Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (16,109)

Search Parameters:
Keywords = C4 plants

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 6678 KiB  
Article
Wheat Head Detection in Field Environments Based on an Improved YOLOv11 Model
by Yuting Zhang, Zihang Liu, Xiangdong Guo, Congcong Li and Guifa Teng
Agriculture 2025, 15(16), 1765; https://doi.org/10.3390/agriculture15161765 (registering DOI) - 17 Aug 2025
Abstract
Precise wheat head detection is essential for plant counting and yield estimation in precision agriculture. To tackle the difficulties arising from densely packed wheat heads with diverse scales and intricate occlusions in real-world field conditions, this research introduces YOLO v11n-GRN, an improved wheat [...] Read more.
Precise wheat head detection is essential for plant counting and yield estimation in precision agriculture. To tackle the difficulties arising from densely packed wheat heads with diverse scales and intricate occlusions in real-world field conditions, this research introduces YOLO v11n-GRN, an improved wheat head detection model founded on the streamlined YOLO v11n framework. The model optimizes performance through three key innovations: This study introduces a Global Edge Information Transfer (GEIT) module architecture that incorporates a Multi-Scale Edge Information Generator (MSEIG) to enhance the perception of wheat head contours through effective modeling of edge features and deep semantic fusion. Additionally, a C3k2_RFCAConv module is developed to improve spatial awareness and multi-scale feature representation by integrating receptive field augmentation and a coordinate attention mechanism. The utilization of the Normalized Gaussian Wasserstein Distance (NWD) as the localization loss function enhances regression stability for distant small targets. Experiments were, respectively, validated on the self-built multi-temporal wheat field image dataset and the GWHD2021 public dataset. Results showed that, while maintaining a lightweight design (3.6 MB, 10.3 GFLOPs), the YOLOv11n-GRN model achieved a precision, recall, and mAP@0.5 of 92.5%, 91.1%, and 95.7%, respectively, on the self-built dataset, and 91.6%, 89.7%, and 94.4%, respectively, on the GWHD2021 dataset. This fully demonstrates that the improvements can effectively enhance the model’s comprehensive detection performance for wheat ear targets in complex backgrounds. Meanwhile, this study offers an effective technical approach for wheat head detection and yield estimation in challenging field conditions, showcasing promising practical implications. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

20 pages, 5917 KiB  
Article
Montmorillonite and Composite Amino Acid Overcome the Challenges of Straw Return in Cold-Region Soil: Synergistic Mechanisms of Rapid Straw Humification and Carbon Sequestration
by Xingyan Chen, Tchoumtchoua Foka Joseline Galliane, Chongyang Zhao, Yanhui Feng and Mingtang Li
Agronomy 2025, 15(8), 1979; https://doi.org/10.3390/agronomy15081979 (registering DOI) - 17 Aug 2025
Abstract
This study aimed to develop an effective method to overcome the challenge of straw return in cold-region soil. We systematically investigated the synergistic mechanism of montmorillonite (MMT) and composite amino acid (CAA) on straw humification and carbon sequestration through a low-temperature litterbag field [...] Read more.
This study aimed to develop an effective method to overcome the challenge of straw return in cold-region soil. We systematically investigated the synergistic mechanism of montmorillonite (MMT) and composite amino acid (CAA) on straw humification and carbon sequestration through a low-temperature litterbag field experiment. The results indicate that the combined treatment (MMT-CAA) significantly increased the decomposition rate of straw by 42.1% compared to the control (CK), with MMT showing particular efficacy in lignin degradation (28.3% reduction), while the CAA preferentially decomposed cellulose (19.7% reduction). An FTIR analysis of the decomposition products confirmed these findings. Water-soluble organic carbon (WEOC) and its three-dimensional fluorescence spectra exhibited a 25.0% increase in MMT-CAA and enhanced aromaticity of humic acid-like substances. Humic substances and their 13C-NMR revealed that MMT-CAA enhanced humic acid formation and molecular stability by 31.4% (with a 47.8% increase in aromaticity). A further redundancy analysis and symbiotic network of microorganisms demonstrated that MMT-CAA increased the abundance of lignocellulose-degrading phyla (Actinomycetes and Stramenomycetes) and the formation of a complex co-degradation network. Field corn planting trials indicated that MMT-CAA increased plant height by 55.1%, stem thickness by 58.7%, leaf area by 70.2%, and the SPAD value by 41.1%. Additionally, MMT significantly reduced CO2 and N2O emission fluxes by 35.6% and 15.8%, respectively, while MMT-CAA increased CH4 uptake fluxes by 13.4%. This study presents an innovative strategy, providing mechanistic insights and practical solutions to synergistically address the challenges of slow straw decomposition and carbon loss in cold regions. Full article
(This article belongs to the Section Agroecology Innovation: Achieving System Resilience)
Show Figures

