Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (7,391)

Search Parameters:
Keywords = CAP 2023–2027

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 759 KiB  
Article
Vitamin D Deficiency and Exocrine Pancreatic Insufficiency: An Analysis Carried Out in Orthogeriatric Patients (VIDEP.org)
by Pavol Mikula, Matthias Unseld and Hans Jürgen Heppner
J. Clin. Med. 2025, 14(15), 5558; https://doi.org/10.3390/jcm14155558 (registering DOI) - 7 Aug 2025
Abstract
Introduction: Vitamin D deficiency, a reversible cause of osteoporosis, is increasingly prevalent, showing varying degrees of severity that are notably pronounced among the growing population of multimorbid elderly patients. Given that the aging pancreas undergoes senescent processes leading to impaired function—which negatively impacts [...] Read more.
Introduction: Vitamin D deficiency, a reversible cause of osteoporosis, is increasingly prevalent, showing varying degrees of severity that are notably pronounced among the growing population of multimorbid elderly patients. Given that the aging pancreas undergoes senescent processes leading to impaired function—which negatively impacts enteral vitamin D absorption and, consequently, elderly bone metabolism—a specific diagnostic and treatment approach is crucial. Our study aimed to determine the prevalence of vitamin D deficiency and exocrine pancreatic insufficiency (EPI) in orthogeriatric patients. We also evaluated differences in vitamin D deficiency severity between patients with normal and impaired pancreatic function. Furthermore, a short-term monitoring of vitamin D level increases after 12 days of substitution therapy in both groups aimed to inform osteoanabolic therapy for specific high-fracture-risk patients, assessing the influence of pancreatic function on substitution efficacy. Methods: We conducted a retrospective, monocentric cohort study, evaluating data from all patients hospitalized with manifest osteoporosis in an orthogeriatric department during a six-month spring/summer period. Demographic data, relevant comorbidities, the type of fracture, the amount of faecal elastase 1 (CALEX® Cap Bühlmann), and the serum levels of 25-hydroxyvitamin D (25(OH)D) were assessed. Results: We found a high prevalence (70.6%) of vitamin D deficiency (25(OH)D < 30 µg/L) among all orthogeriatric patients. Of these, 16% met the criteria for mild to severe EPI. The group with normal exocrine pancreatic function showed a higher average vitamin D value, and their increase in vitamin D levels following short-term substitution was up to 100% greater compared to the group with impaired pancreatic function. Notably, 69% of women and 20% of men met the therapeutic threshold for specific osteoanabolic osteoporosis therapy, even without a T-score. Conclusions: Our findings reveal a very high prevalence of vitamin D deficiency and a high prevalence of EPI in orthogeriatric patients. Those with impaired exocrine pancreatic function exhibit lower baseline vitamin D levels and a diminished capacity for vitamin D absorption during short-term monitoring. These results have significant clinical implications for osteoporotic therapy, given that a substantial proportion of patients, particularly women, meet the criteria for specific osteoanabolic treatment. Full article
(This article belongs to the Special Issue The “Orthogeriatric Fracture Syndrome”—Issues and Perspectives)
Show Figures

Figure 1

11 pages, 1257 KiB  
Communication
Glutathione-Stabilized Copper Nanoclusters as a Switch-Off Fluorescent Sensor for Sensing of Quercetin in Tea Samples
by Xueqing Gao and Xuming Zhuang
Foods 2025, 14(15), 2750; https://doi.org/10.3390/foods14152750 - 6 Aug 2025
Abstract
Quercetin, a natural polyphenolic flavonoid with antioxidant and anti-allergic properties, is extensively found in foods and holds significant importance for human health. In this study, a simple switch-off fluorescent sensor based on copper nanoclusters (Cu NCs) was proposed for the sensitive determination of [...] Read more.
Quercetin, a natural polyphenolic flavonoid with antioxidant and anti-allergic properties, is extensively found in foods and holds significant importance for human health. In this study, a simple switch-off fluorescent sensor based on copper nanoclusters (Cu NCs) was proposed for the sensitive determination of quercetin. Glutathione acted as the reducing and protective agent in the synthesized process of Cu NCs via a facile, green one-pot method. As anticipated, the glutathione-capped Cu NCs (GSH-Cu NCs) exhibited favorable water solubility and ultrasmall size. The fluorescence property of GSH-Cu NCs was further enhanced with Al3+ ion through the aggregation-induced emission effect. When quercetin was present in the sample solution, the system exhibited effective fluorescence quenching, which was attributed to the internal filter effect. The GSH-Cu NCs/Al3+-based fluorescent sensor showed a good linear relationship to quercetin in the concentration range from 0.1 to 60 μM. A detection limit of 24 nM was obtained. Moreover, the constructed sensor was employed for the successful determination of quercetin in tea samples. Full article
(This article belongs to the Special Issue Development and Application of Biosensors in the Food Field)
Show Figures

