Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (347)

Search Parameters:
Keywords = CAR-based therapy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1853 KB  
Article
CRISPR/Cas9 TCR-Edited NKp30 CAR T Cells Exhibit Superior Anti-Tumor Immunity to B7H6-Expressing Leukemia and Melanoma
by Sedigheh Givi, Benedikt J. Lohnes, Saber Ebrahimi, Sophie Riedel, Sneha Khokhali, Shamsul A. Khan, Maximilian Keller, Catherine Wölfel, Hakim Echchannaoui, Ernesto Bockamp, Maya C. Andre, Hinrich Abken, Matthias Theobald and Udo F. Hartwig
Int. J. Mol. Sci. 2025, 26(17), 8235; https://doi.org/10.3390/ijms26178235 (registering DOI) - 25 Aug 2025
Abstract
Chimeric antigen receptor (CAR) T-cell therapy directed to CD19 and B-cell maturation antigen has revolutionized treatment of B-cell leukemia and lymphoma, and multiple myeloma. However, identifying suitable targets for acute myeloid leukemia (AML) remains challenging due to concurrent expression of potential target antigens [...] Read more.
Chimeric antigen receptor (CAR) T-cell therapy directed to CD19 and B-cell maturation antigen has revolutionized treatment of B-cell leukemia and lymphoma, and multiple myeloma. However, identifying suitable targets for acute myeloid leukemia (AML) remains challenging due to concurrent expression of potential target antigens on normal hematopoietic stem cells or tissues. As the stress-induced B7H6 molecule is rarely found on normal tissues but expressed on many cancers including AML and melanoma, the NKp30-ligand B7H6 emerges as a promising target for NKp30-based CAR T therapy for these tumors. In this study, we report a comprehensive B7H6 expression analysis on primary AML and melanoma as well as on different tumor cell-lines examined by RT-qPCR and flow cytometry, and efficient anti-tumor reactivity of NKp30-CAR T cells to AML and melanoma. To overcome limitations of autologous CAR T-cell fitness-dependent efficacy and patient-tailored production, we generated CRISPR/Cas9-mediated TCR-knockout (TCRKO) NKp30-CAR T cells as an off-the-shelf approach for CAR T therapy. Functional studies comparing NKp30-CD28 CAR or NKp30-CD137 CAR TCR+ and TCRKO T lymphocytes revealed superior anti-tumoral immunity of NKp30-CD28 CAR TCRKO T cells to AML and melanoma cell lines in vitro, and effective control of tumor burden in an NSG melanoma-xenograft mouse model. In conclusion, these findings highlight the therapeutic potential of NKp30 CAR TCRKO T cells for adoptive T-cell therapy to B7H6-expressing cancers, including melanoma and AML. Full article
(This article belongs to the Special Issue Advanced Research on CAR-T Cell Therapy)
Show Figures

Figure 1

16 pages, 645 KB  
Review
Upfront Immunotherapy Approaches in the Management of Adults with Acute Lymphoblastic Leukemia
by Moazzam Shahzad, Muhammad Kashif Amin and Talha Badar
Cancers 2025, 17(17), 2746; https://doi.org/10.3390/cancers17172746 - 23 Aug 2025
Viewed by 54
Abstract
The therapeutic landscape of adults with B-cell precursor acute lymphoblastic leukemia (BCP-ALL) is undergoing a paradigm shift, driven by the development of immunotherapy-based “chemo-free” and “chemo-light’ regimens. These strategies aim to achieve high efficacy with reduced toxicity, particularly in older adults who may [...] Read more.
The therapeutic landscape of adults with B-cell precursor acute lymphoblastic leukemia (BCP-ALL) is undergoing a paradigm shift, driven by the development of immunotherapy-based “chemo-free” and “chemo-light’ regimens. These strategies aim to achieve high efficacy with reduced toxicity, particularly in older adults who may not tolerate intensive chemotherapy. In Philadelphia chromosome-positive (Ph+) BCP-ALL, the incorporation of ABL tyrosine kinase inhibitors (TKIs) with blinatumomab (CD3/CD19 bispecific T-cell engager) has shown remarkable efficacy, with some studies reporting molecular response rates in the range of 90–100% and long-term survival exceeding 80% without the need for intensive chemotherapy or allogeneic hematopoietic cell transplantation (allo-HCT). In Philadelphia-negative (Ph−) BCP- ALL, an immunotherapy-based combination of blinatumomab and inotuzumab ozogamicin (anti-CD22 antibody-drug conjugate) has demonstrated high rates of complete remission and measurable residual disease (MRD) negativity, with manageable toxicity. While chimeric antigen receptor (CAR) T-cell therapy remains a transformative option for relapsed/refractory B-ALL, its integration into frontline treatment is still under investigation. Ongoing trials are evaluating the optimal sequencing and combinations of these agents and their potential to obviate the need for chemotherapy and/or allo-HCT in selected patients. As evidence continues to accumulate, chemo-free and chemo-light regimens, incorporating minimal chemotherapy with targeted agents to balance efficacy and reduced toxicity, are poised to redefine the standard of care for adults BCP-ALL, offering the possibility of durable remissions with reduced treatment-related morbidity. Full article
(This article belongs to the Section Cancer Therapy)
Show Figures

