Recent Progress in Health Benefits of Hederagenin and Its Glycosides
Abstract
1. Introduction
2. Pharmacological Activities and Mechanisms
2.1. Chemical Profile of Hederagenin and Its Derivatives
2.1.1. Core Structure and Natural Glycosides
2.1.2. Synthetic Derivatives and Structural Modification
2.2. Anticancer Activity
2.3. Anti-Inflammatory Activity
2.4. Anti-Oxidant Activity
2.5. Antimicrobial Activity
2.6. Other Notable Biological Activities
2.6.1. Antiparasitic Activity
2.6.2. Antiosteoporosis Activity
3. Discussion
4. Materials and Methods
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
EV71 | Enterovirus 71 |
HCC | Hepatocellular carcinoma |
HDC | Hederacoside-C |
MAPKs | Mitogen-activated protein kinase |
MB | Macranthoside B |
NSCLC | Non-small-cell lung cancer |
PLY | Pneumolysin |
ROS | Reactive oxygen species |
References
- Sun-Waterhouse, D.-X.; Chen, X.-Y.; Liu, Z.-H.; Waterhouse, G.I.N.; Kang, W.-Y. Transformation from traditional medicine-food homology to modern food-medicine homology. Food Med. Homol. 2024, 1, 9420014. [Google Scholar] [CrossRef]
- Hao, X.-T.; Peng, R.; Guan, M.; Zhang, H.-J.; Guo, Y.; Shalapy, N.M.; Liu, X.-Q.; Ma, C.-Y. The food and medicinal homological resources benefiting patients with hyperlipidemia: Categories, functional components, and mechanisms. Food Med. Homol. 2024, 1, 9420003. [Google Scholar] [CrossRef]
- Ran, S.-Z.; Peng, R.; Guo, Q.-W.; Ma, L.-J.; Wan, J.-B.; Huang, J.-Q.; Wang, Z.-Y.; Chen, G. Synergistic Effects of Ginsenoside Rb3 and Rc From Panax notoginseng Leaf on Alleviating Neuroinflammation via PACAP in Depression. Food Front. 2025, 2, 70080. [Google Scholar] [CrossRef]
- Geng, Z.; Wang, Y.; Ma, M.; Wei, Y.; Xie, W.; Cheng, J.; Chen, Y.; Fang, X.; Wang, H.; Bi, Y. Discovery and biological evaluation of hederagenin derivatives as non-substrate inhibitors of P-glycoprotein-mediated multidrug resistance. Eur. J. Med. Chem. 2025, 289, 117428. [Google Scholar] [CrossRef]
- Zhou, M.; Quek, S.Y.; Shang, X.; Fang, S. Geographical variations of triterpenoid contents in Cyclocarya paliurus leaves and their inhibitory effects on HeLa cells. Ind. Crops Prod. 2021, 162, 113314. [Google Scholar] [CrossRef]
- Lin, R.; Liu, L.; Silva, M.; Fang, J.; Zhou, Z.; Wang, H.; Xu, J.; Li, T.; Zheng, W. Hederagenin Protects PC12 Cells Against Corticosterone-Induced Injury by the Activation of the PI3K/AKT Pathway. Front. Pharmacol. 2021, 12, 712876. [Google Scholar] [CrossRef]
- Carpio-Paucar, G.N.; Palo-Cardenas, A.I.; Rondón-Ortiz, A.N.; Pino-Figueroa, A.; Gonzales-Condori, E.G.; Villanueva-Salas, J.A. Cytotoxic Activity of Saponins and Sapogenins Isolated from Chenopodium quinoa Willd. in Cancer Cell Lines. Scientifica 2023, 2023, 8846387. [Google Scholar] [CrossRef]
- Li, Y.; Yang, Z.; Jin, C.; Liu, Y.; Zhang, Y.; Ma, X.; Song, W.; Cai, R.; Feng, K.; Zhao, W.; et al. Akebia fruit: A review on its extraction, phytochemicals, bioactivities and applications. eFood 2024, 5, e142. [Google Scholar] [CrossRef]
- Yu, T.; Cheng, H.; Li, X.; Huang, W.; Li, H.; Gao, X.; Zhao, J.; Zhang, X.; Gu, X.; Bi, Y.; et al. Design and synthesis of hederagenin derivatives modulating STING/NF-κBsignaling for the relief of acute liver injury in septic mice. Eur. J. Med. Chem. 2023, 245, 114911. [Google Scholar] [CrossRef]
