Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (956)

Search Parameters:
Keywords = C-S-H gels

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
34 pages, 6071 KB  
Article
The Effect of GBFS on the Mechanical Properties and Hydration Products of Steam-Cured Cement Mortar
by Baoliang Li, Jie Li, Yue Li, Hongrui Shang, Haohang Yu, Binbin Huo and Yuyi Liu
Gels 2026, 12(2), 110; https://doi.org/10.3390/gels12020110 - 27 Jan 2026
Abstract
To investigate the mechanism by which ground granulated blast-furnace slag (GBFS) affects the performance of steam-cured cementitious materials, this study systematically analyzes the effect of GBFS on the mechanical strength and hydration products of mortar by adjusting the GBFS content (0%, 20%, 30%, [...] Read more.
To investigate the mechanism by which ground granulated blast-furnace slag (GBFS) affects the performance of steam-cured cementitious materials, this study systematically analyzes the effect of GBFS on the mechanical strength and hydration products of mortar by adjusting the GBFS content (0%, 20%, 30%, 50%), curing temperature (50 °C for 7 h, 80 °C for 7 h), and curing time (3 d, 28 d). The results show that although increasing the steam-curing temperature can improve the strength activity index of GBFS-containing mortar, higher temperatures tend to induce later-age strength retrogression in such mixtures. Steam-curing not only promotes the massive formation of calcium hydroxide with coarse crystals but also increases the initial Ca/Si ratio of calcium silicate hydrate (C–S–H) gels, which is a crucial factor contributing to the high susceptibility of steam-cured concrete to brittle fracture; however, the incorporation of GBFS can effectively mitigate this issue. Furthermore, under the steam-curing condition of 80 °C, the addition of GBFS facilitates the formation of hydrogarnet and delayed ettringite, which is unfavorable for the long-term strength development and durability improvement in concrete. Full article
(This article belongs to the Special Issue Development and Applications of Advanced Geopolymer Gel Materials)
Show Figures

Figure 1

18 pages, 1312 KB  
Article
Optimization of Sisal Content in Geopolymer Mortars with Recycled Brick and Concrete: Design and Processing Implications
by Oscar Graos-Alva, Aldo Castillo-Chung, Marisol Contreras-Quiñones and Alexander Vega-Anticona
Constr. Mater. 2026, 6(1), 7; https://doi.org/10.3390/constrmater6010007 - 26 Jan 2026
Viewed by 45
Abstract
Geopolymer mortars were produced from construction and demolition waste using a binary binder of recycled brick powder/recycled concrete powder (RBP/RCP = 70/30 wt%), activated with a hybrid alkaline solution (NaOH/Na2SiO3/KOH) and reinforced with sisal fibres at 0–2 wt%. Mechanical [...] Read more.
Geopolymer mortars were produced from construction and demolition waste using a binary binder of recycled brick powder/recycled concrete powder (RBP/RCP = 70/30 wt%), activated with a hybrid alkaline solution (NaOH/Na2SiO3/KOH) and reinforced with sisal fibres at 0–2 wt%. Mechanical performance (compression and three-point bending) and microstructure–phase evolution (XRD, FTIR, SEM-EDS) were assessed after low-temperature curing. Sisal addition delivered a strength–toughness trade-off with a reproducible optimum at ~1.0–1.5 wt%; at 2.0 wt%, fibre clustering and connected porosity reduced the effective load-bearing section, penalising flexure more than compression. Microstructural evidence indicates coexistence and co-crosslinking of N-A-S-H and C-(A)-S-H gels—enabled by Ca from RCP—leading to matrix densification and improved fibre–matrix anchorage. Fractographic features (tortuous crack paths, bridging, and extensive pull-out at ~1.5 wt%) are consistent with an extended post-peak response and higher fracture work without compromising early-age strength. This study achieves the following: (i) it identifies a practical reinforcement window for sisal in RBP/RCP geopolymers, (ii) it links gel chemistry and interfacial phenomena to macroscopic behaviour, and (iii) it distils processing guidelines (gradual addition, workability control, gentle deaeration, and constant A/S) that support reproducibility. These outcomes provide a replicable, low-embodied-CO2 route to fibre-reinforced geopolymer mortars derived from CDW for non-structural and semi-structural applications where flexural performance and post-peak behaviour are critical. Full article
Show Figures