Figure 1

23 pages, 3031 KiB  
Article
Integrated Capuchin Search Algorithm-Optimized Multilayer Perceptron for Robust and Precise Prediction of Blast-Induced Airblast in a Blasting Mining Operation
by Kesalopa Gaopale, Takashi Sasaoka, Akihiro Hamanaka and Hideki Shimada
Geosciences 2025, 15(8), 306; https://doi.org/10.3390/geosciences15080306 - 6 Aug 2025
Abstract
Blast-induced airblast poses a significant environmental and operational issue for surface mining, affecting safety, regulatory adherence, and the well-being of surrounding communities. Despite advancements in machine learning methods for predicting airblast, present studies neglect essential geomechanical characteristics, specifically rock mass strength (RMS), which [...] Read more.
Blast-induced airblast poses a significant environmental and operational issue for surface mining, affecting safety, regulatory adherence, and the well-being of surrounding communities. Despite advancements in machine learning methods for predicting airblast, present studies neglect essential geomechanical characteristics, specifically rock mass strength (RMS), which is vital for energy transmission and pressure-wave attenuation. This paper presents a capuchin search algorithm-optimized multilayer perceptron (CapSA-MLP) that incorporates RMS, hole depth (HD), maximum charge per delay (MCPD), monitoring distance (D), total explosive mass (TEM), and number of holes (NH). Blast datasets from a granite quarry were utilized to train and test the model in comparison to benchmark approaches, such as particle swarm optimized artificial neural network (PSO-ANN), multivariate regression analysis (MVRA), and the United States Bureau of Mines (USBM) equation. CapSA-MLP outperformed PSO-ANN (RMSE = 1.120, R2 = 0.904 compared to RMSE = 1.284, R2 = 0.846), whereas MVRA and USBM exhibited lower accuracy. Sensitivity analysis indicated RMS as the main input factor. This study is the first to use CapSA-MLP with RMS for airblast prediction. The findings illustrate the significance of metaheuristic optimization in developing adaptable, generalizable models for various rock types, thereby improving blast design and environmental management in mining activities. Full article
(This article belongs to the Section Geomechanics)
Show Figures

Figure 1

23 pages, 2046 KiB  
Article
A Rational Synthesis of a Branched Decaarabinofuranoside Related to the Fragments of Mycobacterial Polysaccharides
by Polina I. Abronina, Nelly N. Malysheva, Maxim Y. Karpenko, Dmitry S. Novikov, Alexander I. Zinin, N. G. Kolotyrkina and Leonid O. Kononov
Molecules 2025, 30(15), 3295; https://doi.org/10.3390/molecules30153295 - 6 Aug 2025
Abstract
A rational synthesis of the branched decaarabinofuranoside with 4-(2-azidoethoxy)phenyl aglycone (a Janus aglycone) related to the non-reducing terminal fragments of the arabinogalactan and lipoarabinomannan from Mycobacterium tuberculosis was proposed. Since the most challenging step is the formation of a 1,2-cis glycosidic linkage, [...] Read more.
A rational synthesis of the branched decaarabinofuranoside with 4-(2-azidoethoxy)phenyl aglycone (a Janus aglycone) related to the non-reducing terminal fragments of the arabinogalactan and lipoarabinomannan from Mycobacterium tuberculosis was proposed. Since the most challenging step is the formation of a 1,2-cis glycosidic linkage, we have significantly simplified access to a library of oligoarabinofuranosides derived from Mycobacterium tuberculosis polysaccharides using a silylated Ara-β-(1→2)-Ara disaccharide as the glycosyl donor. The application of a Janus aglycone also allowed us to reduce the number of reaction steps in glycoside synthesis. The obtained arabinans can be useful to further prepare conjugates as antigens for creating tuberculosis screening assays. Full article
(This article belongs to the Special Issue 30th Anniversary of Molecules—Recent Advances in Organic Chemistry)
Show Figures