- Yang, M.; Wang, J.; Wang, Q. Hederagenin Exerts Potential Antilipemic Effect via p38MAPK Pathway in Oleic Acid-induced HepG2 cells and in Hyperlipidemic Rats. An. Da Acad. Bras. De Ciências 2022, 94, e20201909. [Google Scholar] [CrossRef]
- Ning, E.-J.; Sun, C.-W.; Wang, X.-F.; Chen, L.; Li, F.-F.; Zhang, L.-X.; Wang, L.-P.; Ma, Y.-N.; Zhu, J.; Li, X.; et al. Artemisia argyi polysaccharide alleviates intestinal inflammation and intestinal flora dysbiosis in lipopolysaccharide-treated mice. Food Med. Homol. 2024, 1, 9420008. [Google Scholar] [CrossRef]
- Xie, W.; Fang, X.; Li, H.; Lu, X.; Yang, D.; Han, S.; Bi, Y. Advances in the anti-tumor potential of hederagenin and its analogs. Eur. J. Pharmacol. 2023, 959, 176073. [Google Scholar] [CrossRef]
- Wang, L.; Zhao, M. Suppression of NOD-like receptor protein 3 inflammasome activation and macrophage M1 polarization by hederagenin contributes to attenuation of sepsis-induced acute lung injury in rats. Bioengineered 2022, 13, 7262–7276. [Google Scholar] [CrossRef]
- Yang, X.; Li, G.; Chen, L.; Zhang, C.; Wan, X.; Xu, J. Quantitative determination of hederagenin in rat plasma and cerebrospinal fluid by ultra fast liquid chromatography–tandem mass spectrometry method. J. Chromatogr. B 2011, 879, 1973–1979. [Google Scholar] [CrossRef]
- Zeng, J.; Huang, T.; Xue, M.; Chen, J.; Feng, L.; Du, R.; Feng, Y. Current knowledge and development of hederagenin as a promising medicinal agent: A comprehensive review. RSC Adv. 2018, 8, 24188–24202. [Google Scholar] [CrossRef]
- Ye, F.; Zheng, S.; Shan, S.; Cai, J.; Liu, Y.; Chen, W.; He, X.; Zhao, C. Delivery of Natural Small Molecules Through Nanocarriers for Cancer Treatment. Food Front. 2025, 6, 1303–1322. [Google Scholar] [CrossRef]
- Zhang, H.; Li, Y.; Liu, Y. An updated review of the pharmacological effects and potential mechanisms of hederagenin and its derivatives. Front. Pharmacol. 2024, 15, 1374264. [Google Scholar] [CrossRef] [PubMed]
- Ren, C.-X.; Gao, M.-Y.; Li, N.; Tang, C.; Chu, G.-H.; Yusuf, A.; Xiao, L.-X.; Yang, Z.-Q.; Guan, T.-Z. Identification and mechanism elucidation of medicative diet for food therapy XQCSY in NAFLD prevention: An integrative in silico study. Food Med. Homol. 2024, 1, 9420015. [Google Scholar] [CrossRef]
- Wang, X.; Miao, Y.-H.; Zhao, X.-M.; Liu, X.; Hu, Y.-W.; Deng, D.-W. Perspectives on organ-on-a-chip technology for natural products evaluation. Food Med. Homol. 2024, 1, 9420013. [Google Scholar] [CrossRef]
- Ding, M.; Zong, Z.; Han, Y.; Wang, L.; Kong, Q.; Chen, H.; Xiao, S.; Liu, R.; Wu, W.; Gao, H. Impact of lipase treatment on cuticle wax structure and anthocyanin metabolism in postharvest blueberries. Food Front. 2024, 5, 880–892. [Google Scholar] [CrossRef]
- Jayasinghe, L.; Shimada, H.; Hara, N.; Fujimoto, Y. Hederagenin glycosides from Pometia eximia. Phytochemistry 1995, 40, 891–897. [Google Scholar] [CrossRef] [PubMed]
- Hwang, T.L.; Wang, C.C.; Kuo, Y.H.; Huang, H.C.; Wu, Y.C.; Kuo, L.M.; Wu, Y.H. The hederagenin saponin SMG-1 is a natural FMLP receptor inhibitor that suppresses human neutrophil activation. Biochem. Pharmacol. 2010, 80, 1190–1200. [Google Scholar] [CrossRef]