Figure 1

20 pages, 4230 KB  
Article
Effects of Alkali Modulus on Early-Age Performance and Hydration Mechanisms of Slag–Phosphogypsum Composite Alkali-Activated Materials
by Xushuai Qin, Min Li, Mengzhang Chen, Chunxue Wang, Shenghan Zhuang, Zhanfang Huang and Jiaolong Ren
Materials 2026, 19(3), 459; https://doi.org/10.3390/ma19030459 - 23 Jan 2026
Viewed by 269
Abstract
The disposal of phosphogypsum has emerged as a significant challenge for the phosphorus chemical industry in China in recent years. Utilizing phosphogypsum in alkali-activated materials represents an effective approach to valorize this byproduct. The alkali modulus is a critical parameter affecting the performance [...] Read more.
The disposal of phosphogypsum has emerged as a significant challenge for the phosphorus chemical industry in China in recent years. Utilizing phosphogypsum in alkali-activated materials represents an effective approach to valorize this byproduct. The alkali modulus is a critical parameter affecting the performance characteristics of phosphogypsum-based alkali-activated materials. This study aims to investigate the effects of the alkali modulus on the early-age properties (setting time, fluidity, flexural strength, and compressive strength) and hydration mechanisms of slag–phosphogypsum composite alkali-activated materials (HSFP) across various slag–phosphogypsum–fly ash systems, thereby identifying the optimal alkali modulus. The findings demonstrate that an alkali modulus of 1.35 optimally enhances the mechanical performance of HSFP. At this specific modulus, the equilibrium between alkalinity and soluble silica availability facilitates complete hydration, resulting in a dense gel-crystal microstructure characterized by the highest C-(A)-S-H gel content (58.2%) after 28 days. The effect of the alkali modulus on mechanical properties is contingent upon the fly ash-to-phosphogypsum (FA:PG) ratio, whereas its effect on fluidity and setting time is negligible. The effect of alkali modulus on the strength of HSFP is significantly affected by the fly ash-to-phosphogypsum (FA:PG) ratio. At an FA:PG ratio of 4:6, the flexural strength initially decreases and then increases as the alkali modulus values increase, while the compressive strength shows a consistent upward trend. At FA:PG ratios of 1:5 and 1:9, the flexural strength increases linearly with the alkali modulus, whereas the compressive strength first rises and then experiences a slight decline. These results offer both theoretical insights and practical guidance for the optimization of phosphogypsum-based cementitious material formulations, thereby supporting their potential for large-scale application. Full article
(This article belongs to the Special Issue Research on Alkali-Activated Materials (Second Edition))
Show Figures

Figure 1

21 pages, 8972 KB  
Article
Mechanism and Optimization of Metakaolin-Based Geopolymer Grout Under High Water-to-Solid Ratio: Steel Slag as a Calcareous Source
by Lijuan He, Yuhang Huang, Jianhua Zhou, Yi Wang, Jingwei Yang, Xuan Liu, Shuping Wang and Zhigang Zhang
Ceramics 2026, 9(1), 9; https://doi.org/10.3390/ceramics9010009 - 21 Jan 2026
Viewed by 71
Abstract
This study systematically examines the fluidity, setting time, mechanical properties, and microstructural evolution of metakaolin-based geopolymer grouting materials with a relatively high water-to-solid (W/S) ratio window. A four-factor, three-level orthogonal experimental design was employed to identify the dominant factors and main effect trends [...] Read more.
This study systematically examines the fluidity, setting time, mechanical properties, and microstructural evolution of metakaolin-based geopolymer grouting materials with a relatively high water-to-solid (W/S) ratio window. A four-factor, three-level orthogonal experimental design was employed to identify the dominant factors and main effect trends of W/S ratio, alkali dosage, water glass modulus (Ms, molar ratio of SiO2 to Na2O in alkali solution), and steel slag content on the material’s performance. The results indicated that the W/S ratio predominantly governed fluidity, while the alkali content was the primary controlling factor for setting time and early-age strength. An intermediate range of water glass modulus with a value of 1.6 provided balanced performance. The incorporation of steel slag with a range of 10–20% showed an age-dependent contribution: it not only tended to improve the rheology of the paste but also the later-age strength. XRD, FTIR, and SEM/EDS results suggested that the hardened binders were dominated by amorphous products, where alumimosilicate gel (N-A-S-H) and Ca-containing gel (C-S-H/C-A-S-H) may coexist depending on calcium availability and activator chemistry. The proposed parameter ranges are valid within the studied design space and provide guidance for the mix design of high-W/S geopolymer grout. Full article
(This article belongs to the Special Issue The Production Processes and Applications of Geopolymers, 2nd Edition)
Show Figures