Figure 1

16 pages, 682 KB  
Review
Claudin18.2 as a Promising Therapeutic Target in Gastric Cancer
by Agata Poniewierska-Baran, Paulina Plewa, Zuzanna Żabicka and Andrzej Pawlik
Cells 2025, 14(16), 1285; https://doi.org/10.3390/cells14161285 - 19 Aug 2025
Viewed by 289
Abstract
Claudin-18.2 (CLDN18.2) is an isoform of a tight junction protein and has emerged as a promising therapeutic target in gastric cancer (GC). CLDN18.2 is responsible for gastric homeostasis and protects epithelial cells from low pH conditions. Interestingly, CLDN18.2 expression is strictly restricted to [...] Read more.
Claudin-18.2 (CLDN18.2) is an isoform of a tight junction protein and has emerged as a promising therapeutic target in gastric cancer (GC). CLDN18.2 is responsible for gastric homeostasis and protects epithelial cells from low pH conditions. Interestingly, CLDN18.2 expression is strictly restricted to the stomach, making it an ideal tumor marker. This narrative review presents the characterization and role of claudin 18.2 (CLDN18.2) as a promising biomarker in GC and a target for clinical therapies, more specifically CLDN18.2-targeted drugs and therapies including mABs (e.g., Zolbetuximab, Osemitamab, ZL-1211), bsAB, and CAR-T cell-based immunotherapies. We also summarize numerous ongoing worldwide clinical trials that are evaluating CLDN18.2 as a target for GC treatment. What seems to be crucial is that preclinical and clinical data indicate their high efficacy and safety. Full article
Show Figures

Figure 1

24 pages, 5681 KB  
Article
Introducing CAR-T Therapy in Kazakhstan: Establishing Academic-Scale Lentiviral Vector and CAR-T Cell Production
by Viktoriya Keyer, Aitolkyn Kydyrbayeva, Tolganay Kulatay, Gulzat Zauatbayeva, Dmitrii Bazhenov, Bakytkali Ingirbay, Zhanar Shakhmanova, Maral Zhumabekova, Madina Ospanova and Alexandr V. Shustov
Biomolecules 2025, 15(8), 1166; https://doi.org/10.3390/biom15081166 - 14 Aug 2025
Viewed by 400
Abstract
CAR-T cell therapy represents a breakthrough in cancer treatment, yet its implementation in developing countries remains challenging due to technical and infrastructural barriers. This study aimed to establish clinical-scale CAR-T production in Kazakhstan, a country with no prior experience in advanced cell and [...] Read more.
CAR-T cell therapy represents a breakthrough in cancer treatment, yet its implementation in developing countries remains challenging due to technical and infrastructural barriers. This study aimed to establish clinical-scale CAR-T production in Kazakhstan, a country with no prior experience in advanced cell and gene therapies. We implemented a complete CAR-T manufacturing pipeline, including in-house lentiviral vector (LV) production and automated CAR-T cell processing using the CliniMACS Prodigy system. Two anti-CD19 CAR LVs were used, one modeled after FDA-approved Kymriah (4-1BB costimulation) and another replicating Yescarta (CD28 costimulation). The vector produced locally achieved functional titers of 1.5 × 1010 TU/mL after concentration. Twelve clinical-scale CAR-T products were manufactured, exhibiting a memory-skewed T-cell phenotype. Functional assessments revealed that CD28-based CAR-T cells produced significantly higher Th1 cytokines (IFN-γ, TNF-α, IL-2; p < 0.05) than 4-1BB-based cells, though both demonstrated comparable cytotoxicity against CD19+ targets. These findings demonstrate the feasibility of establishing CAR-T production in resource-limited settings using a decentralized manufacturing framework. This work provides a scalable model of CAR-T therapy production in developing regions, suitable for clinical implementation using the hospital exemption framework. Critical gaps in access to advanced immunotherapies, including CAR-T, in the Central Eurasia region are addressed. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Graphical abstract

