepatol. Int. 2016, 10, 854–860. [Google Scholar] [CrossRef] [PubMed]
- Mei, F.; Ren, J.; Long, L.; Li, J.; Li, K.; Liu, H.; Tang, Y.; Fang, X.; Wu, H.; Xiao, C. Analysis of HBV X gene quasispecies characteristics by next-generation sequencing and cloning-based sequencing and its association with hepatocellular carcinoma progression. J. Med. Virol. 2019, 91, 1087–1096. [Google Scholar] [CrossRef]
- Pourkarim, M.; Amini-Bavil-Olyaee, S.; Lemey, P.; Maes, P.; Ranst, M.V. HBV subgenotype misclassification expands quasi-subgenotype A3. Clin. Microbiol. Infect. 2011, 17, 947–949. [Google Scholar] [CrossRef]
- Huy, T.T.T.; Sall, A.A.; Reynes, J.M.; Abe, K. Complete genomic sequence and phylogenetic relatedness of hepatitis B virus isolates in Cambodia. Virus Genes 2008, 36, 299–305. [Google Scholar] [CrossRef]
- Feng, Y.; Ran, J.Y.; Feng, Y.M.; Miao, J.; Zhao, Y.; Jia, Y.Y.; Li, Z.; Yue, W.; Xia, X.S. Genetic diversity of hepatitis B virus in Yunnan, China: Identification of novel subgenotype C17, an intergenotypic B/I recombinant, and B/C recombinants. J. General. Virol. 2020, 101, 972–981. [Google Scholar] [CrossRef]
- Liu, Y.; Feng, Y.; Li, Y.L.; Ma, J.; Jia, Y.Y.; Yue, W.; Feng, Y.M. Characterization of a novel hepatitis B virus subgenotype B10 among chronic hepatitis B patients in Yunnan, China. Infect. Genet. Evol. 2020, 83, 104322. [Google Scholar] [CrossRef]
- Thijssen, M.; Trovão, N.S.; Mina, T.; Maes, P.; Pourkarim, M.R. Novel hepatitis B virus subgenotype A8 and quasi-subgenotype D12 in African–Belgian chronic carriers. Int. J. Infect. Dis. 2020, 93, 98–101. [Google Scholar] [CrossRef]
- Lin, C.-L.; Kao, J.-H. Hepatitis B virus genotypes and variants. Cold Spring Harb. Perspect. Med. 2015, 5, a021436. [Google Scholar] [CrossRef]
- Fernandes da Silva, C.; Keeshan, A.; Cooper, C. Hepatitis B virus genotypes influence clinical outcomes: A review. Can. Liver J. 2023, 6, 347–352. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.L.; Kao, J.H. Natural history of acute and chronic hepatitis B: The role of HBV genotypes and mutants. Best. Pract. Res. Clin. Gastroenterol. 2017, 31, 249–255. [Google Scholar] [CrossRef]
- Guirgis, B.S.; Abbas, R.O.; Azzazy, H.M. Hepatitis B virus genotyping: Current methods and clinical implications. Int. J. Infect. Dis. 2010, 14, e941–e953. [Google Scholar] [CrossRef]
- Bartholomeusz, A.; Schaefer, S. Hepatitis B virus genotypes: Comparison of genotyping methods. Rev. Med. Virol. 2004, 14, 3–16. [Google Scholar] [CrossRef] [PubMed]
- Lim, C.; Tan, J.; Ravichandran, A.; Chan, Y.; Ton, S. Comparison of PCR-based genotyping methods for hepatitis B virus. Malays. J. Pathol. 2007, 29, 79–90. [Google Scholar] [PubMed]
- Goodwin, S.; McPherson, J.D.; McCombie, W.R. Coming of age: Ten years of next-generation sequencing technologies. Nat. Rev. Genet. 2016, 17, 333–351. [Google Scholar] [CrossRef] [PubMed]
- Karakoyun, H.K.; Sayar, C.; Yararbaş, K. Challenges in clinical interpretation of next-generation sequencing data: Advantages and Pitfalls. Results Eng. 2023, 20, 101421. [Google Scholar] [CrossRef]