Figure 1

18 pages, 3916 KiB  
Article
Mangrove Transplantation to the North: Carbon Sequestration Capacity—Drivers and Strategies
by Kewei Zhou, Yujuan Lv, Yang Gong, Jing Su, Lei Wang, Shengmin Wu, Xi Lin, Qiuying Lai, Yixin Xu and Xingyi Duan
J. Mar. Sci. Eng. 2025, 13(8), 1577; https://doi.org/10.3390/jmse13081577 (registering DOI) - 17 Aug 2025
Abstract
Mangroves play a pivotal role in carbon sequestration. To investigate the characteristics and driving factors of carbon sequestration in planted mangrove forests, we focused on planted mangrove forests in Wenzhou City, Zhejiang Province, China. Through a statistical analysis of soil physicochemical properties and [...] Read more.
Mangroves play a pivotal role in carbon sequestration. To investigate the characteristics and driving factors of carbon sequestration in planted mangrove forests, we focused on planted mangrove forests in Wenzhou City, Zhejiang Province, China. Through a statistical analysis of soil physicochemical properties and plant morphological characteristics, we assessed carbon stock distribution patterns and identified key influencing factors, providing scientific support for the northward expansion of mangroves. The results demonstrated significant differences in soil properties and plant morphological characteristics among different stands (p < 0.05). The mean soil carbon stock of restored planted mangroves was 78.75 Mg C/ha (mature stands: 87.84 Mg C/ha; middle-aged stands: 74.09 Mg C/ha; young stands: 74.31 Mg C/ha), while the average plant carbon stock was 12.28 Mg C/ha, indicating that soil is the primary contributor to carbon sequestration in mangroves. Compared to natural mangroves, the restored planted mangroves still exhibited a lower carbon sequestration capacity. The variations in carbon sequestration levels among the planted mangrove forests were mainly attributed to differences in tree species and age composition, hydrothermal conditions, and biomass carbon quantification methods. Key drivers of soil carbon sequestration included total phosphorus content, bulk density, and clay content. Carbon storage in restored planted mangroves depends on short-term soil carbon accumulation and long-term biomass carbon accumulation. Ultimately, we recommend optimal species selection and planting design, improved soil carbon storage mechanisms, and integrated conservation monitoring systems to enhance carbon sequestration in mangrove plantations. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

20 pages, 1469 KiB  
Article
The Structure and Spatial Distribution of the Raptor Community in the Urban Landscapes of Kyzylorda, Kazakhstan
by Nurgul S. Sihanova, Yerlan A. Shynbergenov, Aiman B. Karabalayeva, Nurila A. Togyzbayeva and Sholpan B. Abilova
Birds 2025, 6(3), 44; https://doi.org/10.3390/birds6030044 (registering DOI) - 17 Aug 2025
Abstract
In order to determine the impact of urbanization on raptors in the semi-desert conditions of southwestern Kazakhstan, an analysis of the spatio-temporal distribution of raptors is presented for the first time based on the results of surveys of the avifauna of Kyzylorda. Eight [...] Read more.
In order to determine the impact of urbanization on raptors in the semi-desert conditions of southwestern Kazakhstan, an analysis of the spatio-temporal distribution of raptors is presented for the first time based on the results of surveys of the avifauna of Kyzylorda. Eight species of raptors were recorded: field Hen Harrier (Circus cyaneus), Marsh Harrier (C. aeroginosus), Eurasian Sparrowhawk (Accipiter nisus), Long-Legged Buzzard (Buteo rufinus), Eurasian Buzzard (B. buteo), Steppe Eagle (Aquila nipalensis), Eurasian Hobby (Falco subbuteo), and Common Kestrel (F. tinnunculus). The probability of raptors being present was negatively associated with dense urban low-rise buildings with limited greenery in the bay and the new part of the city. At the same time, the dense urban development with little or no greenery in the old central part of the city provides adequate habitat (including a foraging base and nesting sites) for the Common Kestrel. Raptor presence was positively associated with the Syrdarya River floodplain and wasteland with small groups of trees and/or shrubs. The landfill site located on the north-eastern edge of the city serves as a feeding ground for the Long-Legged and Eurasian Buzzards, while the airport area is inhabited by the Eurasian Buzzard, Steppe Eagle, and Common Kestrel. Based on this study, we would recommend that enterprises (e.g., grain storage facilities, airports) and local executive bodies who are interested in the conservation of raptors and regulating the population of the pigeons around their territories should retain or plant more native vegetation and shrubs and preserve areas with green spaces. Full article
Show Figures