Figure 1

21 pages, 4949 KB  
Article
Corrosion Resistance of Fly Ash-Enhanced Cement-Based Materials in High-Chloride Gas Storage Reservoirs
by Hong Fu, Defei Chen, Bao Zhang, Hongjun Wu, Sheng Huang, Weizhi Tuo, Kun Chen, Hexiang Zhou and Yuanwu Dong
Materials 2026, 19(2), 406; https://doi.org/10.3390/ma19020406 - 20 Jan 2026
Viewed by 261
Abstract
This study investigates the use of fly ash to mitigate the long-term performance degradation of Portland cement-based sealing materials in high-salinity environments, such as those found in gas storage reservoirs. We systematically evaluated the evolution of material properties under different temperatures and curing [...] Read more.
This study investigates the use of fly ash to mitigate the long-term performance degradation of Portland cement-based sealing materials in high-salinity environments, such as those found in gas storage reservoirs. We systematically evaluated the evolution of material properties under different temperatures and curing periods. Our integrated methodology combining mechanical tests, microstructural analysis, and chloride migration assessment, reveals a multi-faceted mechanism by which fly ash enhances chloride resistance. The key findings demonstrate that reactive Al2O3 in fly ash promotes the formation of Friedel’s salt, increasing chemical chloride binding and reducing the chloride ingress rate in the Portland cement–Fly ash system (PFS) to only 26.6% of that in the Portland Cement system (PCS). Concurrently, the pozzolanic reaction consumes portlandite (Ca(OH)2), forming stable C-A-S-H gel and refining the pore structure by filling interconnected channels. This nanoscale pore refinement decreased permeability by nearly an order of magnitude. After 90 days of curing in 90 °C saline solution, PFS achieved a compressive strength of 28.2 MPa and maintained an exceptionally low internal chloride content of 0.08 wt.%, demonstrating superior long-term durability. This work clarifies the synergistic mechanisms of fly ash modification and temperature effects, providing a theoretical basis for optimizing sealing materials for deep geological reservoirs and experimental support for the application of fly ash in high-temperature, high-salinity engineering environments. Full article
(This article belongs to the Special Issue Advances in Hydration Chemistry for Low-Carbon Cementitious Materials)
Show Figures

Figure 1

20 pages, 5123 KB  
Article
Dual-Functional Utilization of Phosphogypsum as Cementitious Binder and Aggregate in Concrete: Interfacial Compatibility and Feasibility Analysis
by Pan Chen, Zhexin Wang, Feng Zhu, Shujie Wan, Mengyang Huang, Pengfei Liu, Dongxu Zhang, Cai Wu and Yani Lu
Materials 2026, 19(2), 398; https://doi.org/10.3390/ma19020398 - 19 Jan 2026
Viewed by 184
Abstract
Addressing the environmental challenges posed by phosphogypsum (PG) stockpiling, this study investigates the synergistic mechanisms of a dual-functional application strategy where PG serves as both cementitious binder and aggregate. Unlike previous research limited to single-mode utilization, this study focuses on the interfacial compatibility [...] Read more.
Addressing the environmental challenges posed by phosphogypsum (PG) stockpiling, this study investigates the synergistic mechanisms of a dual-functional application strategy where PG serves as both cementitious binder and aggregate. Unlike previous research limited to single-mode utilization, this study focuses on the interfacial compatibility between PG-based binders and PG aggregates (PGA). Through a comparative experimental program, the mechanical performance and microstructure of different binder–aggregate combinations were evaluated. The proposed dual-functional formulation achieved a high PG incorporation rate of 38% by mass. While the compressive strength of 39.3 MPa was lower than that of the reference ordinary concrete, it comfortably surpasses the C30 strength requirement for structural applications, validating its engineering feasibility. Comparative analysis revealed that although natural stone aggregates possess higher intrinsic strength, the PG-binder/PGA system exhibits superior interfacial bonding compared to the PG-binder/stone system. Microstructural observations indicated that this synergistic interaction facilitates the formation of interwoven ettringite and C-S-H gel networks, contributing to a structurally integrated interfacial transition zone (ITZ). These findings suggest that the dual-functional strategy offers a viable pathway for developing low-carbon building materials by balancing high-volume waste utilization with mechanical compliance. Full article
(This article belongs to the Special Issue Sustainability and Performance of Cement-Based Materials)
Show Figures