- Rescigno, A.; Zucca, P.; Peddio, S.; Srikanth, S.; Kaushik, N.P.; Kumar, N.V.A.; Leyva-Gómez, G.; Kregiel, D.; Abu-Reidah, I.M.; Sen, S.; et al. Harnessing Jasminum Bioactive Compounds: Updated Insights for Therapeutic and Food Preservation Innovations. Food Front. 2025, 6, 1093–1128. [Google Scholar] [CrossRef]
- Chwalek, M.; Lalun, N.; Bobichon, H.; Plé, K.; Voutquenne-Nazabadioko, L. Structure–activity relationships of some hederagenin diglycosides: Haemolysis, cytotoxicity and apoptosis induction. Biochim. Biophys. Acta (BBA)-Gen. Subj. 2006, 1760, 1418–1427. [Google Scholar] [CrossRef]
- Fang, K.; Zhang, X.-H.; Han, Y.-T.; Wu, G.-R.; Cai, D.-S.; Xue, N.-N.; Guo, W.-B.; Yang, Y.-Q.; Chen, M.; Zhang, X.-Y. Design synthesis and cytotoxic analysis of novel hederagenin–pyrazine derivatives based on partial least squares discriminant analysis. Int. J. Mol. Sci. 2018, 19, 2994. [Google Scholar] [CrossRef]
- Rodríguez-Hernández, D.; Barbosa, L.C.; Demuner, A.J.; Martins, J.P.A.; Fischer, L.; Csuk, R. Hederagenin amide derivatives as potential antiproliferative agents. Eur. J. Med. Chem. 2019, 168, 436–446. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Hernández, D.; Demuner, A.J.; Barbosa, L.C.; Csuk, R.; Heller, L. Hederagenin as a triterpene template for the development of new antitumor compounds. Eur. J. Med. Chem. 2015, 105, 57–62. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Li, H.; Li, Z.; Feng, Y.; Jin, Y.; Liu, Y.; Li, M.; Liu, R.; Fang, Y. Improved antiproliferative activity of novel Pulsatilla saponin D/α-hederin derivatives containing nitric oxide donors. New J. Chem. 2020, 44, 19532–19540. [Google Scholar] [CrossRef]
- Rodríguez-Hernández, D.; Demuner, A.J.; Barbosa, L.C.; Heller, L.; Csuk, R. Novel hederagenin–triazolyl derivatives as potential anti-cancer agents. Eur. J. Med. Chem. 2016, 115, 257–267. [Google Scholar] [CrossRef]
- Liu, X.; Sun, L.; Liu, Q.-H.; Chen, B.-Q.; Liu, Y.-M. Synthesis, characterization and anti-hepatoma activity of new hederagenin derivatives. Mini Rev. Med. Chem. 2020, 20, 252–257. [Google Scholar] [CrossRef]
- Cheng, L.; Shi, L.; Wu, J.; Zhou, X.; Li, X.; Sun, X.; Zhu, L.; Xia, T.S.; Ding, Q. A hederagenin saponin isolated from Clematis ganpiniana induces apoptosis in breast cancer cells via the mitochondrial pathway. Oncol. Lett. 2018, 15, 1737–1743. [Google Scholar] [CrossRef]
- Cheng, L.; Xia, T.-S.; Wang, Y.-F.; Zhou, W.; Liang, X.-Q.; Xue, J.-Q.; Shi, L.; Wang, Y.; Ding, Q.; Wang, M. The anticancer effect and mechanism of α-hederin on breast cancer cells. Int. J. Oncol. 2014, 45, 757–763. [Google Scholar] [CrossRef]
- Gao, Y.; He, C.; Bi, W.; Wu, G.; Altman, E. Bioassay guided fractionation identified hederagenin as a major cytotoxic agent from Cyclocarya paliurus leaves. Planta Medica 2016, 82, 171–179. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.-X.-Z.; Zhou, J.-Y.; Li, Y.; Zou, X.; Wu, J.; Gu, J.-F.; Yuan, J.-R.; Zhao, B.-J.; Feng, L.; Jia, X.-B. Hederagenin from the leaves of ivy (Hedera helix L.) induces apoptosis in human LoVo colon cells through the mitochondrial pathway. BMC Complement. Altern. Med. 2014, 14, 412. [Google Scholar] [CrossRef]