Figure 1

17 pages, 4679 KiB  
Article
Weed Control Increases the Growth and Above-Ground Biomass Production of Pinus taeda Plantations in Southern Brazil
by Matheus Severo de Souza Kulmann, Marcos Gervasio Pereira, Rudi Witschoreck and Mauro Valdir Schumacher
Agrochemicals 2025, 4(3), 14; https://doi.org/10.3390/agrochemicals4030014 (registering DOI) - 16 Aug 2025
Abstract
Pinus taeda plantations have been facing declining productivity in South America, especially due to competition for natural resources such as light, water, and nutrients. Competition with spontaneous vegetation in the early years is one of the main constraints on growth and biomass allocation [...] Read more.
Pinus taeda plantations have been facing declining productivity in South America, especially due to competition for natural resources such as light, water, and nutrients. Competition with spontaneous vegetation in the early years is one of the main constraints on growth and biomass allocation in trees. However, the best method and timing for weed control and its impact on the productivity of Pinus taeda plantations are unknown. This study aims to evaluate whether weed control increases the growth and above-ground biomass production of Pinus taeda plantations in southern Brazil. This study was conducted at two sites with five-year-old Pinus taeda plantations in southern Brazil, with each being submitted to different weed control methods. This study was conducted in randomized blocks, with nine treatments: (i) NC—no weed control, i.e., weeds always present; (ii) PC—physical weed control; (iii) CC–T—chemical weed control in the total area; (iv) CC–R—chemical weed control in rows (1.2 m wide); (v) C6m, (vi) C12m, (vii) C18m, and (viii) C24m—weed control up to 6, 12, 18, and 24 months after planting; and (ix) COC—company operational weed control. The following parameters were evaluated: the floristic composition and weed biomass, height, diameter, stem volume, needle biomass, branches, bark, and stemwood of Pinus taeda. Control of the weed competition, especially by physical means (PC), and chemical control over the entire area (CC–T) promoted significant gains in the growth and above–ground biomass production of Pinus taeda at five years of age, particularly at the Caçador site. The results reinforce the importance of using appropriate strategies for managing weed control to maximize productivity, especially before canopy closure. In addition, the strong correlation between growth variables and the total biomass and stemwood indicates the possibility of obtaining indirect estimates through dendrometric measurements. The results contribute to the improvement of silvicultural management in subtropical regions of southern Brazil. Full article
(This article belongs to the Section Herbicides)
Show Figures