- Gong, L.; Han, Y.; Chen, L.; Liu, F.; Hao, P.; Sheng, J.; Li, X.-H.; Yu, D.-M.; Gong, Q.-M.; Tian, F. Comparison of next-generation sequencing and clone-based sequencing in analysis of hepatitis B virus reverse transcriptase quasispecies heterogeneity. J. Clin. Microbiol. 2013, 51, 4087–4094. [Google Scholar] [CrossRef]
- Wang, X.; Harrison, T.; He, X.; Chen, Q.; Li, G.; Liu, M.; Li, H.; Yang, J.; Fang, Z. The prevalence of mutations in the major hydrophilic region of the surface antigen of hepatitis B virus varies with subgenotype. Epidemiol. Infect. 2015, 143, 3572–3582. [Google Scholar] [CrossRef]
- Fang, Z.-L.; Hue, S.; Sabin, C.A.; Li, G.-J.; Yang, J.-Y.; Chen, Q.-Y.; Fang, K.-X.; Huang, J.; Wang, X.-Y.; Harrison, T.J. A complex hepatitis B virus (X/C) recombinant is common in Long An county, Guangxi and may have originated in southern China. J. General. Virol. 2011, 92, 402–411. [Google Scholar] [CrossRef]
- Li, G.J.; Hue, S.; Harrison, T.J.; Yang, J.Y.; Chen, Q.Y.; Wang, X.Y.; Fang, Z.L. Hepatitis B virus candidate subgenotype I1 varies in distribution throughout Guangxi, China and may have originated in Long An county, Guangxi. J. Med. Virol. 2013, 85, 799–807. [Google Scholar] [CrossRef]
- Fang, Z.L.; Harrison, T.J.; Yang, J.Y.; Chen, Q.Y.; Wang, X.Y.; Mo, J.J. Prevalence of hepatitis B virus infection in a highly endemic area of southern China after catch-up immunization. J. Med. Virol. 2012, 84, 878–884. [Google Scholar] [CrossRef]
- Günther, S.; Li, B.-C.; Miska, S.; Krüger, D.; Meisel, H.; Will, H. A novel method for efficient amplification of whole hepatitis B virus genomes permits rapid functional analysis and reveals deletion mutants in immunosuppressed patients. J. Virol. 1995, 69, 5437–5444. [Google Scholar] [CrossRef] [PubMed]
- Margeridon, S.; Carrouée-Durantel, S.; Chemin, I.; Barraud, L.; Zoulim, F.; Trépo, C.; Kay, A. Rolling circle amplification, a powerful tool for genetic and functional studies of complete hepatitis B virus genomes from low-level infections and for directly probing covalently closed circular DNA. Antimicrob. Agents Chemother. 2008, 52, 3068–3073. [Google Scholar] [CrossRef] [PubMed]
- Esteban, J.A.; Salas, M.; Blanco, L. Fidelity of phi 29 DNA polymerase. Comparison between protein-primed initiation and DNA polymerization. J. Biol. Chem. 1993, 268, 2719–2726. [Google Scholar] [CrossRef]
- Lasken, R.S.; Egholm, M. Whole genome amplification: Abundant supplies of DNA from precious samples or clinical specimens. Trends Biotechnol. 2003, 21, 531–535. [Google Scholar] [CrossRef]
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018, 34, i884–i890. [Google Scholar] [CrossRef]
- Langmead, B.; Salzberg, S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 2012, 9, 357–359. [Google Scholar] [CrossRef]
- Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef]
- Knyazev, S.; Tsyvina, V.; Shankar, A.; Melnyk, A.; Artyomenko, A.; Malygina, T.; Porozov, Y.B.; Campbell, E.M.; Switzer, W.M.; Skums, P. Accurate assembly of minority viral haplotypes from next-generation sequencing through efficient noise reduction. Nucleic Acids Res. 2021, 49, e102. [Google Scholar] [CrossRef]