21 pages, 2324 KB  
Article
Promoting Healthy Organizations Through Urban Nature: Psychological and Physiological Effects in Healthcare Workers
by Norida Vélez, Diana Marcela Paredes-Céspedes, Angélica Cruz-Pérez, Ronald López, Alejandra Parada-López, Eliana M. Téllez-Ávila, Paola Rodríguez de Silva, Ana Munevar, Diana Marcela Rodríguez González, Paola Fuquen, Juan Carlos Santacruz and Jeadran Malagón-Rojas
Eur. J. Investig. Health Psychol. Educ. 2025, 15(8), 159; https://doi.org/10.3390/ejihpe15080159 - 14 Aug 2025
Viewed by 396
Abstract
Background: Healthcare professionals experience high levels of stress due to demanding work, especially in metropolitan areas. Nature-based interventions offer potential mental health benefits. This randomized intervention study aimed to evaluate the effects of nature immersion therapies on mental health outcomes in healthcare workers [...] Read more.
Background: Healthcare professionals experience high levels of stress due to demanding work, especially in metropolitan areas. Nature-based interventions offer potential mental health benefits. This randomized intervention study aimed to evaluate the effects of nature immersion therapies on mental health outcomes in healthcare workers with different psychological risk in Bogota, Colombia. Methods: During a period of 6 months, a total of 82 healthcare workers from two institutions were assigned to three groups: two exposed weekly to nature (parks and forests) and one control group with monthly conventional interventions. Psychological assessments of stress, anxiety, fatigue, and sleep quality were conducted at three time points (baseline, three, and six months of intervention). Cortisol Awakening Response (CAR) was measured monthly using immunoassay. Results: A decrease in the proportion of participants reporting high levels of perceived stress was observed in both intervention groups. Both forest and parks interventions significantly reduced anxiety and fatigue, while sleep quality improved only in the forest group. Multivariate analysis found a negative association between fatigue and forest intervention, as well as significant differences in CAR concentrations across groups over time. Conclusions: This study provides evidence that nature immersion therapy, particularly urban forests, positively impact mental and physical health, reducing stress, anxiety, fatigue, and CAR levels, and could be considered as an effective intervention to enhance workers’ resilience to stress, benefiting their overall health and well-being. Full article
Show Figures

Graphical abstract

12 pages, 419 KB  
Article
Serum Immunoglobulin Changes in Multiple Myeloma Patients Treated with CAR T-Cell Therapy
by Alexa Burger, Ulrike Bacher, Michele Hoffmann, Katja Seipel, Christof Schild, Inna Shaforostova and Thomas Pabst
Curr. Issues Mol. Biol. 2025, 47(8), 640; https://doi.org/10.3390/cimb47080640 - 9 Aug 2025
Viewed by 341
Abstract
Chimeric antigen receptor (CAR) T-cell therapy has emerged as a promising treatment for relapsed or refractory multiple myeloma (RRMM), with high response rates of 80–95%. Serum immunoglobulin changes have been observed throughout conventional multiple myeloma treatment, including after immunomodulatory drugs, proteasome inhibitors, and [...] Read more.
Chimeric antigen receptor (CAR) T-cell therapy has emerged as a promising treatment for relapsed or refractory multiple myeloma (RRMM), with high response rates of 80–95%. Serum immunoglobulin changes have been observed throughout conventional multiple myeloma treatment, including after immunomodulatory drugs, proteasome inhibitors, and autologous stem cell transplantation. However, the clinical significance of new abnormal protein bands (APBs) following CAR T-cell therapy is largely unexplored. We retrospectively analyzed consecutive multiple myeloma (MM) patients who received CAR T-cell therapy at the University Hospital Bern between May 2021 and February 2024. Serum paraprotein (M-protein) patterns were assessed using immuno-fixation electrophoresis (IFE) before and after CAR T-cell treatment. Patients were grouped based on serum immunoglobulin changes. Among 46 patients, 9 (19.6%) developed new APBs following CAR T-cell therapy. No significant differences in overall survival (OS) or progression-free survival (PFS) were observed between patients with and without APBs. Immunoglobulin changes occurred in both relapsed and non-relapsed patients, suggesting that the appearance of new APBs does not indicate disease progression. This observation aligns with previous reports of paraprotein changes following conventional MM therapies. This report suggests that new APBs following CAR T-cell therapy are a relatively common finding but do not correlate with inferior clinical outcomes. Our results highlight the need for larger, multi-center studies to further investigate this phenomenon in MM patients undergoing CAR T-cell therapy. Full article
(This article belongs to the Special Issue Multiple Myeloma: From Molecular Mechanism to Diagnosis and Therapy)
Show Figures