Figure 1

16 pages, 3062 KiB  
Article
“Thermophilous” Trees in the Lateglacial Vegetation of the Eastern Baltic: New Questions for an Old Issue
by Olga Druzhinina, Anna Rudinskaya, Lyudmila Lazukova, Ivan Skhodnov, Aleksey Burko and Kasper van den Berghe
Forests 2025, 16(8), 1336; https://doi.org/10.3390/f16081336 (registering DOI) - 16 Aug 2025
Abstract
The results of a recent palynological study of the Kulikovo section (southeastern Baltic) allow us to elaborate on issues of the presence of pollen from the “thermophilous” trees (Picea, Alnus, Corylus, Ulmus, Quercus, Tilia, Fraxinus) [...] Read more.
The results of a recent palynological study of the Kulikovo section (southeastern Baltic) allow us to elaborate on issues of the presence of pollen from the “thermophilous” trees (Picea, Alnus, Corylus, Ulmus, Quercus, Tilia, Fraxinus) in Lateglacial sediments. The research shows their continuous presence throughout the interval of 13.9–12.5 ka with a total contribution from 7% to 17%. Comparing the results with regional palynological data revealed certain similarities and patterns, which are not sufficiently explained by contamination by ancient redeposited material. These taxa belonging to the hemiboreal plant group were most probably part of the Lateglacial vegetation along with subpolar and boreal plants. This correlates well with regional paleoclimate reconstructions, assuming that, during the major part of the Lateglacial, July temperatures were comparable to modern average temperatures, which range from +16.5 to +18 °C. Inclusion of hemiboreal tree vegetation in paleoreconstructions will offer an updated picture of the dynamics of the natural environment and increase the accuracy of paleoclimatic reconstructions based on palynological data, allowing us to obtain more accurate temperature values of the climate of the past. Full article
(This article belongs to the Special Issue Pollen-Based Tree Population Dynamics and Climate Reconstruction)
13 pages, 567 KiB  
Article
Effect of Performance and Fouling Mechanisms of Thermo-Responsive Membranes on Treating Secondary Effluent Containing Added Sulfamethoxazole
by Lian Yang, Haoran Qiu, Yingjie Yang, Lijun Zhao, Ping Xiao, Guoliang Liu, Jiang Chang, Shaoxia Yang and Feng Xiao
Separations 2025, 12(8), 218; https://doi.org/10.3390/separations12080218 (registering DOI) - 16 Aug 2025
Abstract
Wastewater treatment plants generally lack a specialized design for the efficient removal of sulfamethoxazole (SMX), a toxic and bio-resistant compound. In this study, secondary effluent from a Beijing wastewater reclamation treatment plant was spiked with SMX and used to investigate the filtration performance [...] Read more.
Wastewater treatment plants generally lack a specialized design for the efficient removal of sulfamethoxazole (SMX), a toxic and bio-resistant compound. In this study, secondary effluent from a Beijing wastewater reclamation treatment plant was spiked with SMX and used to investigate the filtration performance and fouling mechanisms of thermo-responsive membranes. Thermo-responsive materials were prepared using polyvinylidene fluoride, N-isopropylacrylamide (NIPAM), and graphene oxide through Ce (IV)-induced redox radical polymerization. The results showed that the removal of SMX and COD reached 42% and 92%, respectively, with a NIPAM dosage of 1 g, and the removal of UV254 reached its highest value at 57.9%. Additionally, the filtration flux was higher at a temperature of 35 °C with a NIPAM dosage of 1 g. The fluorescence intensity of the organic matter from the secondary effluent spiked with SMX and decreased after the thermo-responsive membranes were implemented, and filtration with the membrane containing 1 g of NIPAM achieved a lower intensity at a value of 3074.6, according to the analysis of three-dimensional fluorescence excitation–emission spectroscopy. According to the extended Derjaguin–Laudau–Verwey–Overbeek theory analysis, the interfacial free energies of the thermo-responsive membrane with a 1 g dose of NIPAM were higher than the others during filtration. Full article
16 pages, 2225 KiB  
Article
In Vitro Propagation of Variegated Cymbidium lancifolium Hooker
by Iro Kang and Iyyakkannu Sivanesan
Plants 2025, 14(16), 2551; https://doi.org/10.3390/plants14162551 (registering DOI) - 16 Aug 2025
Abstract
Variegated Cymbidium lancifolium is a highly valued ornamental plant sought after in local and international markets. The commercial production of variegated C. lancifolium through traditional propagation methods faces significant challenges, such as low propagation rates and prolonged growth periods. This study aims to [...] Read more.
Variegated Cymbidium lancifolium is a highly valued ornamental plant sought after in local and international markets. The commercial production of variegated C. lancifolium through traditional propagation methods faces significant challenges, such as low propagation rates and prolonged growth periods. This study aims to develop effective in vitro propagation techniques for variegated C. lancifolium through asymbiotic seed germination to enhance production efficiency and meet market demand. We examined the effects of various plant growth regulators and coconut water (CW) on in vitro seed germination. The highest germination percentage (46.8%) was recorded in Murashige and Skoog (MS) medium supplemented with 50 mL/L CW, 4.0 µM α-naphthalene acetic acid (NAA), 2.3 µM kinetin (KN), and 2.9 µM gibberellic acid (GA3). Seed-derived rhizomes were placed on MS medium containing indole-3-acetic acid (IAA), indole-3-butyric acid (IBA), and NAA for proliferation. Among the auxins, NAA was the most effective, significantly increasing rhizome proliferation, with the highest number (17.4) and length (2.1 cm) observed at 5.0 µM. The rhizome explants were cultured in MS medium enriched with kinetin (KN), N6-(2-isopentenyl)adenine (2-IP), and N6-benzyladenine (BA) to promote plantlet regeneration. Of the cytokinins tested, BA at 10.0 µM resulted in the highest rate of plantlet regeneration (79.4%), the greatest number of plantlets (4.4 per culture), and notable plantlet height (8.5 cm). We obtained plantlets with dark green leaves, light green leaves, and distinct variegation patterns. They were transferred to three different substrate mixtures for acclimatization. The substrate made of orchid stone (30%), wood bark (30%), coconut husk chips (20%), and perlite (20%) supported the highest survival rate (95.9%). This study successfully established optimized in vitro propagation techniques for variegated C. lancifolium, enabling enhanced germination, rhizome proliferation, and plantlet regeneration to meet the growing market demand. Full article
(This article belongs to the Section Plant Development and Morphogenesis)
Show Figures