Figure 1

23 pages, 2278 KB  
Article
Experimental and Numerical Investigation of an Adsorption Desalination Exchanger for High-Purity Water Production in Hydrogen Systems
by Piotr Boruta, Tomasz Bujok, Karol Sztekler, Łukasz Mika, Wojciech Kalawa and Agata Mlonka-Mędrala
Energies 2026, 19(2), 484; https://doi.org/10.3390/en19020484 - 19 Jan 2026
Viewed by 118
Abstract
Hydrogen-based energy systems require large amounts of high-purity water, motivating thermally driven desalination that can recover low-grade heat. This study evaluates a silica gel–water adsorption chiller–desalination unit as a coupled source of cooling and pre-treated water for electrolysers. A laboratory two-bed system was [...] Read more.
Hydrogen-based energy systems require large amounts of high-purity water, motivating thermally driven desalination that can recover low-grade heat. This study evaluates a silica gel–water adsorption chiller–desalination unit as a coupled source of cooling and pre-treated water for electrolysers. A laboratory two-bed system was tested on saline feed using 300 s valve-switching periods at an 80 °C driving temperature and 20–30 °C cooling water. Dynamic vapour sorption measurements provided Dubinin–Astakhov equilibrium and linear driving force kinetic parameters, implemented in a CFD porous bed model via user-defined source terms. Experiments yielded COP values of 0.29–0.41, an SCP of 165 W·kg−1 of adsorbent, and an average distillate production of 1.68–1.82 kg·h−1, while distillate conductivity remained ≈2.3 μS·cm−1. The model reproduced the mean condensate production with a ≈6% underprediction. It was then used to compare six alternative fin geometries with a constant heat-transfer area. Fin-shape modifications changed inter-fin heating by <2 K and cumulative desorbed mass by <0.05%, indicating limited sensitivity to subtle local refinements. Performance gains are more likely to arise from operating conditions and exchanger-scale architecture than from minor fin-shape changes. Full article
(This article belongs to the Special Issue Advances in Numerical and Experimental Heat Transfer)
Show Figures

Figure 1

25 pages, 11245 KB  
Article
Multi-Objective Optimization Design of a Metakaolin–Slag-Based Binary Solid Waste Geopolymer Mortar Mix Proportion Using Response Surface Methodology
by Ruize Yin, Lianyong Zhu, Dawei Cheng, Pengchang Liang and Renfei Gao
Buildings 2026, 16(2), 402; https://doi.org/10.3390/buildings16020402 - 18 Jan 2026
Viewed by 193
Abstract
This study focuses on the development of sustainable construction materials via geopolymers synthesized from metakaolin and slag, aiming to identify environmentally friendly alternatives for construction material systems. A metakaolin–slag geopolymer mortar (MK–slag) was prepared using metakaolin and slag as fully solid waste raw [...] Read more.
This study focuses on the development of sustainable construction materials via geopolymers synthesized from metakaolin and slag, aiming to identify environmentally friendly alternatives for construction material systems. A metakaolin–slag geopolymer mortar (MK–slag) was prepared using metakaolin and slag as fully solid waste raw materials, with sodium silicate solution and sodium hydroxide acting as composite activators. Initially, single-factor experiments were conducted to determine the optimal ranges for metakaolin–slag content, water/binder ratio, and water glass modulus. Subsequently, response surface methodology was employed to develop regression equations that analyze the main and interaction effects of these variables on the 7-day and 28-day compressive strength and water absorption of the mortar. The optimal mix ratio was then identified. The microstructure and formation mechanisms of MK–slag mortar were studied using scanning electron microscopy (SEM), X-ray diffraction (XRD), and mercury intrusion porosimetry (MIP). The results indicate that all factors follow quadratic polynomial relationships with the response variables, showing a regression coefficient (R2) greater than 0.98, indicating an excellent model fit and prediction accuracy. According to model predictions, the optimal mix parameters under multi-objective optimization were found to be a metakaolin-to-slag ratio of 45%: 55%, a water/binder ratio of 0.45, and a water glass modulus of 1.3. After 28 days of curing, the primary hydration products were gel-like substances such as N-A-S-H and C-A-S-H. These gels interweave and overlap to form a high-density, structurally robust binary solid waste geopolymer mortar. This approach expands the application of solid waste materials, such as metakaolin and slag, while enhancing the recycling and utilization efficiency of these waste products. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