Figure 1

16 pages, 2153 KiB  
Article
Green Synthesis, Optimization, and Characterization of CuO Nanoparticles Using Tithonia diversifolia Leaf Extract
by S. S. Millavithanachchi, M. D. K. M. Gunasena, G. D. C. P. Galpaya, H. V. V. Priyadarshana, S. V. A. A. Indupama, D. K. A. Induranga, W. A. C. N. Kariyawasam, D. V. S. Kaluthanthri and K. R. Koswattage
Nanomaterials 2025, 15(15), 1203; https://doi.org/10.3390/nano15151203 - 6 Aug 2025
Abstract
Green synthesis of copper oxide (CuO) nanoparticles offers a sustainable alternative to conventional chemical methods that often involve toxic reagents and harsh conditions. This study investigates the use of Tithonia diversifolia, an invasive species in Sri Lanka, as a bioreductant for the [...] Read more.
Green synthesis of copper oxide (CuO) nanoparticles offers a sustainable alternative to conventional chemical methods that often involve toxic reagents and harsh conditions. This study investigates the use of Tithonia diversifolia, an invasive species in Sri Lanka, as a bioreductant for the eco-friendly fabrication of CuO nanoparticles. Using copper sulfate (CuSO4·5H2O) as a precursor, eight treatments were conducted by varying precursor concentration, temperature, and reaction time to determine optimal conditions. A visible color change in the reaction mixture initially indicated nanoparticle formation. Among all the conditions, treatment T4 (5 mM CuSO4, 80 °C, 2 h) yielded the most favorable results in terms of stability, morphology, and crystallinity. UV-Vis spectroscopic analysis confirmed the synthesis, with absorbance peaks between 265 and 285 nm. FTIR analysis revealed organic functional groups and characteristic metal–oxygen vibrations in the fingerprint region (500–650 cm−1), confirming formation. SEM imaging showed that particles were mainly spherical to polygonal, averaging 125–150 nm. However, dynamic light scattering showed larger diameters (~240 nm) due to surface capping agents. Zeta potential values ranged from −16.0 to −28.0 mV, indicating stability. XRD data revealed partial crystallinity with CuO-specific peaks. These findings support the potential of T. diversifolia in green nanoparticle synthesis, suggesting a low-cost, eco-conscious strategy for future applications. Full article
(This article belongs to the Section Synthesis, Interfaces and Nanostructures)
Show Figures

Figure 1

19 pages, 487 KiB  
Review
Smart Clothing and Medical Imaging Innovations for Real-Time Monitoring and Early Detection of Stroke: Bridging Technology and Patient Care
by David Sipos, Kata Vészi, Bence Bogár, Dániel Pető, Gábor Füredi, József Betlehem and Attila András Pandur
Diagnostics 2025, 15(15), 1970; https://doi.org/10.3390/diagnostics15151970 - 6 Aug 2025
Abstract
Stroke is a significant global health concern characterized by the abrupt disruption of cerebral blood flow, leading to neurological impairment. Accurate and timely diagnosis—enabled by imaging modalities such as computed tomography (CT) and magnetic resonance imaging (MRI)—is essential for differentiating stroke types and [...] Read more.
Stroke is a significant global health concern characterized by the abrupt disruption of cerebral blood flow, leading to neurological impairment. Accurate and timely diagnosis—enabled by imaging modalities such as computed tomography (CT) and magnetic resonance imaging (MRI)—is essential for differentiating stroke types and initiating interventions like thrombolysis, thrombectomy, or surgical management. In parallel, recent advancements in wearable technology, particularly smart clothing, offer new opportunities for stroke prevention, real-time monitoring, and rehabilitation. These garments integrate various sensors, including electrocardiogram (ECG) electrodes, electroencephalography (EEG) caps, electromyography (EMG) sensors, and motion or pressure sensors, to continuously track physiological and functional parameters. For example, ECG shirts monitor cardiac rhythm to detect atrial fibrillation, smart socks assess gait asymmetry for early mobility decline, and EEG caps provide data on neurocognitive recovery during rehabilitation. These technologies support personalized care across the stroke continuum, from early risk detection and acute event monitoring to long-term recovery. Integration with AI-driven analytics further enhances diagnostic accuracy and therapy optimization. This narrative review explores the application of smart clothing in conjunction with traditional imaging to improve stroke management and patient outcomes through a more proactive, connected, and patient-centered approach. Full article
Show Figures