Figure 1

19 pages, 2487 KiB  
Article
Population Fluctuation of Phytophagous Mites and Their Impact on the Quality Properties of Wild and Cultivated Blackberry Fruits (Rubus spp. L.) in Jalisco, Mexico
by Haidel Vargas-Madriz, Ausencio Azuara-Domínguez, Ángel Félix Vargas-Madriz, Citlally Topete-Corona, Martha Olivia Lázaro-Dzul, Jesús Alberto Acuña-Soto, Crystian Sadiel Venegas-Barrera, Jorge Luis Chávez-Servín and Aarón Kuri-García
Agronomy 2025, 15(8), 1970; https://doi.org/10.3390/agronomy15081970 - 15 Aug 2025
Abstract
Phytophagous mites are considered pests in fruit crops, such as blackberries (Rubus spp. L.). These pests affect fruit quality and commercial value. This study aimed to evaluate the fluctuation of phytophagous mite populations and their impact on the quality of cultivated and [...] Read more.
Phytophagous mites are considered pests in fruit crops, such as blackberries (Rubus spp. L.). These pests affect fruit quality and commercial value. This study aimed to evaluate the fluctuation of phytophagous mite populations and their impact on the quality of cultivated and wild blackberries in Jalisco, Mexico. Monthly sampling was carried out from November 2023 to May 2024. Mite families such as Diptilomiopidae, Eriophyidae, Tydeidae, Tarsonemidae, Tenuipalpidae, and Tetranychidae were identified, with a total of 6438 mites in the samples. An increase in mite populations was observed in March on cultivated blackberries and in April on wild ones, coinciding with the onset of plant development. The Eriophyidae family showed the highest relative abundance, with 34.2% in cultivated blackberries and 31.7% in wild ones in 2024. Quality parameters were evaluated in healthy and damaged blackberries. Damaged cultivated fruits showed lower weight (4.49 ± 1.44 g), smaller diameter (18.11 ± 2.00 mm), lower vitamin C content (4.76 ± 1.53 mg/100 g), and higher acidity (80.07 ± 19.10%). This study enabled the identification and monitoring of different mite families in blackberries, as well as an understanding of their population dynamics and impact on fruit quality. Full article
(This article belongs to the Special Issue Research Progress on Pathogenicity of Fungi in Crops—2nd Edition)
Show Figures