25 pages, 23886 KB  
Article
Co-Disposal of Coal Gangue and Aluminum Dross for Fiber-Reinforced Cemented Foamed Backfill
by Chong Liu, Shouxin Wu, Shaoqi Kong, Shiyu Zhang, Guoan Ren and Ruixue Feng
Minerals 2026, 16(1), 81; https://doi.org/10.3390/min16010081 - 15 Jan 2026
Viewed by 156
Abstract
To evaluate the stability of fiber-reinforced cemented foamed backfill (FCFB) in complex underground mining environments, this study investigates the synergistic effects of fiber content and modified coal gangue (MCG) under acidic and high-temperature conditions. Through a systematic analysis of hydration processes, compressive strength, [...] Read more.
To evaluate the stability of fiber-reinforced cemented foamed backfill (FCFB) in complex underground mining environments, this study investigates the synergistic effects of fiber content and modified coal gangue (MCG) under acidic and high-temperature conditions. Through a systematic analysis of hydration processes, compressive strength, and deformation characteristics, the research identifies critical mechanisms for optimizing backfill performance. Calcination of MCG at 700 °C enhances gelling activity via amorphous phase formation, while modified aluminum dross (MAD) treated at 950 °C develops dense α-Al2O3 and spinel phases, significantly improving chemical stability. In acidic environments, the suppression of calcium silicate hydrate (C-S-H) is offset by the development of Al3+-driven C-A-S-H gels. These gels adopt a tobermorite-like structure, substantially increasing acid resistance. Mechanical testing reveals that while 1% fiber reinforcement promotes nucleation and densification, a 2% concentration hinders hydration. Compressive strength at 28 days shows constrained growth due to pore inhibition, and failure modes transition from multi-crack parallel failure (3-day) to single-crack tensile-shear failure. Under acidic conditions, strain concentration in the upper sample highlights a competitive mechanism between Al3+ migration and fiber anchorage. Ultimately, the coordinated regulation of MCG/MAD and fiber content provides a robust solution for roof support in challenging thermo-chemical mining environments. Full article
Show Figures

Figure 1

26 pages, 3565 KB  
Article
Effect of GGBFS and Fly Ash on Elevated Temperature Resistance of Pumice-Based Geopolymers
by Mohammed Shubaili
Infrastructures 2026, 11(1), 28; https://doi.org/10.3390/infrastructures11010028 - 15 Jan 2026
Viewed by 142
Abstract
The current study investigated the effects of geopolymer composites formulated from pumice dust partially replaced by ground granulated blast furnace slag (GGBFS) and fly ash (FA) at levels of 10%, 20%, 30%, and 40% by weight. The mixtures were evaluated for flowability, compressive [...] Read more.
The current study investigated the effects of geopolymer composites formulated from pumice dust partially replaced by ground granulated blast furnace slag (GGBFS) and fly ash (FA) at levels of 10%, 20%, 30%, and 40% by weight. The mixtures were evaluated for flowability, compressive strength (7, 28, and 56 days), density, and water absorption (28 and 56 days) at ambient temperatures. Moreover, compressive strength, mass loss, density, and water absorption were evaluated after exposure of the mixtures to elevated temperatures (250 °C, 500 °C, and 750 °C) at 28 days. All specimens were initially cured at 60 °C for 24 h, followed by storage under ambient laboratory conditions until testing. The inclusion of GGBFS into the mixtures decreased flowability, and the inclusion of FA resulted in its improvement. At ambient temperature, GGBFS-based mixtures, which were high in calcium content, exhibited substantially superior compressive strength and reduced absorption relative to FA-based mixtures due to the development of dense C-A-S-H gel networks. However, the compressive strength of FA-based mixtures considerably increased when exposed to a temperature of 250 °C. Moreover, at 750 °C, the FA-based mixtures showed superior residual strength (up to 18.1 MPa), lower mass loss, and reduced absorption, indicating enhanced thermal stability due to the dominance of thermally resistant N-A-S-H gels. X-ray diffraction results further supported these trends by showing the rapid deterioration of calcium-rich phases under heat and the comparative stability of aluminosilicate structures in FA-based systems. Overall, the inclusion of up to 40% GGBFS is beneficial for early strength and densification, whereas the incorporation of up to 40% FA improves durability and mechanical retention under high-temperature conditions. Full article
Show Figures