Figure 1

19 pages, 1220 KiB  
Article
The Role of Square Dancing in Psychological Capital: Evidence from a Large Cross-Sequential Study
by Ruitong Li, Yujia Qu, Zhiyuan Liu and Yan Wang
Healthcare 2025, 13(15), 1913; https://doi.org/10.3390/healthcare13151913 - 5 Aug 2025
Abstract
(1) Background: Rapid population aging in China intensifies physical and mental health challenges, including negative emotions and social barriers. Physical activity (PA) fosters resilience, adaptability, and successful aging through emotional and social benefits. This study examines the relationship between square-dancing exercise and [...] Read more.
(1) Background: Rapid population aging in China intensifies physical and mental health challenges, including negative emotions and social barriers. Physical activity (PA) fosters resilience, adaptability, and successful aging through emotional and social benefits. This study examines the relationship between square-dancing exercise and psychological capital (PsyCap) in middle-aged and elderly individuals using cross-validation, subgroup analysis, and a cross-sequential design. (2) Methods: A cross-sectional study with 5714 participants employed a serial mediation model. Online questionnaires assessed square-dancing exercise, cognitive reappraisal, prosocial behavior tendencies, PsyCap, and interpersonal relationships. Statistical analyses were conducted using SPSS 27.0 and Mplus 8.3, incorporating correlation analysis, structural equation modeling, and subgroup comparisons. (3) Results: (a) Cognitive reappraisal and prosocial behavior mediated the link between square-dancing and PsyCap through three pathways; (b) model stability was confirmed across two random subsamples; (c) cross-group differences emerged in age and interpersonal relationships. Compared with secondary data, this study further validated PsyCap’s stability over six months post-pandemic. (4) Conclusions: The study, based on China’s largest square-dancing sample, establishes a robust serial mediation model. The findings strengthen theoretical foundations for PA-based interventions promoting psychological resilience in aging populations, highlighting structured exercise’s role in mental and social well-being. Full article
Show Figures

Figure 1

18 pages, 2745 KiB  
Article
Obesity-Induced MASLD Is Reversed by Capsaicin via Hepatic TRPV1 Activation
by Padmamalini Baskaran, Ryan Christensen, Kimberley D. Bruce and Robert H. Eckel
Curr. Issues Mol. Biol. 2025, 47(8), 618; https://doi.org/10.3390/cimb47080618 - 4 Aug 2025
Abstract
Background and Objectives: Metabolic dysfunction-associated steatotic liver disease (MASLD) is a progressive liver disorder associated with metabolic risk factors such as obesity, type 2 diabetes, and cardiovascular disease. If left untreated, the accumulation of excess hepatic fat can lead to inflammation, fibrosis, cirrhosis, [...] Read more.
Background and Objectives: Metabolic dysfunction-associated steatotic liver disease (MASLD) is a progressive liver disorder associated with metabolic risk factors such as obesity, type 2 diabetes, and cardiovascular disease. If left untreated, the accumulation of excess hepatic fat can lead to inflammation, fibrosis, cirrhosis, hepatocellular carcinoma, and ultimately liver failure. Capsaicin (CAP), the primary pungent compound in chili peppers, has previously been shown to prevent weight gain in high-fat diet (HFD)-induced obesity models. In this study, we investigated the potential of dietary CAP to prevent HFD-induced MASLD. Methods: C57BL/6 mice were fed an HFD (60% kcal from fat) with or without 0.01% CAP supplementation for 26 weeks. We evaluated CAP’s effects on hepatic fat accumulation, inflammation, and mitochondrial function to determine its role in preventing MASLD. Results: CAP acts as a potent and selective agonist of the transient receptor potential vanilloid 1 (TRPV1) channel. We confirmed TRPV1 expression in the liver and demonstrated that CAP activates hepatic TRPV1, thereby preventing steatosis, improving insulin sensitivity, reducing inflammation, and enhancing fatty acid oxidation. These beneficial effects were observed in wild-type but not in TRPV1 knockout mice. Mechanistically, CAP-induced TRPV1 activation promotes calcium influx and activates AMPK, which leads to SIRT1-dependent upregulation of PPARα and PGC-1α, enhancing mitochondrial biogenesis and lipid metabolism. Conclusions: Our findings suggest that dietary CAP prevents MASLD through TRPV1 activation. TRPV1 signaling represents a promising therapeutic target for the prevention and management of MASLD in individuals with metabolic disorders. Full article
(This article belongs to the Special Issue Mechanisms and Pathophysiology of Obesity)
Show Figures