Figure 1

17 pages, 1196 KiB  
Review
Recent Progress in Health Benefits of Hederagenin and Its Glycosides
by Guangjie Zhang, Yining Feng, Li Huang, Chenxi Ren, Mingyuan Gao, Jie Zhang and Tianzhu Guan
Molecules 2025, 30(16), 3393; https://doi.org/10.3390/molecules30163393 - 15 Aug 2025
Abstract
Hederagenin, a pentacyclic triterpenoid saponin from various medicinal plants, shows immense therapeutic potential; however, its inherent low bioavailability severely hinders its clinical translation. This comprehensive review synthesizes recent studies on the health benefits of hederagenin and its glycosides, critically the chemical modification strategies [...] Read more.
Hederagenin, a pentacyclic triterpenoid saponin from various medicinal plants, shows immense therapeutic potential; however, its inherent low bioavailability severely hinders its clinical translation. This comprehensive review synthesizes recent studies on the health benefits of hederagenin and its glycosides, critically the chemical modification strategies and pharmacological mechanisms aimed at optimizing its bioactivity. Key findings reveal that its broad anticancer and anti-inflammatory activities largely stem from its capacity to modulate crucial cellular signaling pathways, including the NF-κB, PI3K/Akt, and MAPK. Structural modification, particularly intelligent derivatization at the C-28 position, is a central strategy to overcome its pharmacokinetic deficiencies and significantly boost cytotoxicity. Furthermore, its unique pro-oxidant function within cancer cells, achieved by inhibiting the Nrf2-ARE antioxidant pathway, offers a novel approach for selective chemotherapeutics. For the clinical translation of hederagenin, we propose a strategic focus on derivatization through multi-target hybrids and sophisticated delivery systems. This approach is essential for addressing its pharmacokinetic barriers while strategically leveraging its context-dependent pro-oxidant effects. Full article
Show Figures

Figure 1

18 pages, 4380 KiB  
Article
Exploring the Potential of Green Synthesized Sr0.8Ce0.2Fe0.8Co0.2O3 Using Orange and Lemon Extracts for Hybrid Supercapacitor Applications
by Asmara Fazal, M. Javaid Iqbal, Mohsin Ali Raza, Badriah S. Almutairi, Hesham M. H. Zakaly, Naureen Akhtar, Muneeb Irshad and Saira Riaz
Batteries 2025, 11(8), 310; https://doi.org/10.3390/batteries11080310 - 15 Aug 2025
Viewed by 19
Abstract
Supercapacitors are required to store energy from renewable resources to ensure a pollutant-free environment. To further encourage its study, researchers are interested in introducing green methods to produce electrode materials. Green synthesis is an innovative and emerging field because plant extracts are the [...] Read more.
Supercapacitors are required to store energy from renewable resources to ensure a pollutant-free environment. To further encourage its study, researchers are interested in introducing green methods to produce electrode materials. Green synthesis is an innovative and emerging field because plant extracts are the best substitute for toxic chemicals. They are considered eco-friendly and cost-effective. In this work, two plant extracts, orange juice (ORJ) and lemon juice (LMJ), are used to synthesize the Sr0.8Ce0.2Fe0.8Co0.2O3 perovskite using the auto-combustion method. The electrochemical performance of Sr0.8Ce0.2Fe0.8Co0.2O3 made from LMJ and ORJ is compared to check their effectiveness. LMJ proved to be a better reducing agent than ORJ with a higher specific capacity of 300 C/g (544 F/g) at 1 A/g current density due to increased oxygen vacancies and surface area. These findings show that green-synthesized perovskites can be utilized in high-performance hybrid supercapacitor devices. Full article
(This article belongs to the Section Supercapacitors)
Show Figures