- Shan, Y.; Guan, F.; Zhao, X.; Wang, M.; Chen, Y.; Wang, Q.; Feng, X. Macranthoside B induces apoptosis and autophagy via reactive oxygen species accumulation in human ovarian cancer A2780 cells. Nutr. Cancer 2016, 68, 280–289. [Google Scholar] [CrossRef]
- Wang, J.; Zhao, X.-Z.; Qi, Q.; Tao, L.; Zhao, Q.; Mu, R.; Gu, H.-Y.; Wang, M.; Feng, X.; Guo, Q.-L. Macranthoside B, a hederagenin saponin extracted from Lonicera macranthoides and its anti-tumor activities in vitro and in vivo. Food Chem. Toxicol. 2009, 47, 1716–1721. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, M.; Ahmed, K.; Yang, J.; Song, L.; Cui, Z.; Hiraku, Y. Mechanistic Study of Macranthoside B Effects on Apoptotic Cell Death in Human Cervical Adenocarcinoma Cells. Folia Biol. 2022, 68, 189–200. [Google Scholar] [CrossRef]
- Dai, Y.; Masra, N.; Zhou, L.; Yu, C.; Jin, W.; Ni, H. Hederagenin suppresses glioma cell biological activities via Nur77 in vitro study. Food Sci. Nutr. 2023, 11, 1283–1296. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Wang, D.; Lou, Y.; Liu, X.; Huang, P.; Jin, M.; Huang, G. Regulatory mechanism of α-hederin upon cisplatin sensibility in NSCLC at safe dose by destroying GSS/GSH/GPX2 axis–mediated glutathione oxidation-reduction system. Biomed. Pharmacother. 2022, 150, 112927. [Google Scholar] [CrossRef]
- Lee, K.-T.; Sohn, I.-C.; Park, H.-J.; Kim, D.-W.; Jung, G.-O.; Park, K.-Y. Essential moiety for antimutagenic and cytotoxic activity of hederagenin monodesmosides and bisdesmosides isolated from the stem bark of Kalopanax pictus. Planta Medica 2000, 66, 329–332. [Google Scholar] [CrossRef]
- Sun, J.; Liu, T.; Xu, J. Improving the anticancer activity of α-hederin by physically encapsulating it with targeted micelles assembled from amphiphilic block copolymers. J. Drug Deliv. Sci. Technol. 2016, 35, 252–259. [Google Scholar] [CrossRef]
- Liu, Z.; Yao, X.; Jiang, W.; Li, W.; Zhu, S.; Liao, C.; Zou, L.; Ding, R.; Chen, J. Advanced oxidation protein products induce microglia-mediated neuroinflammation via MAPKs-NF-κB signaling pathway and pyroptosis after secondary spinal cord injury. J. Neuroinflamm. 2020, 17, 90. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Li, F.; Lu, S.; Ren, L.; Bian, S.; Liu, M.; Zhao, D.; Wang, S.; Wang, J. Ginseng root extract attenuates inflammation by inhibiting the MAPK/NF-κB signaling pathway and activating autophagy and p62-Nrf2-Keap1 signaling in vitro and in vivo. J Ethnopharmacol. 2022, 283, 114739. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.-K.; Sun, J.-Y.; Chen, Y.-Y.; Zhang, M.-Q.; Sun, S.-T.; Ren, Q.-D.; Wang, M.-X.; Farag, M.A.; Zhang, B.; Guo, X.; et al. Millet Bran Bound Phenolic Compounds Suppresses LPS-Induced Inflammatory Response in Macrophages and Liver Injury Mice via TLR4/NF-κB Signaling Pathway. eFood 2025, 6, e70078. [Google Scholar] [CrossRef]
- Kim, Y.-K.; Kim, R.-G.; Park, S.-J.; Ha, J.-H.; Choi, J.-W.; Park, H.-J.; Lee, K.-T. In vitro antiinflammatory activity of kalopanaxsaponin A isolated from Kalopanax pictus in murine macrophage RAW 264.7 cells. Biol. Pharm. Bull. 2002, 25, 472–476. [Google Scholar] [CrossRef]