Graphical abstract

30 pages, 3430 KiB  
Article
Stage-Specific Serum Proteomic Signatures Reveal Early Biomarkers and Molecular Pathways in Huntington’s Disease Progression
by Christiana C. Christodoulou, Christiana A. Demetriou and Eleni Zamba-Papanicolaou
Cells 2025, 14(15), 1195; https://doi.org/10.3390/cells14151195 - 4 Aug 2025
Viewed by 41
Abstract
Background: Huntington’s Disease (HD) is a monogenic neurodegenerative disease resulting in a CAG repeat expansion in the HTT gene. Despite this genetic simplicity, its molecular mechanisms remain highly complex. Methods: In this study, untargeted serum proteomics, bioinformatics analysis, biomarker filtering and ELISA validation [...] Read more.
Background: Huntington’s Disease (HD) is a monogenic neurodegenerative disease resulting in a CAG repeat expansion in the HTT gene. Despite this genetic simplicity, its molecular mechanisms remain highly complex. Methods: In this study, untargeted serum proteomics, bioinformatics analysis, biomarker filtering and ELISA validation were implemented to characterize the proteomic landscape across the three HD stages—asymptomatic, early symptomatic and symptomatic advanced—alongside gender/age-matched controls. Results: We identified 84 over-expressed and 118 under-expressed differentially expressed proteins. Enrichment analysis revealed dysregulation in pathways including the complement cascade, LXR/RXR activation and RHOGDI signaling. Biomarker analysis highlighted key proteins with diagnostic potential, including CAP1 (AUC = 0.809), CAPZB (AUC = 0.861), TAGLN2 (AUC = 0.886), THBS1 (AUC = 0.883) and CFH (AUC = 0.948). CAP1 and CAPZB demonstrated robust diagnostic potential in linear mixed-effects models. CAP1 decreased in the asymptomatic stage, suggesting early cytoskeletal disruption, while CAPZB was consistently increased across HD stages. Conclusions: Our findings illuminate the dynamic proteomic and molecular landscape of HD. Future studies should validate these candidates in larger, more diverse cohorts and explore their mechanistic roles in HD pathology and progression. Full article
Show Figures