Graphical abstract

26 pages, 7176 KiB  
Article
Evolutionary Expansion, Structural Diversification, and Functional Prediction of the GeBP Gene Family in Brassica oleracea
by Ziying Zhu, Kexin Ji and Zhenyi Wang
Horticulturae 2025, 11(8), 968; https://doi.org/10.3390/horticulturae11080968 - 15 Aug 2025
Viewed by 29
Abstract
The GLABROUS1 Enhancer Binding Protein (GeBP) gene family plays a crucial role in plant growth, development, and stress responses. In this study, 28 GeBP genes were identified in Brassica oleracea using HMMER and validated through multiple conserved domain databases. A phylogenetic tree was [...] Read more.
The GLABROUS1 Enhancer Binding Protein (GeBP) gene family plays a crucial role in plant growth, development, and stress responses. In this study, 28 GeBP genes were identified in Brassica oleracea using HMMER and validated through multiple conserved domain databases. A phylogenetic tree was constructed based on the GeBP protein sequences from B. oleracea, Arabidopsis thaliana, Brassica rapa, and Brassica napus, dividing them into four evolutionary clades (A–D), which revealed a close evolutionary relationship within the genus Brassica. Conserved motif and gene structure analyses showed clade-specific features, while physicochemical property analysis indicated that most BoGeBP proteins are hydrophilic, nuclear-localized, and structurally diverse. Gene duplication and chromosomal localization analyses suggested that both segmental and tandem duplication events have contributed to the expansion of this gene family. Promoter cis-element analysis revealed a dominance of light-responsive and hormone-responsive elements, implying potential roles in photomorphogenesis and stress signaling pathways. Notably, the protein encoded by BolC01g019630.2J possesses both a transmembrane domain and characteristics of the Major Facilitator Superfamily (MFS) transporter family, and it is predicted to localize to the plasma membrane. This suggests that it may act as a molecular bridge between environmental signal perception and transcriptional regulation, potentially representing a novel signaling mechanism within the GeBP family. This unique feature implies its involvement in transmembrane signal perception and downstream transcriptional regulation under environmental stimuli, providing valuable insights for further investigation of its role in stress responses and metabolic regulation. Overall, this study provides a theoretical foundation for understanding the evolutionary patterns and functional diversity of the GeBP gene family in B. oleracea and lays a basis for future functional validation and breeding applications. Full article
(This article belongs to the Section Genetics, Genomics, Breeding, and Biotechnology (G2B2))
Show Figures

Figure 1

25 pages, 1001 KiB  
Review
Functional Foods for Cholesterol Management: A Review of the Mechanisms, Efficacy, and a Novel Cholesterol-Lowering Capacity Index
by Daniel A. Jacobo-Velázquez
Nutrients 2025, 17(16), 2648; https://doi.org/10.3390/nu17162648 - 15 Aug 2025
Viewed by 51
Abstract
Cardiovascular disease (CVD) remains the leading cause of death worldwide, with elevated low-density lipoprotein cholesterol (LDL-C) as a major risk factor. Beyond medications, dietary interventions and functional foods offer significant cholesterol-lowering potential. This article provides a comprehensive review of functional foods and nutraceutical [...] Read more.
Cardiovascular disease (CVD) remains the leading cause of death worldwide, with elevated low-density lipoprotein cholesterol (LDL-C) as a major risk factor. Beyond medications, dietary interventions and functional foods offer significant cholesterol-lowering potential. This article provides a comprehensive review of functional foods and nutraceutical ingredients that help to reduce cholesterol levels and introduces the novel Cholesterol-Lowering Capacity Index (CLCI), designed to quantify and communicate the efficacy of such foods. In doing so, it summarizes key functional components, including plant sterols/stanols, viscous fibers, soy protein, red yeast rice, berberine, polyphenols (e.g., bergamot extract, garlic), and others, highlighting their mechanisms of action and the typical LDL-C reductions observed in clinical studies. Strategies for the design of next-generation cholesterol-lowering foods are discussed, such as combining multiple bioactives for synergistic effects, personalized nutrition approaches, and novel food processing techniques to enhance bioavailability. Building on these strategies, the CLCI is then proposed as a practical scoring system, analogous to the glycemic index for blood sugar, that integrates the evidence-based potency of ingredients, effective dosing, and synergistic interactions into a single metric. A methodology for the calculation of the CLCI is presented, alongside potential applications in food labeling, clinical guidance, and dietary planning. Full article
(This article belongs to the Section Phytochemicals and Human Health)
Show Figures