- Xu, H.-C.; Wu, B.; Ma, Y.-M.; Xu, H.; Shen, Z.-H.; Chen, S. Hederacoside-C protects against AGEs-induced ECM degradation in mice chondrocytes. Int. Immunopharmacol. 2020, 84, 106579. [Google Scholar] [CrossRef]
- Akhtar, M.; Shaukat, A.; Zahoor, A.; Chen, Y.; Wang, Y.; Yang, M.; Umar, T.; Guo, M.; Deng, G. Hederacoside-C inhibition of Staphylococcus aureus-induced mastitis via TLR2 & TLR4 and their downstream signaling NF-κB and MAPKs pathways in vivo and in vitro. Inflammation 2020, 43, 579–594. [Google Scholar]
- Akhtar, M.; Shaukat, A.; Zahoor, A.; Chen, Y.; Wang, Y.; Yang, M.; Umar, T.; Guo, M.; Deng, G. Anti-inflammatory effects of Hederacoside-C on Staphylococcus aureus induced inflammation via TLRs and their downstream signal pathway in vivo and in vitro. Microb. Pathog. 2019, 137, 103767. [Google Scholar] [CrossRef]
- Shen, Y.; Teng, L.; Qu, Y.; Huang, Y.; Peng, Y.; Tang, M.; Fu, Q. Hederagenin suppresses inflammation and cartilage degradation to ameliorate the progression of osteoarthritis: An in vivo and in vitro study. Inflammation 2023, 46, 655–678. [Google Scholar] [CrossRef]
- Ebrahimi, H.; Fallahi, M.; Khamaneh, A.M.; Saadatlou, M.A.E.; Saadat, S.; Keyhanmanesh, R. Effect of a-Hederin on IL-2 and IL-17 mRNA and miRNA-133a Levels in Lungs of Ovalbumin-Sensitized Male Rats. Drug Dev. Res. 2016, 77, 87–93. [Google Scholar] [CrossRef]
- Da, W.L.; Hyun, J.E.; Jeong, C.S.; Kim, Y.S.; Lee, E.B. Antiinflammatory activity of α-hederin methyl ester from the alkaline hydrolysate of the butanol fraction of Kalopanax pictus bark extract. Biol. Pharm. Bull. 2003, 26, 429–433. [Google Scholar]
- Zha, Z.-X.; Lin, Y.; Wang, K.-X.; Zhang, Y.-L.; Li, D.; Xu, G.-Q.; Xu, Q.-M.; Liu, Y.-L. Hederacoside C ameliorates colitis via restoring impaired intestinal barrier through moderating S100A9/MAPK and neutrophil recruitment inactivation. Acta Pharmacol. Sin. 2023, 44, 105–119. [Google Scholar] [CrossRef]
- Lee, K.-J.; Ratih, K.; Kim, G.-J.; Lee, Y.-R.; Shin, J.-S.; Chung, K.-H.; Choi, E.-J.; Kim, E.-K.; An, J.H. Immunomodulatory and anti-inflammatory efficacy of hederagenin-coated maghemite (γ-Fe2O3) nanoparticles in an atopic dermatitis model. Colloids Surf. B Biointerfaces 2022, 210, 112244. [Google Scholar] [CrossRef] [PubMed]
- Gülçin, İ.; Mshvildadze, V.; Gepdiremen, A.; Elias, R. Antioxidant activity of saponins isolated from ivy: α-hederin hederasaponin-C, hederacolchiside-E and hederacolchiside-F. Planta Medica 2004, 70, 561–563. [Google Scholar] [CrossRef]
- Gülçin, İ.; Mshvildadze, V.; Gepdiremen, A.; Elias, R. The antioxidant activity of a triterpenoid glycoside isolated from the berries of Hedera colchica: 3-O-(β-d-glucopyranosyl)-hederagenin. Phytother. Res. Int. J. Devoted Pharmacol. Toxicol. Eval. Nat. Prod. Deriv. 2006, 20, 130–134. [Google Scholar]
- Oladimeji, A.O.; Oladosu, I.A.; Ali, M.S.; Khan, S.A.; Yousuf, S. Cytotoxic effect of hederagenin on NCI-H460, human non-small lung cancer cells and its free radical scavenging activities. J. Biol. Act. Prod. Nat. 2016, 6, 365–372. [Google Scholar] [CrossRef]
- Kim, E.H.; Baek, S.; Shin, D.; Lee, J.; Roh, J.-L. Hederagenin Induces Apoptosis in Cisplatin-Resistant Head and Neck Cancer Cells by Inhibiting the Nrf2-ARE Antioxidant Pathway. Oxidative Med. Cell. Longev. 2017, 2017, 5498908. [Google Scholar] [CrossRef]