Figure 1

11 pages, 876 KiB  
Article
Body Composition Changes in Hospitalized Patients with Community-Acquired Pneumonia
by Ryuji Sugiya, Osamu Nishiyama, Masashi Shiraishi, Kazuya Yoshikawa, Kyuya Gose, Ryo Yamazaki, Takashi Oomori, Akiko Sano, Shinichi Arizono, Yasushi Uchiyama, Yuji Higashimoto and Hisako Matsumoto
J. Clin. Med. 2025, 14(15), 5460; https://doi.org/10.3390/jcm14155460 - 3 Aug 2025
Viewed by 184
Abstract
Background: The influence of hospitalization owing to pneumonia on changes in body composition has not been specifically reported. We conducted a prospective cohort study of patients with community-acquired pneumonia (CAP) requiring hospitalization to test the hypothesis that hospitalization affects body composition. Methods [...] Read more.
Background: The influence of hospitalization owing to pneumonia on changes in body composition has not been specifically reported. We conducted a prospective cohort study of patients with community-acquired pneumonia (CAP) requiring hospitalization to test the hypothesis that hospitalization affects body composition. Methods: Sixty-four consecutive patients with CAP were recruited. Body composition was measured within 24 h of admission and 24 h before discharge using bioelectrical impedance analysis. The association between changes in body composition and variables obtained at admission was investigated. Index values were calculated as weight divided by height squared. Results: The mean age of the patients was 76.0 ± 8.7 years (78.1% males). The median length of hospitalization was 12.0 days. Weight, body mass index (BMI), skeletal muscle (SM), SM index, fat-free mass (FFM), and FFM index significantly decreased (p < 0.001 for each), but fat mass (FM) and FM index did not. The serum total protein level was the only independent predictor of the lowest quartile of change in SM index (<−0.4) after adjusting for age and sex (p = 0.004). Conclusions: In summary, weight and BMI significantly decreased during hospitalization in patients with CAP, which was attributed to SM reduction. Patients with low serum total protein levels on admission were at risk of an accelerated decrease in the SM index. Nutritional intervention and rehabilitation are important for these patients. Full article
Show Figures

Figure 1

27 pages, 2226 KiB  
Review
Uncovering Plaque Erosion: A Distinct Pathway in Acute Coronary Syndromes and a Gateway to Personalized Therapy
by Angela Buonpane, Alberto Ranieri De Caterina, Giancarlo Trimarchi, Fausto Pizzino, Marco Ciardetti, Michele Alessandro Coceani, Augusto Esposito, Luigi Emilio Pastormerlo, Angelo Monteleone, Alberto Clemente, Umberto Paradossi, Sergio Berti, Antonio Maria Leone, Carlo Trani, Giovanna Liuzzo, Francesco Burzotta and Filippo Crea
J. Clin. Med. 2025, 14(15), 5456; https://doi.org/10.3390/jcm14155456 - 3 Aug 2025
Viewed by 206
Abstract
Plaque erosion (PE) is now recognized as a common and clinically significant cause of acute coronary syndromes (ACSs), accounting for up to 40% of cases. Unlike plaque rupture (PR), PE involves superficial endothelial loss over an intact fibrous cap and occurs in a [...] Read more.
Plaque erosion (PE) is now recognized as a common and clinically significant cause of acute coronary syndromes (ACSs), accounting for up to 40% of cases. Unlike plaque rupture (PR), PE involves superficial endothelial loss over an intact fibrous cap and occurs in a low-inflammatory setting, typically affecting younger patients, women, and smokers with fewer traditional risk factors. The growing recognition of PE has been driven by high-resolution intracoronary imaging, particularly optical coherence tomography (OCT), which enables in vivo differentiation from PR. Identifying PE with OCT has opened the door to personalized treatment strategies, as explored in recent trials evaluating the safety of deferring stent implantation in selected cases in favor of intensive medical therapy. Given its unexpectedly high prevalence, PE is now recognized as a common pathophysiological mechanism in ACS, rather than a rare exception. This growing awareness underscores the importance of its accurate identification through OCT in clinical practice. Early recognition and a deeper understanding of PE are essential steps toward the implementation of precision medicine, allowing clinicians to move beyond “one-size-fits-all” models toward “mechanism-based” therapeutic strategies. This narrative review aims to offer an integrated overview of PE, tracing its epidemiology, elucidating the molecular and pathophysiological mechanisms involved, outlining its clinical presentations, and placing particular emphasis on diagnostic strategies with OCT, while also discussing emerging therapeutic approaches and future directions for personalized cardiovascular care. Full article
Show Figures