- Tarasov, A.; Vilella, A.J.; Cuppen, E.; Nijman, I.J.; Prins, P. Sambamba: Fast processing of NGS alignment formats. Bioinformatics 2015, 31, 2032–2034. [Google Scholar] [CrossRef]
- Elkins, K. Analysis of deoxyribonucleic acid (DNA) sequence data using BioEdit. In Forensic DNA Biology: A Laboratory Manual; Elsevier: Amsterdam, The Netherlands, 2013; Volume 15, pp. 129–132. [Google Scholar]
- Kumar, S.; Stecher, G.; Mega, K.T. Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef]
- Garcia-Garcia, S.; Cortese, M.F.; Rodriguez-Algarra, F.; Tabernero, D.; Rando-Segura, A.; Quer, J.; Buti, M.; Rodriguez-Frias, F. Next-generation sequencing for the diagnosis of hepatitis B: Current status and future prospects. Expert. Rev. Mol. Diagn. 2021, 21, 381–396. [Google Scholar] [CrossRef] [PubMed]
- Lowe, C.F.; Merrick, L.; Harrigan, P.R.; Mazzulli, T.; Sherlock, C.H.; Ritchie, G. Implementation of next-generation sequencing for hepatitis B virus resistance testing and genotyping in a clinical microbiology laboratory. J. Clin. Microbiol. 2016, 54, 127–133. [Google Scholar] [CrossRef] [PubMed]
- Hebeler-Barbosa, F.; Wolf, I.R.; Valente, G.T.; Mello, F.C.d.A.; Lampe, E.; Pardini, M.I.d.M.C.; Grotto, R.M.T. A new method for next-generation sequencing of the full hepatitis B virus genome from a clinical specimen: Impact for virus genotyping. Microorganisms 2020, 8, 1391. [Google Scholar] [CrossRef] [PubMed]
- Revill, P.A.; Tu, T.; Netter, H.J.; Yuen, L.K.; Locarnini, S.A.; Littlejohn, M. The evolution and clinical impact of hepatitis B virus genome diversity. Nat. Rev. Gastroenterol. Hepatol. 2020, 17, 618–634. [Google Scholar] [CrossRef]
- Rajoriya, N.; Combet, C.; Zoulim, F.; Janssen, H.L. How viral genetic variants and genotypes influence disease and treatment outcome of chronic hepatitis B. Time for an individualised approach? J. Hepatol. 2017, 67, 1281–1297. [Google Scholar] [CrossRef]
- Knyazev, S.; Hughes, L.; Skums, P.; Zelikovsky, A. Epidemiological data analysis of viral quasispecies in the next-generation sequencing era. Brief. Bioinform. 2021, 22, 96–108. [Google Scholar] [CrossRef]
- Zhang, C.; An, S.; Lv, R.; Li, K.; Liu, H.; Li, J.; Tang, Y.; Cai, Z.; Huang, T.; Long, L.; et al. The dynamic variation position and predominant quasispecies of hepatitis B virus: Novel predictors of early hepatocarcinoma. Virus Res. 2024, 341, 199317. [Google Scholar] [CrossRef]
- Xie, C.; Lu, D. Evolution and diversity of the hepatitis B virus genome: Clinical implications. Virology 2024, 598, 110197. [Google Scholar] [CrossRef]
- Tang, X.; Huang, W.; Kang, J.; Ding, K. Early dynamic changes of quasispecies in the reverse transcriptase region of hepatitis B virus in telbivudine treatment. Antivir. Res. 2021, 195, 105178. [Google Scholar] [CrossRef]
- Liao, H.; Zhang, H.; Shao, J.; Li, X.; Zheng, W.V.; Li, L.; Yu, G.; Si, L.; Zhou, T.; Yao, Z.; et al. Nucleos(t)ide analogues altered quasispecies composition of hepatitis B virus (HBV)-resistant mutations in serum HBV DNA and serum HBV RNA. J. Med. Virol. 2023, 95, e28615. [Google Scholar] [CrossRef]