Figure 1

8 pages, 431 KB  
Proceeding Paper
Compressive Strength, Density, and Setting Time of Concrete Blended with Rice Husk Ash
by Edidiong Eseme Ambrose, Okiemute Roland Ogirigbo, Tirimisiu Bayonle Bello and Saviour Umoh Akpando
Eng. Proc. 2026, 124(1), 1; https://doi.org/10.3390/engproc2026124001 - 14 Jan 2026
Viewed by 309
Abstract
This study investigated the effects of incorporating rice husk ash (RHA) as a partial replacement for cement on the properties of concrete. To determine the optimal replacement level, RHA was used to replace cement in varying proportions, ranging from 0% to 25% in [...] Read more.
This study investigated the effects of incorporating rice husk ash (RHA) as a partial replacement for cement on the properties of concrete. To determine the optimal replacement level, RHA was used to replace cement in varying proportions, ranging from 0% to 25% in 5% increments. The mix with 0% RHA served as the control. The properties evaluated included setting time, density, and compressive strength. The results revealed that blending RHA with cement increased the initial setting time. This was attributed to the lower calcium oxide (CaO2) content of RHA, which slows early-age hydration reactions. Conversely, the final setting time was reduced due to the pozzolanic activity of RHA, which enhances later-stage reactions. Additionally, the inclusion of RHA resulted in a decrease in concrete density, owing to its lower specific gravity and bulk density compared to Portland cement. Despite this, RHA-modified specimens exhibited higher compressive strengths than the control specimens. This strength enhancement was linked to the formation of additional calcium–silicate–hydrate (C-S-H) gel due to the pozzolanic reaction between amorphous silica in RHA and calcium hydroxide (CaOH) from hydration reaction. The gel fills concrete voids at the microstructural level, producing a denser and more compact concrete matrix. Based on the balance between strength and durability, the optimal RHA replacement level was identified as 10%. Full article
(This article belongs to the Proceedings of The 6th International Electronic Conference on Applied Sciences)
Show Figures

Figure 1

24 pages, 8328 KB  
Article
Synergistic Utilization of Recycled Asphalt Pavement and Fly Ash for High-Ductility Coal Mine Backfill: Performance Optimization and Mechanism Analysis
by Xiaoping Shao, Xing Du, Renlong Tang, Wei Wang, Zhengchun Wang, Yibo Zhang, Xin Gao and Shaofeng Hu
Materials 2026, 19(2), 320; https://doi.org/10.3390/ma19020320 - 13 Jan 2026
Viewed by 125
Abstract
To enhance the ductility of coal mine filling materials using recycled asphalt pavement (RAP) and address the limitations in RAP recycling and utilization, this study processed RAP into crushed materials (CMs) and ball-milled materials (BMs). Supplementary with fly ash (FA) and cement, RAP-fly [...] Read more.
To enhance the ductility of coal mine filling materials using recycled asphalt pavement (RAP) and address the limitations in RAP recycling and utilization, this study processed RAP into crushed materials (CMs) and ball-milled materials (BMs). Supplementary with fly ash (FA) and cement, RAP-fly ash cement paste backfill (RFCPB) was prepared. For 1000 g of RFCPB slurry, the composition was 365 g CM, 73 g cement, 270 g water, and a total of 292 g of FA and BM, with an F/B ratio ranging from 1:7 to 7:1. A systematic test program was carried out, including rheological property tests, unconfined compressive strength (UCS) tests combined with deformation monitoring, microstructure analysis, and leaching toxicity tests. Based on these tests, the influence of F/B ratio on the action mechanism, workability, mechanical properties, ductility and environmental compatibility of RFCPB was comprehensively explored. The results show that the rheological behavior of RFCPB slurry conforms to the Herschel–Bulkley (H-B) model; with the decrease in F/B ratio, the yield stress and apparent viscosity of the slurry increase significantly, while the slump and slump flow decrease correspondingly, which is closely related to the particle gradation optimization by BM. For mechanical properties and ductility, the 28-day UCS of RFCPB first increases and then decreases with the decrease in F/B ratio, all meeting the mine backfilling strength requirements; notably, the increase in BM proportion regulates the failure mode from brittle to ductile, which is the key to improving ductility. Microstructural analysis indicates that Dolomite and Albite in BM participate in hydration reactions to generate N-A-S-H and C-A-S-H gels, which fill internal pores, optimize pore structure, and thus synergistically improve UCS and ductility. Additionally, the leaching concentration of toxic ions in RFCPB complies with the environmental protection standards for solid waste. This study provides a theoretical basis for enhancing backfill ductility and advancing the coordinated disposal of RAP and fly ash solid wastes. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