- Sato, A.; Masaka, S.; Aisaka, A.; Ishibashi, I.; Yabuki, A.; Nemoto, H.; Ohira, M.; Yamaura, M.; Suzuki, K.; Matsuzaki, K.; et al. Hederagenin Glycoside Isolated from the Pericarps of Akebia quinata Fruits Induces Apoptotic Cell Death in Breast Cancer Cells. Anticancer Res. 2025, 45, 135–144. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.-W.; Kim, S.U.; Hahn, D.-R. Antifungal activity of modified hederagenin glycosides from the leaves of Kalopanax pictum var chinense. Biol. Pharm. Bull. 2001, 24, 718–719. [Google Scholar] [CrossRef]
- Prescott, T.A.; Rigby, L.P.; Veitch, N.C.; Simmonds, M.S. The haploinsufficiency profile of α-hederin suggests a caspofungin-like antifungal mode of action. Phytochemistry 2014, 101, 116–120. [Google Scholar] [CrossRef]
- Li, F.; Zhou, M.; Jiao, Z.; Zou, Z.; Yu, E.; He, Z. Caspofungin pharmacokinetics and probability of target attainment in ICU patients in China. J. Glob. Antimicrob. Resist. 2021, 25, 238–263. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Yeo, S.-G.; Hong, E.-H.; Lee, B.-R.; Kim, J.-W.; Kim, J.; Jeong, H.; Kwon, Y.; Kim, H.; Lee, S. Antiviral activity of hederasaponin B from Hedera helix against enterovirus 71 subgenotypes C3 and C4a. Biomol. Ther. 2014, 22, 41. [Google Scholar] [CrossRef] [PubMed]
- Sarıkahya, N.B.; Kırmızıgül, S. Antimicrobially active hederagenin glycosides from Cephalaria elmaliensis. Planta Medica 2012, 78, 828–833. [Google Scholar] [CrossRef]
- Ding, R.; Zhang, Y.; Xu, X.; Hou, Y.; Nie, J.; Deng, X.; Qiu, J.; Lv, Q. Inhibitory effect of hederagenin on Streptococcus pneumoniae pneumolysin in vitro. Microbes Infect. 2022, 24, 104888. [Google Scholar] [CrossRef] [PubMed]
- Chakroborty, A.; Pritchard, D.R.; Bouillon, M.E.; Cervi, A.; Kraehenbuehl, R.; Wild, C.; Fenn, C.; Holdsworth, P.; Capner, C.; Padalino, G. Modified hederagenin derivatives demonstrate ex vivo anthelmintic activity against fasciola hepatica. Pharmaceutics 2023, 15, 1869. [Google Scholar] [CrossRef]
- Tian, K.; Su, Y.; Ding, J.; Wang, D.; Zhan, Y.; Li, Y.; Liang, J.; Lin, X.; Song, F.; Wang, Z. Hederagenin protects mice against ovariectomy-induced bone loss by inhibiting RANKL-induced osteoclastogenesis and bone resorption. Life Sci. 2020, 244, 117336. [Google Scholar] [CrossRef]
- Santangelo, R.; Silvestrini, A.; Mancuso, C. Ginsenosides, catechins, quercetin and gut microbiota: Current evidence of challenging interactions. Food Chem. Toxicol. 2019, 123, 42–49. [Google Scholar] [CrossRef]
- Bai, X.; Duan, Z.; Deng, J.; Zhang, Z.; Fu, R.; Zhu, C.; Fan, D. Ginsenoside Rh4 inhibits colorectal cancer via the modulation of gut microbiota-mediated bile acid metabolism. J. Adv. Res. 2025, 72, 37–52. [Google Scholar] [CrossRef]
- Fang, C.; Yang, H.; Hui, J.; Fan, D.; Deng, J. Natural bioactive compounds as potential sources for alleviation and treatment of androgenetic alopecia: A research advance. eFood 2024, 5, e138. [Google Scholar] [CrossRef]
- Han, R.Y.; Tan, R.Z.; Xu, L.H.; Lin, J.Y.; Li, T.; Su, H.W.; Li, P.; Liu, P.; Lan, H.Y.; Wang, L. Activation of sclerostin inhibits Isg20-Mediated aerobic glycolysis ameliorating renal Fibrosis: The renoprotective mechanism of hederagenin in CKD. Redox Biol. 2025, 85, 103762. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Ai, C.; Wang, H.; Chen, C.; Teng, H.; Xiao, J.; Chen, L. Emulsion and its application in the food field: An update review. eFood 2023, 4, e102. [Google Scholar] [CrossRef]