Figure 1

45 pages, 861 KB  
Review
Cytokine Networks in Triple-Negative Breast Cancer: Mechanisms, Therapeutic Targets, and Emerging Strategies
by María Rosado-Sanz, Nuria Martínez-Alarcón, Adrián Abellán-Soriano, Raúl Golfe, Eva M. Trinidad and Jaime Font de Mora
Biomedicines 2025, 13(8), 1945; https://doi.org/10.3390/biomedicines13081945 - 8 Aug 2025
Viewed by 530
Abstract
Triple-negative breast cancer (TNBC) remains a challenging subtype of breast cancer due to its aggressive nature and lack of targeted therapies. Cytokines play a pivotal role in shaping the tumor microenvironment, modulating tumor progression, immune evasion, and therapy resistance. In this review, we [...] Read more.
Triple-negative breast cancer (TNBC) remains a challenging subtype of breast cancer due to its aggressive nature and lack of targeted therapies. Cytokines play a pivotal role in shaping the tumor microenvironment, modulating tumor progression, immune evasion, and therapy resistance. In this review, we discuss the complex cytokine networks involved in TNBC biology, highlighting their contribution to key oncogenic processes, including proliferation, angiogenesis, epithelial–mesenchymal transition, and immunomodulation. We also summarize current and emerging cytokine-targeted therapeutic strategies, including monoclonal antibodies, bispecific antibodies, cell-based therapies, and cytokine-armed CAR-T and CAR-NK cell approaches, with a focus on clinical implications and future directions. Full article
Show Figures

Figure 1

20 pages, 1155 KB  
Perspective
Historically Based Perspective on the Immunotherapy of Type 1 Diabetes: Where We Have Been, Where We Are, and Where We May Go
by Eugenio Cavalli, Giuseppe Rosario Pietro Nicoletti and Ferdinando Nicoletti
J. Clin. Med. 2025, 14(16), 5621; https://doi.org/10.3390/jcm14165621 - 8 Aug 2025
Viewed by 565
Abstract
Systematic Background/Objectives: Type 1 diabetes mellitus (T1DM) is an autoimmune condition in which pancreatic β-cells are selectively destroyed, predominantly by autoreactive T lymphocytes. Despite decades of research, the achievement of durable immune tolerance remains elusive. This review presents a historically grounded and forward-looking [...] Read more.
Systematic Background/Objectives: Type 1 diabetes mellitus (T1DM) is an autoimmune condition in which pancreatic β-cells are selectively destroyed, predominantly by autoreactive T lymphocytes. Despite decades of research, the achievement of durable immune tolerance remains elusive. This review presents a historically grounded and forward-looking perspective on the evolution of immunotherapy in T1DM, from early immunosuppressive interventions to advanced precision-based cellular approaches. Specifically, we focus on systemic immunosuppressants (e.g., corticosteroids, cyclosporine), monoclonal antibodies (e.g., anti-CD3, anti-IL-1, anti-TNF), regulatory cell-based approaches (e.g., Tregs, CAR-Tregs, MDSCs), and β-cell replacement strategies using stem cell-derived islets. Methods: We analyzed major clinical and translational milestones in immunotherapy for T1DM, with particular attention to the transition from broad immunosuppression to targeted modulation of immune pathways. Emerging data on cell-based therapies, artificial intelligence (AI)-driven stratification, and personalized intervention timing have been incorporated to provide a comprehensive overview of current and future directions. Results: Initial therapies such as corticosteroids and cyclosporine offered proof-of-concept for immune modulation, yet suffered from relapse and toxicity. The introduction of monoclonal antibodies (e.g., teplizumab) marked a shift toward immune-specific intervention, particularly in stage 2 preclinical T1DM. More recent approaches include low-dose IL-2, checkpoint modulation, and antigen-specific tolerance strategies. Cellular therapies such as Treg adoptive transfer, chimeric antigen receptor Tregs (CAR-Tregs), and stem cell-derived islet replacements (e.g., VX-880) have shown promise in preserving β-cell function and modulating autoimmunity. Myeloid-derived suppressor cells (MDSCs), although still preclinical, represent a complementary avenue for immune tolerance induction. Concurrently, AI-based models are emerging as tools to stratify risk and personalize immunotherapeutic timing, enhancing trial design and outcome prediction. Conclusions: In conclusion, the historical progression from broad immunosuppression to precision-driven strategies underscores the importance of stage-specific, mechanism-based interventions in T1DM. The convergence of targeted biologics, regenerative cell therapies, and β-cell replacement approaches, supported by AI-enabled patient stratification, offers a realistic path toward durable immune tolerance and functional β-cell preservation. Continued integration of these modalities, coupled with rigorous long-term evaluation, will be essential to transform these scientific advances into sustained clinical benefit. Full article
(This article belongs to the Section Immunology)
Show Figures