- Yang, J.; Yang, G.; He, H.; Liu, H.; Fu, Q.; Wu, X.; Meng, R.; Li, Z.; Zhao, Q.; Luo, K.; et al. Pretreatment viral quasispecies characteristics and evolutionary phases correlate with HBsAg seroconversion in peginterferon-alfa-2a-treated children with HBeAg-positive chronic hepatitis B. Antivir. Res. 2025, 244, 106291. [Google Scholar] [CrossRef]
- Pourkarim, M.R.; Amini-Bavil-Olyaee, S.; Kurbanov, F.; Van Ranst, M.; Tacke, F. Molecular identification of hepatitis B virus genotypes/subgenotypes: Revised classification hurdles and updated resolutions. World J. Gastroenterol. 2014, 20, 7152–7168. [Google Scholar] [CrossRef] [PubMed]
- Shi, W.F.; Zhang, Z.; Ling, C.; Zheng, W.M.; Zhu, C.D.; Carr, M.J.; Higgins, D.G. Hepatitis B virus subgenotyping: History, effects of recombination, misclassifications, and corrections. Infect. Genet. Evol. 2013, 16, 355–361. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Zeng, Y.; Chen, T.; Chen, H.; Lin, N.; Lin, J.; Liu, X.; Huang, E.; Wu, S.; Wu, S. Characterization and clinical significance of natural variability in hepatitis B virus reverse transcriptase in treatment-naive Chinese patients by Sanger sequencing and next-generation sequencing. J. Clin. Microbiol. 2019, 57, e00119-19. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.-M.; Lee, S.-Y.; Kim, B.-J. Naturally occurring hepatitis B virus reverse transcriptase mutations related to potential antiviral drug resistance and liver disease progression. World J. Gastroenterol. 2018, 24, 1708–1724. [Google Scholar] [CrossRef]
- Choe, W.H.; Kim, K.; Lee, S.-Y.; Choi, Y.-M.; Kwon, S.Y.; Kim, J.H.; Kim, B.-J. Tenofovir is a more suitable treatment than entecavir for chronic hepatitis B patients carrying naturally occurring rtM204I mutations. World J. Gastroenterol. 2019, 25, 4985–4998. [Google Scholar] [CrossRef]
- Tshiabuila, D.; San, J.E.; Wilkinson, E.; Dor, G.; Tegally, H.; Maponga, T.G.; Delphin, M.; Matthews, P.C.; Martin, D.P. Conserved recombination patterns across hepatitis B genotypes: A retrospective study. Virol. J. 2025, 22, 220. [Google Scholar] [CrossRef]
- Matlou, M.K.; Gaelejwe, L.R.; Musyoki, A.M.; Rakgole, J.N.; Selabe, S.G.; Amponsah-Dacosta, E. A novel hepatitis B virus recombinant genotype D4/E identified in a South African population. Heliyon 2019, 5, e01477. [Google Scholar] [CrossRef]
- Locarnini, S.A.; Littlejohn, M.; Yuen, L.K.W. Origins and Evolution of the Primate Hepatitis B Virus. Front. Microbiol. 2021, 12, 653684. [Google Scholar] [CrossRef]
- Cremer, J.; van Heiningen, F.; Veldhuijzen, I.; Benschop, K. Characterization of Hepatitis B virus based complete genome analysis improves molecular surveillance and enables identification of a recombinant C/D strain in the Netherlands. Heliyon 2023, 9, e22358. [Google Scholar] [CrossRef]









| HBV Genotype | Subgenotype | Reference GenBank ID | Country of Origin |
|---|---|---|---|
| A | A1 | AB116082 | Japan |
| A2 | EU859908 | Belgium | |