Figure 1

23 pages, 3649 KiB  
Article
Circular Fertilization Strategy Using Sulphur with Orange Waste Enhances Soil Health and Broccoli Nutritional and Nutraceutical Quality in Mediterranean Systems
by Mariateresa Oliva, Federica Marra, Ludovica Santoro, Santo Battaglia, Carmelo Mallamaci and Adele Muscolo
Appl. Sci. 2025, 15(16), 9010; https://doi.org/10.3390/app15169010 - 15 Aug 2025
Viewed by 26
Abstract
Fertilization strategies are pivotal in sustainable agriculture, affecting both soil health and crop quality. This study investigated the impact of a circular fertilization approach based on agro-industrial residues—specifically, a blend of sulfur bentonite and orange processing waste (RecOrgFert PLUS)—on soil physicochemical and biological [...] Read more.
Fertilization strategies are pivotal in sustainable agriculture, affecting both soil health and crop quality. This study investigated the impact of a circular fertilization approach based on agro-industrial residues—specifically, a blend of sulfur bentonite and orange processing waste (RecOrgFert PLUS)—on soil physicochemical and biological properties, as well as the nutritional and nutraceutical quality of broccoli (Brassica oleracea var. italica) grown in Mediterranean conditions (Condofuri, Southern Italy). The effects of RecOrgFert PLUS were compared with those of a synthetic NPK fertilizer, an organic fertilizer (horse manure), and an unfertilized control. Results demonstrated that RecOrgFert PLUS significantly improved soil organic carbon (3.37%), microbial biomass carbon (791 μg C g−1), and key enzymatic activities, indicating enhanced soil biological functioning. Broccoli cultivated under RecOrgFert PLUS also exhibited the highest concentrations of health-promoting compounds, including total phenols (48.87 mg GAE g−1), vitamin C (51.93 mg ASA 100 g−1), and total proteins (82.45 mg BSA g−1). This work provides novel evidence that combining elemental sulphur with orange processing waste not only restores soil fertility but also boosts the nutraceutical and nutritional value of food crops. Unlike previous studies focusing on soil or plant yield alone, this study uniquely integrates soil health indicators with bioactive compound accumulation in broccoli, highlighting the potential of circular bio-based fertilization in functional food production and Mediterranean agroecosystem sustainability. Full article
Show Figures

Figure 1

15 pages, 3096 KiB  
Article
Optimization of Swertiamarin and Isogentisin Extraction from Gentiana lutea L. Leaves by Response Surface Methodology
by Katarina Šavikin, Miloš S. Jovanović, Gordana Zdunić, Jelena Živković, Dušanka Kitić, Dubravka Bigović and Teodora Janković
Plants 2025, 14(16), 2538; https://doi.org/10.3390/plants14162538 - 15 Aug 2025
Viewed by 47
Abstract
Leaves of Gentiana lutea L., traditionally used for treating heart disorders, represent a sustainable and underutilized source of bitter secoiridoids and xanthones, also found in Gentianae radix—an official herbal drug derived from the same, protected species. As root harvesting leads to the [...] Read more.
Leaves of Gentiana lutea L., traditionally used for treating heart disorders, represent a sustainable and underutilized source of bitter secoiridoids and xanthones, also found in Gentianae radix—an official herbal drug derived from the same, protected species. As root harvesting leads to the destruction of the plant, using the more readily available leaves could help reduce the pressure on this endangered natural resource. This study aimed to optimize the ultrasound-assisted extraction of the secoiridoid swertiamarin and the xanthone isogentisin from G. lutea leaves using response surface methodology (RSM). Subsequently, the stability of the bioactive compounds (swertiamarin, gentiopicrin, mangiferin, isoorientin, isovitexin, and isogentisin) in the optimized extract was monitored over a 30-day period under different storage conditions. The influence of extraction time (5–65 min), ethanol concentration (10–90% v/v), liquid-to-solid ratio (10–50 mL/g), and temperature (20–80 °C) was analyzed at five levels according to a central composite design. The calculated optimal extraction conditions for the simultaneous maximization of swertiamarin and isogentisin yields were 50 min extraction time, 30% v/v ethanol concentration, 30 mL/g liquid-to-solid ratio, and 62.7 °C extraction temperature. Under these conditions, the experimentally obtained yields were 3.75 mg/g dry weight for swertiamarin and 1.57 mg/g dry weight for isogentisin, closely matching the RSM model predictions. The stability study revealed that low-temperature storage preserved major bioactive compounds, whereas mangiferin stability was compromised by elevated temperature and light exposure. The established models support the production of standardized G. lutea leaf extracts and may facilitate the efficient separation and purification of their bioactive compounds, thereby contributing to the further valorization of this valuable plant material. Full article
(This article belongs to the Special Issue Efficacy, Safety and Phytochemistry of Medicinal Plants)
Show Figures

Figure 1

Back to TopTop