Figure 1

22 pages, 2630 KB  
Review
Transfection Technologies for Next-Generation Therapies
by Dinesh Simkhada, Su Hui Catherine Teo, Nandu Deorkar and Mohan C. Vemuri
J. Clin. Med. 2025, 14(15), 5515; https://doi.org/10.3390/jcm14155515 - 5 Aug 2025
Viewed by 1324
Abstract
Background: Transfection is vital for gene therapy, mRNA treatments, CAR-T cell therapy, and regenerative medicine. While viral vectors are effective, non-viral systems like lipid nanoparticles (LNPs) offer safer, more flexible alternatives. This work explores emerging non-viral transfection technologies to improve delivery efficiency [...] Read more.
Background: Transfection is vital for gene therapy, mRNA treatments, CAR-T cell therapy, and regenerative medicine. While viral vectors are effective, non-viral systems like lipid nanoparticles (LNPs) offer safer, more flexible alternatives. This work explores emerging non-viral transfection technologies to improve delivery efficiency and therapeutic outcomes. Methods: This review synthesizes the current literature and recent advancements in non-viral transfection technologies. It focuses on the mechanisms, advantages, and limitations of various delivery systems, including lipid nanoparticles, biodegradable polymers, electroporation, peptide-based carriers, and microfluidic platforms. Comparative analysis was conducted to evaluate their performance in terms of transfection efficiency, cellular uptake, biocompatibility, and potential for clinical translation. Several academic search engines and online resources were utilized for data collection, including Science Direct, PubMed, Google Scholar Scopus, the National Cancer Institute’s online portal, and other reputable online databases. Results: Non-viral systems demonstrated superior performance in delivering mRNA, siRNA, and antisense oligonucleotides, particularly in clinical applications. Biodegradable polymers and peptide-based systems showed promise in enhancing biocompatibility and targeted delivery. Electroporation and microfluidic systems offered precise control over transfection parameters, improving reproducibility and scalability. Collectively, these innovations address key challenges in gene delivery, such as stability, immune response, and cell-type specificity. Conclusions: The continuous evolution of transfection technologies is pivotal for advancing gene and cell-based therapies. Non-viral delivery systems, particularly LNPs and emerging platforms like microfluidics and biodegradable polymers, offer safer and more adaptable alternatives to viral vectors. These innovations are critical for optimizing therapeutic efficacy and enabling personalized medicine, immunotherapy, and regenerative treatments. Future research should focus on integrating these technologies to develop next-generation transfection platforms with enhanced precision and clinical applicability. Full article
Show Figures