| A3 | AB194952 | Japan | |
| B | B1 | AB602818 | Japan |
| B2 | EU939638 | China | |
| AB981582 | Japan | ||
| B3 | AB976562 | Indonesia | |
| B4 | AB115551 | Cambodi | |
| B5 | GQ924645 | Malaysia | |
| B6 | KP659253 | Canada | |
| B7 | GQ358143 | Indonesia | |
| B8 | GQ358146 | Indonesia | |
| B9 | GQ358152 | Indonesia | |
| B10 | MN689123 | China | |
| C | C1 | GQ35154 | Indonesia |
| AB074047 | Japan | ||
| C2 | AB042285 | Japan | |
| FJ386625 | China | ||
| C3 | X75665 | Sweden | |
| C4 | AB04870 | Australia | |
| C5 | JN827414 | Thailand | |
| AB241111 | Philippine | ||
| C6 | AB493847 | Indonesia | |
| C7 | EU670263 | Philippines | |
| C8 | AP011106 | Indonesia | |
| C9 | AP011108 | Indonesia | |
| C10 | AB540583 | Indonesia | |
| C11 | AB554020 | Indonesia | |
| C12 | AB554025 | Indonesia | |
| C13 | AB644281 | Indonesia | |
| C14 | AB644284 | Indonesia | |
| C15 | AB644286 | Indonesia | |
| C16 | AB644287 | Indonesia | |
| C17 | MG826140 | China | |
| D | D1 | AB188244 | Japan |
| E | E | AB032431 | Liberia |
| F | F | DQ823094 | Argentin |
| G | G | AF405706 | Germany |
| H | H | AY090460 | USA |
| I | I1 | AB231908 | Vietnam |
| FJ023659 | Laos | ||
| FR714490 | China | ||
| I2 | FJ023664 | Laos | |
| FJ023670 | Laos | ||
| Woolly monkey | Woolly monkey | AY226578 |
| Code | Sex | Age | Year | HBsAg | Anti-HBs | HBeAg | Anti-HBe | Anti-HBc | ALT | HBV DNA |
|---|---|---|---|---|---|---|---|---|---|---|
| SS078 | Female | 50 | 2020 | + | − | − | + | + | ND * | 4.06 × 102 |
| SS078 | Female | 41 | 2011 | + | − | − | + | + | 18.8 | ND |
| SS255 | Female | 63 | 2020 | + | − | − | + | + | ND | 4.59 × 102 |
| SS255 | Female | 54 | 2011 | + | − | − | + | + | 23.8 | ND |
| SS584 | male | 66 | 2020 | + | + | − | − | + | ND | 88.00 |
| SS584 | male | 57 | 2011 | + | − | − | + | + | 21.60 | ND |
| BY640 | Female | 40 | 2020 | + | − | − | + | + | ND | 4.63 × 102 |
| BY640 | Female | 31 | 2011 | + | − | − | + | + | 27.1 | ND |
| CW512 | male | 52 | 2020 | + | − | − | − | + | ND | 88.00 |
| CW512 | male | 43 | 2011 | + | − | − | − | + | 36.5 | ND |
| Code | Year | NGS-Genotyping | CBS-Genotyping | Sanger-Genotyping (a) | Sanger-Genotyping (b) | ||
|---|---|---|---|---|---|---|---|
| Whole Genome | S Gene | Whole Genome | S Gene | S Gene | S Gene | ||
| SS078 | 2011 | ND | ND | ND | ND | B2 | O |
| SS078 | 2020 | C5 | C5 | C5 and C1 | C5 and C1 | ND | ND |
| SS255 | 2011 | ND | ND | ND | ND | B2 | O |
| SS255 | 2020 | B2 | B2 | B2 | B2 | ND | ND |
| BY640 | 2011 | ND | ND | ND | ND | G | I1 |
| BY640 | 2020 | C1 | C1 | C1 | C1 | ND | ND |
| CW512 | 2011 | B2 | B2 | B2 | B2 | O | O |
| CW512 | 2020 | ND | ND | ND | ND | ND | ND |
| SS584 | 2011 | C1 | C1 | C1, recombinant, aberrant | C1, aberrant | C2 | B |
| SS584 | 2020 | ND | ND | ND | ND | ND | ND |
| Region/Mode | Mutation | Code | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| SS078 | SS255 | SS584 | BY640 | CW512 | |||||||
| NGS | CBS | NGS | CBS | NGS | CBS | NGS | CBS | NGS | CBS | ||
| S | T131N | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 11.11% | 0.00% | 0.00% | 0.00% | 0.00% |