15 pages, 3233 KB  
Article
Investigation of the Hydration and Solidification Effect of Peanut Ash Cement-Based Stabilizer in Soft Clay Treatment
by Yongqin Qiu, Qichang Fan and Kun Zhang
Materials 2026, 19(2), 318; https://doi.org/10.3390/ma19020318 - 13 Jan 2026
Viewed by 161
Abstract
To promote the sustainable utilization of agricultural solid waste, this study proposes a novel approach for reinforcing soft clay using a peanut ash (PA)–cement composite stabilizer. The unconfined compressive strength (UCS) of pure cement and PA–cement composite systems was tested at curing ages [...] Read more.
To promote the sustainable utilization of agricultural solid waste, this study proposes a novel approach for reinforcing soft clay using a peanut ash (PA)–cement composite stabilizer. The unconfined compressive strength (UCS) of pure cement and PA–cement composite systems was tested at curing ages of 3, 7, and 28 days, while the durability of the stabilized clay was evaluated through dry–wet cycling. Given that PA is rich in pozzolanic components, its addition may influence the hydration process of cement. Therefore, hydration heat analysis was conducted to examine the early hydration behavior, and XRD and TG analyses were employed to identify the composition and quantity of hydration products. SEM observations were further used to characterize the microstructural evolution of the stabilized matrix. By integrating mechanical and microstructural analyses, the solidification mechanism of the PA–cement stabilizer was elucidated. Mechanical test results indicate that the reinforcing effect increases with the stabilizer dosage. Pure cement exhibited superior strength at 3 days; however, after 7 days, specimens incorporating 5% PA showed higher strength than those stabilized solely with cement. At 28 days, the UCS of the 15% cement + 5% PA specimen reached 3.12 MPa, 11.03% higher than that of the 20% cement specimen and comparable to the 25% cement specimen (3.15 MPa). After five dry–wet cycles, the strength reduction of the 15% cement + 5% PA specimen was 22.76%, compared to 31.31% for the 20% cement specimen, indicating improved durability. Microscopic analyses reveal that PA reduces hydration heat and does not participate in early hydration, leading to lower early strength. However, its pozzolanic reactivity contributes to secondary hydration at later stages, promoting the formation of additional C-S-H gel and ettringite. These hydration products fill the inter-lamellar pores of the clay and increase matrix density. Conversely, excessive PA content (≥10%) exerts a dilution effect, reducing the amount of hydration products and weakening the mechanical performance. Overall, the use of an appropriate PA dosage in combination with cement enhances both strength and durability while reducing cement consumption, providing an effective pathway for the high-value utilization of agricultural solid waste resources. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