Figure 1

26 pages, 1034 KB  
Review
Metabolic Interactions in the Tumor Microenvironment of Classical Hodgkin Lymphoma: Implications for Targeted Therapy
by Michał Kurlapski, Alicja Braczko, Paweł Dubiela, Iga Walczak, Barbara Kutryb-Zając and Jan Maciej Zaucha
Int. J. Mol. Sci. 2025, 26(15), 7508; https://doi.org/10.3390/ijms26157508 - 4 Aug 2025
Viewed by 723
Abstract
Classical Hodgkin lymphoma (cHL) is a biologically and clinically unique malignancy characterized by rare Hodgkin and Reed–Sternberg (HRS) cells surrounded by a dense and diverse inflammatory infiltrate. These malignant cells actively reshape the tumor microenvironment (TME) through metabolic reprogramming and immune evasion strategies. [...] Read more.
Classical Hodgkin lymphoma (cHL) is a biologically and clinically unique malignancy characterized by rare Hodgkin and Reed–Sternberg (HRS) cells surrounded by a dense and diverse inflammatory infiltrate. These malignant cells actively reshape the tumor microenvironment (TME) through metabolic reprogramming and immune evasion strategies. This review synthesizes current knowledge on how metabolic alterations contribute to tumor survival, immune dysfunction, and therapeutic resistance in cHL. We discuss novel therapeutic approaches aimed at disrupting these processes and examine the potential of combining metabolic interventions with immune-based strategies—such as immune checkpoint inhibitors (CPIs), epigenetic modulators, bispecific antibodies, and CAR-T/CAR-NK cell therapies—which may help overcome resistance and enhance anti-tumor responses. Several agents are currently under investigation for their ability to modulate immune cell metabolism and restore effective immune surveillance. Altogether, targeting metabolic vulnerabilities within both tumor and immune compartments offers a promising, multifaceted strategy to improve clinical outcomes in patients with relapsed or refractory cHL. Full article
(This article belongs to the Special Issue Lymphoma: Molecular Pathologies and Therapeutic Strategies)
Show Figures

Figure 1

26 pages, 3179 KB  
Review
Glioblastoma: A Multidisciplinary Approach to Its Pathophysiology, Treatment, and Innovative Therapeutic Strategies
by Felipe Esparza-Salazar, Renata Murguiondo-Pérez, Gabriela Cano-Herrera, Maria F. Bautista-Gonzalez, Ericka C. Loza-López, Amairani Méndez-Vionet, Ximena A. Van-Tienhoven, Alejandro Chumaceiro-Natera, Emmanuel Simental-Aldaba and Antonio Ibarra
Biomedicines 2025, 13(8), 1882; https://doi.org/10.3390/biomedicines13081882 - 2 Aug 2025
Viewed by 673
Abstract
Glioblastoma (GBM) is the most aggressive primary brain tumor, characterized by rapid progression, profound heterogeneity, and resistance to conventional therapies. This review provides an integrated overview of GBM’s pathophysiology, highlighting key mechanisms such as neuroinflammation, genetic alterations (e.g., EGFR, PDGFRA), the tumor microenvironment, [...] Read more.
Glioblastoma (GBM) is the most aggressive primary brain tumor, characterized by rapid progression, profound heterogeneity, and resistance to conventional therapies. This review provides an integrated overview of GBM’s pathophysiology, highlighting key mechanisms such as neuroinflammation, genetic alterations (e.g., EGFR, PDGFRA), the tumor microenvironment, microbiome interactions, and molecular dysregulations involving gangliosides and sphingolipids. Current diagnostic strategies, including imaging, histopathology, immunohistochemistry, and emerging liquid biopsy techniques, are explored for their role in improving early detection and monitoring. Treatment remains challenging, with standard therapies—surgery, radiotherapy, and temozolomide—offering limited survival benefits. Innovative therapies are increasingly being explored and implemented, including immune checkpoint inhibitors, CAR-T cell therapy, dendritic and peptide vaccines, and oncolytic virotherapy. Advances in nanotechnology and personalized medicine, such as individualized multimodal immunotherapy and NanoTherm therapy, are also discussed as strategies to overcome the blood–brain barrier and tumor heterogeneity. Additionally, stem cell-based approaches show promise in targeted drug delivery and immune modulation. Non-conventional strategies such as ketogenic diets and palliative care are also evaluated for their adjunctive potential. While novel therapies hold promise, GBM’s complexity demands continued interdisciplinary research to improve prognosis, treatment response, and patient quality of life. This review underscores the urgent need for personalized, multimodal strategies in combating this devastating malignancy. Full article
Show Figures