Figure 1

16 pages, 7605 KiB  
Article
From Cap to Collar: Ontogeny of the Endocytic Collar in Neurospora crassa
by Marisela Garduño-Rosales, Caleb Oliver Bedsole, Brian D. Shaw and Rosa R. Mouriño-Pérez
J. Fungi 2025, 11(8), 577; https://doi.org/10.3390/jof11080577 - 3 Aug 2025
Viewed by 141
Abstract
Endocytosis in filamentous fungi is spatially restricted to a subapical zone known as the endocytic collar, which plays essential roles in membrane recycling and the maintenance of polarized growth. In this study, we investigated the ontogeny of the endocytic collar in Neurospora crassa [...] Read more.
Endocytosis in filamentous fungi is spatially restricted to a subapical zone known as the endocytic collar, which plays essential roles in membrane recycling and the maintenance of polarized growth. In this study, we investigated the ontogeny of the endocytic collar in Neurospora crassa by tracking fimbrin-labeled endocytic patches using confocal microscopy during conidial germination, hyphal branching, and regeneration following mechanical injury. We consistently observed an initial accumulation of endocytic patches at the hyphal tip, forming an apical cap, which later reorganized into a subapical collar. This transition was correlated with a significant increase in elongation rate and the appearance of a Spitzenkörper, indicating a link between exocytosis and collar positioning. Although this correlation is robust, our data do not establish causality; rather, collar formation appears to occur after surpassing a critical elongation. Our findings suggest that exocytosis displaces endocytosis from the apex, resulting in the formation of the collar, which is not required for the establishment of polarized growth but is essential for its maintenance. These results support the development of a unified model of collar formation in filamentous fungi and provide new insight into the spatial coordination between endocytic and exocytic processes during hyphal development. Full article
(This article belongs to the Section Fungal Cell Biology, Metabolism and Physiology)
Show Figures

Figure 1

27 pages, 5026 KiB  
Review
China’s Carbon Emissions Trading Market: Current Situation, Impact Assessment, Challenges, and Suggestions
by Qidi Wang, Jinyan Zhan, Hailin Zhang, Yuhan Cao, Zheng Yang, Quanlong Wu and Ali Raza Otho
Land 2025, 14(8), 1582; https://doi.org/10.3390/land14081582 - 3 Aug 2025
Viewed by 126
Abstract
As the world’s largest developing and carbon-emitting country, China is accelerating its greenhouse gas (GHG) emission reduction process, and it is of vital importance in achieving the goals set out in the Paris Agreement. This paper examines the historical development and current operation [...] Read more.
As the world’s largest developing and carbon-emitting country, China is accelerating its greenhouse gas (GHG) emission reduction process, and it is of vital importance in achieving the goals set out in the Paris Agreement. This paper examines the historical development and current operation of China’s carbon emissions trading market (CETM). The current progress of research on the implementation of carbon emissions trading policy (CETP) is described in four dimensions: environment, economy, innovation, and society. The results show that CETP generates clear environmental and social benefits but exhibits mixed economic and innovation effects. Furthermore, this paper analyses the challenges of China’s carbon market, including the green paradox, the low carbon price, the imperfections in cap setting and allocation of allowances, the small scope of coverage, and the weakness of the legal supervision system. Ultimately, this paper proposes recommendations for fostering China’s CETM with the anticipation of offering a comprehensive outlook for future research. Full article
Show Figures