Modification Strategy | Representative Compound(s) | Key Findings and Quantitative Metrics | Bioavailability/ Toxicity Notes | Key Tested Models | Reference |
---|---|---|---|---|---|
Hederagenin-pyrazine derivatives | Compound 9 (2,6-dimethylpyrazine derivative) | Most derivatives were more potent than the parent compound. Compound 9 showed cytotoxicity comparable to cisplatin against A549 cells (IC50 = 3.45 µM) while exhibiting lower toxicity to normal cardiomyocytes (H9c2 IC50 = 16.69 µM). | Compound 9 demonstrated favorable selectivity, being less toxic to normal heart (H9c2) and kidney (MDCK) cells compared to the standard drug cisplatin. | A549 (NSCLC), HepG2 (hepatocellular carcinoma), MCF-7 (breast) | [25] |
C-28 amide derivatives | Compound 2c (Acetylated-pyrrolidinyl amide) | Acetylation of C-3/C-23 hydroxyls generally enhanced cytotoxicity (>25-fold). Compound 2c was the most potent, with high selectivity against A2780 cells (EC50 = 0.4 µM) vs. non-malignant fibroblasts (NIH3T3 EC50 = 9.6 µM; SI = 24). | Acetylation of the A-ring was a key strategy to increase potency and selectivity. The hydroxylated precursor (1c) was potent but also toxic to normal cells, whereas the acetylated derivative (2c) showed significantly improved selectivity. | A2780 (ovarian), FaDu (hypopharyngeal), HT29 (colon), SW1736 (thyroid) | [26] |
Ester derivatives | Compound 28 (Ethylpyrrolidinyl amide | Amide derivatives were generally more potent than esters. Compound 28 was among the most active (approx. 30-fold > He), with an EC50 of 1.1 µM against A2780 cells. | No direct toxicity data against normal cells was provided, but the study highlights that C-28 amidation, particularly with N-heterocycles, is a highly effective strategy for boosting potency. | Panel of six including A2780 (ovarian), 518A2 (melanoma), and HT29 (colon) | [27] |
Hybrid molecules with NO-donor moieties | Compound 5c (PSD-C4; linker-NO donor) | PSD derivatives were more potent than α-hederin derivatives. Compound 5c showed strong in vitro activity (IC50 = 5.4–10.7 µM) and superior in vivo tumor inhibition compared to Taxol (27.4% vs. 23.3%). | To overcome poor solubility for in vivo studies, compound 5c was formulated into polymer micelles. The formulation showed no deaths in mice, suggesting lower toxicity compared to the parent saponin (PSD). | In vitro: HCT-116 (colon), NCI-H460 (lung), SMMC-7721 (liver) | [28] |
Triazolyl derivatives | Compound 11 (ortho-fluorobenzyl-triazolyl ester) | Ester derivatives were generally more potent than amides. Compound 11 was the most cytotoxic against HT29 cells (EC50 = 1.6 µM) and showed good selectivity vs. normal fibroblasts (NIH 3T3 EC50 = 8.7 µM, SI = 5.4). | The introduction of a triazole ring via click chemistry is an effective method for generating libraries of potent compounds. Ester derivatives were generally more cytotoxic than the corresponding amides. | HT29 (colon), A2780 (ovarian), A549 (lung), and others | [29] |