Figure 1

37 pages, 1856 KB  
Review
Current and Future Directions in Immunotherapy for Gastrointestinal Malignancies
by Catherine R. Lewis, Yazan Samhouri, Christopher Sherry, Neda Dadgar, Moses S. Raj and Patrick L. Wagner
Int. J. Transl. Med. 2025, 5(3), 33; https://doi.org/10.3390/ijtm5030033 - 31 Jul 2025
Viewed by 761
Abstract
Gastrointestinal (GI) malignancies are diverse and particularly challenging in terms of current immunotherapy but hold great opportunity for impact given that they constitute the highest cancer incidence and mortality rates worldwide. Traditional treatment options for solid GI malignancies include surgical intervention, chemotherapy, radiation, [...] Read more.
Gastrointestinal (GI) malignancies are diverse and particularly challenging in terms of current immunotherapy but hold great opportunity for impact given that they constitute the highest cancer incidence and mortality rates worldwide. Traditional treatment options for solid GI malignancies include surgical intervention, chemotherapy, radiation, or a combination of these treatments. Emerging modalities within immunotherapy are anticipated to extend the results with conventional therapy by stimulating the patient’s own intrinsic potential for tumor-specific immunologic rejection. Combination regimens of chemotherapy and tumor-infiltrating lymphocyte (TIL) therapy in advanced colorectal cancer and pancreatic cancer, autologous monocyte therapy in advanced gastric cancer, and CAR-T therapy trained against GI-selective tumor antigens such as carcinoembryonic antigen are currently being studied. Clinical trials are underway to study the combination of various chemotherapeutic agents along with immunotherapy in the management of cholangiocarcinoma, hepatocellular carcinoma, and esophageal cancer. Alternative therapies are needed based on the tumor immune microenvironment, which can lead to a personalized approach to treatment. In this review, we discuss the current status of various modalities of immunotherapy in common GI malignancies, along with their mechanisms of immune activation and cancer suppression. We will also discuss the use of immunotherapy in less common solid GI malignancies and touch on recent advancements and clinical trials. Full article
Show Figures

Graphical abstract

19 pages, 348 KB  
Review
Venous Thromboembolic Events in Cancer Immunotherapy: A Narrative Review
by Cosmo Fowler and Stephen M. Pastores
J. Clin. Med. 2025, 14(14), 4926; https://doi.org/10.3390/jcm14144926 - 11 Jul 2025
Viewed by 691
Abstract
Venous thromboembolism (VTE) represents a significant complication of cancer immunotherapy, with emerging evidence suggesting distinct pathophysiological mechanisms compared to traditional chemotherapy-associated thrombosis. This narrative review examines the epidemiology and pathogenesis of VTE in patients receiving immunotherapies for cancer including immune checkpoint inhibitors (ICIs), [...] Read more.
Venous thromboembolism (VTE) represents a significant complication of cancer immunotherapy, with emerging evidence suggesting distinct pathophysiological mechanisms compared to traditional chemotherapy-associated thrombosis. This narrative review examines the epidemiology and pathogenesis of VTE in patients receiving immunotherapies for cancer including immune checkpoint inhibitors (ICIs), chimeric antigen receptor (CAR) T-cell therapy, bispecific T-cell engagers (BiTEs), among others. Real-world studies demonstrate a wide range of VTE incidence rates in ICI recipients, with potential mechanisms including exacerbated underlying interleukin-8-mediated inflammatory pathways and consequent neutrophil extracellular trap (NET) formation. CAR T-cell therapy is associated with unique hemostatic challenges, including concurrent thrombotic and bleeding risks related to cytokine release syndrome. Current risk assessment tools show limited predictive utility in patients receiving immunotherapies for cancer, highlighting the need for novel stratification models. Future research priorities include developing immunotherapy-specific risk prediction tools, elucidating mechanistic pathways linking immune activation to thrombosis, and establishing evidence-based and tailored thromboprophylaxis strategies. As cancer immunotherapy continues to evolve, understanding and mitigating thrombotic complications remains crucial for optimizing patient outcomes. Full article
(This article belongs to the Special Issue Thrombosis: Latest Advances and Prospects)
17 pages, 1548 KB  
Article
CD19-ReTARGTPR: A Novel Fusion Protein for Physiological Engagement of Anti-CMV Cytotoxic T Cells Against CD19-Expressing Malignancies
by Anne Paulien van Wijngaarden, Isabel Britsch, Matthias Peipp, Douwe Freerk Samplonius and Wijnand Helfrich
Cancers 2025, 17(14), 2300; https://doi.org/10.3390/cancers17142300 - 10 Jul 2025
Viewed by 586
Abstract
Background/Objectives: The physiological activation of cytotoxic CD8pos T cells (CTLs) relies on the engagement of the TCR/CD3 complex with cognate peptide-HLA class I (pHLA-I) on target cells, triggering cell lysis with appropriate cytokine release and minimized off-target toxicity. In contrast, current [...] Read more.
Background/Objectives: The physiological activation of cytotoxic CD8pos T cells (CTLs) relies on the engagement of the TCR/CD3 complex with cognate peptide-HLA class I (pHLA-I) on target cells, triggering cell lysis with appropriate cytokine release and minimized off-target toxicity. In contrast, current immunotherapies for CD19-expressing hematological malignancies, such as chimeric antigen receptor (CAR) T cells and bispecific T cell engagers (BiTEs), bypass TCR/pHLA interactions, resulting in CTL hyperactivation and excessive cytokine release, which frequently cause severe immune-related adverse events (irAEs). Thus, there is a pressing need for T cell-based therapies that preserve physiological activation while maintaining antitumor efficacy. Methods: To address this, we developed CD19-ReTARGTPR, a novel fusion protein consisting of the immunodominant cytomegalovirus (CMV) pp65-derived peptide TPRVTGGAM (TPR) covalently presented by a soluble HLA-B*07:02/β2-microglobulin complex fused to a high-affinity CD19-targeting Fab antibody fragment. The treatment of CD19-expressing cancer cells with CD19-ReTARGTPR makes them recognizable for pre-existing anti-CMVpp65 CTLs via physiological TCR-pHLA engagement. Results: Our preclinical data demonstrate that CD19-ReTARGTPR efficiently redirects anti-CMV CTLs to eliminate CD19-expressing cancer cells, including both established cell lines and primary chronic lymphocytic leukemia (CLL) cells. Unlike CD19-directed CAR T cells or the CD19/CD3 BiTE blinatumomab, CD19-ReTARGTPR mediated robust cytotoxic activity without triggering supraphysiological cytokine release. Importantly, this approach retained efficacy even against cancer cells with low CD19 expression. Conclusions: In summary, we provide a robust proof-of-concept study and show that CD19-ReTARGTPR offers a promising alternative strategy for T cell redirection, enabling the selective and effective killing of CD19-expressing malignancies while minimizing cytokine-driven toxicities through physiological CTL activation pathways. Full article
(This article belongs to the Special Issue New Insights of Hematology in Cancer)
Show Figures