Figure 1

13 pages, 1608 KiB  
Article
Enhanced Antioxidant and Anti-Inflammatory Activities of Diospyros lotus Leaf Extract via Enzymatic Conversion of Rutin to Isoquercitrin
by Yeong-Su Kim, Chae Sun Na and Kyung-Chul Shin
Antioxidants 2025, 14(8), 950; https://doi.org/10.3390/antiox14080950 (registering DOI) - 2 Aug 2025
Viewed by 131
Abstract
Isoquercitrin, a monoglucoside form of quercetin, exhibits superior antioxidant, anti-inflammatory, and cardiovascular protective effects in comparison to its precursor, rutin. However, its natural abundance is limited. This study aimed to increase the functional value of Diospyros lotus leaf extract through enzymatic conversion of [...] Read more.
Isoquercitrin, a monoglucoside form of quercetin, exhibits superior antioxidant, anti-inflammatory, and cardiovascular protective effects in comparison to its precursor, rutin. However, its natural abundance is limited. This study aimed to increase the functional value of Diospyros lotus leaf extract through enzymatic conversion of rutin to isoquercitrin using α-l-rhamnosidase and to evaluate the changes in biological activities after conversion. A sugar-free D. lotus leaf extract was prepared and subjected to enzymatic hydrolysis with α-l-rhamnosidase under optimized conditions (pH 5.5, 55 °C, and 0.6 U/mL). Isoquercitrin production was monitored via high-performance liquid chromatography. Antioxidant and anti-inflammatory activities were assessed using the 2,2-diphenyl-1-picrylhydrazyl radical scavenging and lipoxygenase (LOX) inhibition assays, respectively. The enzymatic reaction resulted in complete conversion of 30 mM rutin into isoquercitrin within 180 min, increasing isoquercitrin content from 9.8 to 39.8 mM. The enzyme-converted extract exhibited significantly enhanced antioxidant activity, with a 48% improvement in IC50 value compared with the untreated extract. Similarly, LOX inhibition increased from 39.2% to 48.3% after enzymatic conversion. Both extracts showed higher inhibition than isoquercitrin alone, indicating synergistic effects of other phytochemicals present in the extract. This study is the first to demonstrate that α-l-rhamnosidase-mediated conversion of rutin to isoquercitrin in D. lotus leaf extract significantly improves its antioxidant and anti-inflammatory activities. The enzymatically enhanced extract shows potential as a functional food or therapeutic ingredient. Full article
Show Figures

Figure 1

34 pages, 10887 KiB  
Article
Heteroaryl-Capped Hydroxamic Acid Derivatives with Varied Linkers: Synthesis and Anticancer Evaluation with Various Apoptosis Analyses in Breast Cancer Cells, Including Docking, Simulation, DFT, and ADMET Studies
by Ekta Shirbhate, Biplob Koch, Vaibhav Singh, Akanksha Dubey, Haya Khader Ahmad Yasin and Harish Rajak
Pharmaceuticals 2025, 18(8), 1148; https://doi.org/10.3390/ph18081148 - 1 Aug 2025
Viewed by 131
Abstract
Background/Objectives: Cancer suffers from unresolved therapeutic challenges owing to the lack of targeted therapies and heightened recurrence risk. This study aimed to investigate the new series of hydroxamate by structurally modifying the pharmacophore of vorinostat. Methods: The present work involves the synthesis of [...] Read more.
Background/Objectives: Cancer suffers from unresolved therapeutic challenges owing to the lack of targeted therapies and heightened recurrence risk. This study aimed to investigate the new series of hydroxamate by structurally modifying the pharmacophore of vorinostat. Methods: The present work involves the synthesis of 15 differently substituted 2H-1,2,3-triazole-based hydroxamide analogs by employing triazole ring as a cap with varied linker fragments. The compounds were evaluated for their anticancer effect, especially their anti-breast cancer response. Molecular docking and molecular dynamics simulations were conducted to examine binding interactions. Results: Results indicated that among all synthesized hybrids, the molecule VI(i) inhibits the growth of MCF-7 and A-549 cells (GI50 < 10 μg/mL) in an antiproliferative assay. Compound VI(i) was also tested for cytotoxic activity by employing an MTT assay against A549, MCF-7, and MDA-MB-231 cell lines, and the findings indicate its potent anticancer response, especially against MCF-7 cells with IC50 of 60 µg/mL. However, it experiences minimal toxicity towards the normal cell line (HEK-293). Mechanistic studies revealed a dual-pathway activation: first, apoptosis (17.18% of early and 10.22% of late apoptotic cells by annexin V/PI analysis); second, cell cycle arrest at the S and G2/M phases. It also promotes ROS generation in a concentration-dependent manner. The HDAC–inhibitory assay, extended in silico molecular docking, and MD simulation experiments further validated its significant binding affinity towards HDAC 1 and 6 isoforms. DFT and ADMET screening further support the biological proclivity of the title compounds. The notable biological contribution of VI(i) highlights it as a potential candidate, especially against breast cancer cells. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Figure 1

Back to TopTop