C ring-modified derivatives | Compound 5 (12-hydroxyimino derivative) | C-ring modification significantly enhanced activity. Compound 5 was the most potent (IC50 = 1.88 µM), surpassing 5-fluorouracil, and showed high selectivity over normal L929 cells (IC50 = 21.23 µM, SI ≈ 11.3). | This strategy aimed to circumvent the high hemolytic toxicity of natural saponins by modifying the aglycone. All derivatives showed low toxicity to normal cells. | HepG2 (hepatocellular carcinoma), L929 (normal fibroblast) | [30] |
Compound Category | Activity Type | Key Pathogens | Key Findings and Quantitative Metrics (MIC/EC50) | Proposed Mechanism of Action | References |
---|---|---|---|---|---|
Monodesmosides (α-hederin, sapindoside B) from Kalopanax pictum | Antifungal | C. albicans, M. canis, T. mentagrophytes, and other pathogenic fungi. | Exhibited significant antifungal activity (MICs = 6.25–25 µg/mL), whereas the parent bisdesmosides were inactive. The presence of a free C-28 carboxyl group is essential for activity. | A haploinsufficiency screen of α-hederin against S. cerevisiae revealed a profile similar to the drug caspofungin, suggesting inhibition of fungal cell wall (β(1,3)-D-glucan) synthesis. | [59,60] |
Hederasaponin B from Hedera helix | Antiviral | Enterovirus 71 (EV71), specifically subgenotypes C3 and C4a. | Showed significant antiviral activity against both EV71-C3 (EC50 = 24.77 µg/mL) and EV71-C4a (EC50 = 41.77 µg/mL) by reducing the formation of cytopathic effects (CPEs). | Inhibited the expression of the viral capsid protein VP2 at the post-entry stage, suggesting a targeted inhibition of viral protein synthesis or assembly. | [62] |
Hederagenin glycosides from Cephalaria elmaliensis | Antibacterial | A broad spectrum including Gram-positive (S. aureus, E. faecalis) and Gram-negative (E. coli, P. aeruginosa) bacteria. | All tested saponins were highly active. They showed exceptionally strong activity against E. faecalis (MICs = 1–8 µg/mL), surpassing the standard antibiotic gentamicin (MIC = 16.0 µg/mL). | Mechanism not specified, but likely involves membrane disruption. As amphiphilic molecules, saponins can intercalate into the bacterial cell membrane, leading to pore formation, increased permeability, and eventual cell lysis. | [63] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, G.; Feng, Y.; Huang, L.; Ren, C.; Gao, M.; Zhang, J.; Guan, T. Recent Progress in Health Benefits of Hederagenin and Its Glycosides. Molecules 2025, 30, 3393. https://doi.org/10.3390/molecules30163393
Zhang G, Feng Y, Huang L, Ren C, Gao M, Zhang J, Guan T. Recent Progress in Health Benefits of Hederagenin and Its Glycosides. Molecules. 2025; 30(16):3393. https://doi.org/10.3390/molecules30163393
Chicago/Turabian StyleZhang, Guangjie, Yining Feng, Li Huang, Chenxi Ren, Mingyuan Gao, Jie Zhang, and Tianzhu Guan. 2025. "Recent Progress in Health Benefits of Hederagenin and Its Glycosides" Molecules 30, no. 16: 3393. https://doi.org/10.3390/molecules30163393
APA StyleZhang, G., Feng, Y., Huang, L., Ren, C., Gao, M., Zhang, J., & Guan, T. (2025). Recent Progress in Health Benefits of Hederagenin and Its Glycosides. Molecules, 30(16), 3393. https://doi.org/10.3390/molecules30163393