Graphical abstract

21 pages, 3752 KB  
Article
Virulence and Antibiotic Resistance Profiles of Staphylococcus aureus Isolated from Epidermal Growth Factor Receptor Inhibitors-Associated Skin Lesions
by Mara-Mădălina Mihai, Iuliana Anghelescu, Alina Maria Holban, Irina Gheorghe-Barbu, Mariana-Carmen Chifiriuc, Lia-Mara Dițu, Cornelia-Ioana Ilie, Dan Anghelescu and Beatrice Bălăceanu-Gurău
Int. J. Mol. Sci. 2025, 26(14), 6595; https://doi.org/10.3390/ijms26146595 - 9 Jul 2025
Viewed by 505
Abstract
Cutaneous adverse reactions (CARs) are common complications of epidermal growth factor receptor (EGFR) inhibitor therapy, with papulopustular eruptions and paronychia being the most frequent. Growing scientific evidence implies that Staphylococcus aureus is involved in the pathogenesis of these reactions. This observational prospective study [...] Read more.
Cutaneous adverse reactions (CARs) are common complications of epidermal growth factor receptor (EGFR) inhibitor therapy, with papulopustular eruptions and paronychia being the most frequent. Growing scientific evidence implies that Staphylococcus aureus is involved in the pathogenesis of these reactions. This observational prospective study characterized 42 S. aureus strains isolated from CARs, analyzing antibiotic resistance, biofilm formation, soluble virulence factors, and virulence/resistance genes using multiplex polymerase chain reaction (PCR). S. aureus was identified in 90% of lesions; in 33% of cases, nasal and skin isolates were genetically identical. High resistance rates were noted for penicillins (85%) and tetracyclines (57%), while all strains remained susceptible to fluoroquinolones, vancomycin, and rifampicin. All isolates formed biofilms, and DNase/esculinase production significantly correlated with CAR severity. An enzymatic score based on these markers was associated with an 18-fold increased risk of severe reactions. Genotypically, clfA and clfB were prevalent (85.7%), while exotoxin genes were less common. These findings support a key role for S. aureus in exacerbating CARs via antibiotic resistance, biofilm production, and the expression of virulence factor. Additionally, we emphasize the role of routine microbial screening—including nasal swabs—and therapy guided by antibiograms. Furthermore, the enzymatic score may further be validated as a predictive biomarker. Full article
(This article belongs to the Special Issue Molecular and Cellular Mechanisms of Skin Diseases (Second Edition))
Show Figures

Figure 1

Back to TopTop