16 pages, 6661 KB  
Article
Sol–Gel CaCO3/SiO2 Boost Anti-Flashover Silicones
by Ruiling Liao, Yan Liu, Sude Ma and Yue Zhang
Coatings 2026, 16(1), 105; https://doi.org/10.3390/coatings16010105 - 13 Jan 2026
Viewed by 313
Abstract
This study developed high-performance anti-flashover silicone coatings using sol–gel-synthesized CaCO3/SiO2 hierarchical fillers optimized via L16(45) orthogonal design. The optimal filler (Sample 5) was prepared under 70 vol% ethanol, with nTEOS:nCaCO3 = 1:1 and 0.2 mol/L [...] Read more.
This study developed high-performance anti-flashover silicone coatings using sol–gel-synthesized CaCO3/SiO2 hierarchical fillers optimized via L16(45) orthogonal design. The optimal filler (Sample 5) was prepared under 70 vol% ethanol, with nTEOS:nCaCO3 = 1:1 and 0.2 mol/L NH3·H2O, at 45 °C, for 18 h, featuring covalent Si-O-Ca bonding, a dual-scale microstructure (2–4 μm CaCO3 cores + 20–40 nm SiO2 nodules), a 14.44 m2/g specific surface area, and bimodal porosity (8–80 nm). Composite C7 (30 wt% filler, 3 wt% KH-570, 1:2 resin-to-filler ratio) achieved superhydrophobicity (a 153° contact angle via Cassie-Baxter stabilization), ultrahigh electrical insulation (3.20 × 1014 Ω·cm volume resistivity, 1.60 × 1013 Ω surface resistivity), and robust mechanical properties (Shore 3H hardness, 5B adhesion). Standardized IEC 60507:2020 tests showed that C7’s flashover voltages (14.8 kV for KMnO4, 14.3 kV for NaCl/KMnO4, 13 kV for NaCl) exceeded that of neat silicone resin (NSR) and conventional CaCO3-filled composite (SR-CC) by >135%. Additionally, C7 retained superhydrophobicity after 500 h UV aging and maintained a 124° contact angle after 12 months of outdoor exposure. The superior performance stems from synergistic hierarchical topology, tortuous discharge paths, and interfacial passivation. This work establishes a microstructure-driven design paradigm for grid protection materials in harsh environments. Full article
(This article belongs to the Special Issue Advanced Anti-Fouling and Anti-Corrosion Coatings)
Show Figures

Figure 1

26 pages, 4662 KB  
Article
Eco-Efficient Geopolymer Bricks Without Firing and Mechanical Pressing
by Muhammad Hassan Javed, Qasim Shaukat Khan, Asad Ullah Qazi, Syed Minhaj Saleem Kazmi and Muhammad Junaid Munir
Sustainability 2026, 18(2), 762; https://doi.org/10.3390/su18020762 - 12 Jan 2026
Viewed by 194
Abstract
Kiln-fired clay bricks are energy-intensive and carbon-heavy. This study develops and validates kiln-free, pressure-free, and ambient-cured geopolymer (GPM) bricks made from uncalcined clay and Class F fly ash. A two-stage experimental program screened 33 mixes (12–16 M NaOH and 396 cubes tested at [...] Read more.
Kiln-fired clay bricks are energy-intensive and carbon-heavy. This study develops and validates kiln-free, pressure-free, and ambient-cured geopolymer (GPM) bricks made from uncalcined clay and Class F fly ash. A two-stage experimental program screened 33 mixes (12–16 M NaOH and 396 cubes tested at 14–90 days) and then scaled six optimized mixes to 90 full-size bricks for mechanical, durability, and microstructural evaluation. Bricks with an optimal mix of 20–30% clay and 70–80% fly ash achieved a compressive strength of up to 32.5 MPa, satisfying ASTM C62 (for severe weathering) requirements. Relative to fired clay units, GPM bricks delivered +61% average compressive strength (up to +91%), +56.5% average modulus of rupture (up to +103%), 6–29% lower water absorption, and 42–84% higher UPV while their strength losses after 28-day immersion in 5% H2SO4 or 3.5% NaCl were only ~3–5%. SEM confirmed a dense N-A-S-H gel matrix with reduced porosity. Eco-efficiency analysis showed ~95% lower embodied CO2 (0.26–0.31 vs. 5.5 kg eCO2 per brick) and ~35% lower cost per MPa of strength than fired clay bricks. The findings demonstrate a practical, low-carbon brick manufactured without mechanical pressing or heat curing, delivering verified performance and durability under ambient conditions. Full article
Show Figures

Figure 1

Back to TopTop