| G145K | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 11.11% | 0.00% | 0.00% | 0.00% | 0.00% | |
| G145R | 0.00% | 32.35% | 0.00% | 0.00% | 0.00% | 11.11% | 0.00% | 0.00% | 0.00% | 0.00% | |
| RT | M250I | 0.00% | 2.94% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% |
| V214A | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 100.00% | 97.30% | 0.00% | 0.00% | |
| C | L100I | 0.00% | 8.82% | 0.00% | 0.00% | 0.00% | 11.11% | 0.00% | 0.00% | 0.00% | 0.00% |
| L100P | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 2.70% | 0.00% | 0.00% | |
| P130T | 0.00% | 82.35% | 0.00% | 0.00% | 100.00% | 88.89% | 0.00% | 0.00% | 0.00% | 3.70% | |
| P135Q | 0.00% | 0.00% | 100.00% | 100.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | |
| P135A | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 7.41% | 11.11% | |
| X | C1653T | 85.71% | 8.82% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% |
| T1674C | 0.00% | 2.94% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | |
| PreC | G1896A | 100.00% | 6.10% | 100.00% | 100.00% | 0.00% | 0.00% | 100.00% | 97.30% | 100.00% | 100.00% |
| G1899A | 100.00% | 6.10% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | |
| G1862T | 14.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | |
| BCP | C1673T | 0.00% | 0.00% | 100.00% | 100.00% | 0.00% | 0.00% | 0.00% | 0.00% | 100.00% | 100.00% |
| T1753C | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 100.00% | 97.30% | 0.00% | 0.00% | |
| A1762T | 0.00% | 96.70% | 100.00% | 100.00% | 8.00% | 33.33% | 100.00% | 100.00% | 0.00% | 0.00% | |
| G1764A | 0.00% | 96.70% | 100.00% | 96.60% | 8.00% | 27.78% | 100.00% | 100.00% | 0.00% | 0.00% | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Hu, L.-P.; Chen, Q.-Y.; Huang, M.-L.; Zhang, W.-J.; Huang, X.-Q.; Yi, X.-F.; Jia, H.-H. Full-Genome Hepatitis B Virus Genotyping: A Juxtaposition of Next-Generation and Clone-Based Sequencing Approaches—Comparing Genotyping Methods of Hepatitis B Virus. Viruses 2026, 18, 112. https://doi.org/10.3390/v18010112
Hu L-P, Chen Q-Y, Huang M-L, Zhang W-J, Huang X-Q, Yi X-F, Jia H-H. Full-Genome Hepatitis B Virus Genotyping: A Juxtaposition of Next-Generation and Clone-Based Sequencing Approaches—Comparing Genotyping Methods of Hepatitis B Virus. Viruses. 2026; 18(1):112. https://doi.org/10.3390/v18010112
Chicago/Turabian StyleHu, Li-Ping, Qin-Yan Chen, Mei-Lin Huang, Wen-Jia Zhang, Xiao-Qian Huang, Xian-Feng Yi, and Hui-Hua Jia. 2026. "Full-Genome Hepatitis B Virus Genotyping: A Juxtaposition of Next-Generation and Clone-Based Sequencing Approaches—Comparing Genotyping Methods of Hepatitis B Virus" Viruses 18, no. 1: 112. https://doi.org/10.3390/v18010112
APA StyleHu, L.-P., Chen, Q.-Y., Huang, M.-L., Zhang, W.-J., Huang, X.-Q., Yi, X.-F., & Jia, H.-H. (2026). Full-Genome Hepatitis B Virus Genotyping: A Juxtaposition of Next-Generation and Clone-Based Sequencing Approaches—Comparing Genotyping Methods of Hepatitis B Virus. Viruses, 18(1), 112. https://doi.org/10.3390/v18010112
