Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,510)

Search Parameters:
Keywords = C∞ smooth

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 8223 KiB  
Article
Optimal Time–Jerk Trajectory Planning for Manipulators Based on a Constrained Multi-Objective Dream Optimization Algorithm
by Zhijun Wu, Fang Wang and Tingting Bao
Machines 2025, 13(8), 682; https://doi.org/10.3390/machines13080682 (registering DOI) - 2 Aug 2025
Abstract
A multi-objective optimal trajectory planning method is proposed for manipulators in this paper to enhance motion efficiency and to reduce component wear while ensuring motion smoothness. The trajectory is initially interpolated in the joint space by using quintic non-uniform B-splines with virtual points, [...] Read more.
A multi-objective optimal trajectory planning method is proposed for manipulators in this paper to enhance motion efficiency and to reduce component wear while ensuring motion smoothness. The trajectory is initially interpolated in the joint space by using quintic non-uniform B-splines with virtual points, achieving the C4 continuity of joint motion and satisfying dynamic, kinematic, geometric, synchronization, and boundary constraints. The interpolation reformulates the trajectory planning problem into an optimization problem, where the time intervals between desired adjacent waypoints serve as variables. Travelling time and the integral of the squared jerk along the entire trajectories comprise the multi-objective functions. A constrained multi-objective dream optimization algorithm is designed to solve the time–jerk optimal trajectory planning problem and generate Pareto solutions for optimized trajectories. Simulations conducted on 6-DOF manipulators validate the effectiveness and superiority of the proposed method in comparison with existing typical trajectory planning methods. Full article
(This article belongs to the Special Issue Cutting-Edge Automation in Robotic Machining)
Show Figures

Figure 1

16 pages, 2036 KiB  
Article
Scalable Chemical Vapor Deposition of Silicon Carbide Thin Films for Photonic Integrated Circuit Applications
by Souryaya Dutta, Alex Kaloyeros, Animesh Nanaware and Spyros Gallis
Appl. Sci. 2025, 15(15), 8603; https://doi.org/10.3390/app15158603 (registering DOI) - 2 Aug 2025
Abstract
Highly integrable silicon carbide (SiC) has emerged as a promising platform for photonic integrated circuits (PICs), offering a comprehensive set of material and optical properties that are ideal for the integration of nonlinear devices and solid-state quantum defects. However, despite significant progress in [...] Read more.
Highly integrable silicon carbide (SiC) has emerged as a promising platform for photonic integrated circuits (PICs), offering a comprehensive set of material and optical properties that are ideal for the integration of nonlinear devices and solid-state quantum defects. However, despite significant progress in nanofabrication technology, the development of SiC on an insulator (SiCOI)-based photonics faces challenges due to fabrication-induced material optical losses and complex processing steps. An alternative approach to mitigate these fabrication challenges is the direct deposition of amorphous SiC on an insulator (a-SiCOI). However, there is a lack of systematic studies aimed at producing high optical quality a-SiC thin films, and correspondingly, on evaluating and determining their optical properties in the telecom range. To this end, we have studied a single-source precursor, 1,3,5-trisilacyclohexane (TSCH, C3H12Si3), and chemical vapor deposition (CVD) processes for the deposition of SiC thin films in a low-temperature range (650–800 °C) on a multitude of different substrates. We have successfully demonstrated the fabrication of smooth, uniform, and stoichiometric a-SiCOI thin films of 20 nm to 600 nm with a highly controlled growth rate of ~0.5 Å/s and minimal surface roughness of ~5 Å. Spectroscopic ellipsometry and resonant micro-photoluminescence excitation spectroscopy and mapping reveal a high index of refraction (~2.7) and a minimal absorption coefficient (<200 cm−1) in the telecom C-band, demonstrating the high optical quality of the films. These findings establish a strong foundation for scalable production of high-quality a-SiCOI thin films, enabling their application in advanced chip-scale telecom PIC technologies. Full article
(This article belongs to the Section Materials Science and Engineering)
Show Figures

Figure 1

23 pages, 40218 KiB  
Article
ACSL4 Drives C5a/C5aR1–Calcium-Induced Fibroblast-to-Myofibroblast Transition in a Bleomycin-Induced Mouse Model of Pulmonary Fibrosis
by Tingting Ren, Jia Shi, Lili Zhuang, Ruiting Su, Yimei Lai and Niansheng Yang
Biomolecules 2025, 15(8), 1106; https://doi.org/10.3390/biom15081106 - 31 Jul 2025
Abstract
Idiopathic pulmonary fibrosis (IPF) is characterized by excessive extracellular matrix (ECM) deposition driven by aberrant fibroblast-to-myofibroblast transition (FMT). However, the upstream regulators and downstream effectors of this process remain incompletely understood. Here, we identify acyl-CoA synthetase long-chain family member 4 (ACSL4), a lipid [...] Read more.
Idiopathic pulmonary fibrosis (IPF) is characterized by excessive extracellular matrix (ECM) deposition driven by aberrant fibroblast-to-myofibroblast transition (FMT). However, the upstream regulators and downstream effectors of this process remain incompletely understood. Here, we identify acyl-CoA synthetase long-chain family member 4 (ACSL4), a lipid metabolic enzyme, as a critical mediator linking complement component 5a (C5a)/C5a receptor 1 (C5aR1) signaling to FMT via calcium signaling. In bleomycin (BLM)-induced pulmonary fibrosis of C57BL/6JGpt mice, and in C5a-stimulated primary lung fibroblasts, the expression of ACSL4 was markedly upregulated. Pharmacological inhibition of ACSL4 (PRGL493) or C5aR1 (PMX53) attenuated the deposition of ECM and suppressed the expression of fibrotic markers in vivo and in vitro. Mechanistically, the activation of C5a/C5aR1 signaling increased intracellular calcium levels and promoted the expression of ACSL4, while inhibition of calcium signaling (FK506) reversed the upregulation of ACSL4 and FMT-related changes, including the expression of α-smooth muscle actin (αSMA) and the migration of fibroblasts. Notably, inhibition of ACSL4 did not affect the proliferation of fibroblasts, suggesting its specific role in phenotypic transition. These findings demonstrate that ACSL4 functions downstream of C5a/C5aR1-induced calcium signaling to promote FMT and the progression of pulmonary fibrosis. Targeting ACSL4 may therefore offer a novel therapeutic strategy for IPF. Full article
(This article belongs to the Section Cellular Biochemistry)
Show Figures

Figure 1

40 pages, 18911 KiB  
Article
Twin-AI: Intelligent Barrier Eddy Current Separator with Digital Twin and AI Integration
by Shohreh Kia, Johannes B. Mayer, Erik Westphal and Benjamin Leiding
Sensors 2025, 25(15), 4731; https://doi.org/10.3390/s25154731 (registering DOI) - 31 Jul 2025
Abstract
The current paper presents a comprehensive intelligent system designed to optimize the performance of a barrier eddy current separator (BECS), comprising a conveyor belt, a vibration feeder, and a magnetic drum. This system was trained and validated on real-world industrial data gathered directly [...] Read more.
The current paper presents a comprehensive intelligent system designed to optimize the performance of a barrier eddy current separator (BECS), comprising a conveyor belt, a vibration feeder, and a magnetic drum. This system was trained and validated on real-world industrial data gathered directly from the working separator under 81 different operational scenarios. The intelligent models were used to recommend optimal settings for drum speed, belt speed, vibration intensity, and drum angle, thereby maximizing separation quality and minimizing energy consumption. the smart separation module utilizes YOLOv11n-seg and achieves a mean average precision (mAP) of 0.838 across 7163 industrial instances from aluminum, copper, and plastic materials. For shape classification (sharp vs. smooth), the model reached 91.8% accuracy across 1105 annotated samples. Furthermore, the thermal monitoring unit can detect iron contamination by analyzing temperature anomalies. Scenarios with iron showed a maximum temperature increase of over 20 °C compared to clean materials, with a detection response time of under 2.5 s. The architecture integrates a Digital Twin using Azure Digital Twins to virtually mirror the system, enabling real-time tracking, behavior simulation, and remote updates. A full connection with the PLC has been implemented, allowing the AI-driven system to adjust physical parameters autonomously. This combination of AI, IoT, and digital twin technologies delivers a reliable and scalable solution for enhanced separation quality, improved operational safety, and predictive maintenance in industrial recycling environments. Full article
(This article belongs to the Special Issue Sensors and IoT Technologies for the Smart Industry)
15 pages, 3096 KiB  
Article
An Experimental Study on the Impact of Roughness Orientation on the Friction Coefficient in EHL Contact
by Matthieu Cordier, Yasser Diab, Jérôme Cavoret, Fida Majdoub, Christophe Changenet and Fabrice Ville
Lubricants 2025, 13(8), 340; https://doi.org/10.3390/lubricants13080340 (registering DOI) - 31 Jul 2025
Viewed by 39
Abstract
Optimising the friction coefficient helps reduce friction losses and improve the efficiency of mechanical systems. The purpose of this study is to experimentally investigate the impact of roughness orientation on the friction coefficient in elastohydrodynamic (EHD) contact. Tests were carried out on a [...] Read more.
Optimising the friction coefficient helps reduce friction losses and improve the efficiency of mechanical systems. The purpose of this study is to experimentally investigate the impact of roughness orientation on the friction coefficient in elastohydrodynamic (EHD) contact. Tests were carried out on a twin-disc machine. Three pairs of discs of identical material (nitrided steel) and geometry were tested: a smooth pair (the root mean square surface roughness Sq = 0.07 µm), a pair with transverse roughness and another with longitudinal roughness. The two rough pairs have similar roughness amplitudes (Sq = 0.5 µm). A comparison of the friction generated by these different pairs was carried out to highlight the effect of the roughness orientation under different operating conditions (oil injection temperature from 60 to 80 °C, Hertzian pressure from 1.2 to 1.5 GPa and mean rolling speed from 5 to 30 m/s). Throughout all the tests conducted in this study, longitudinal roughness resulted in higher friction than transverse, with an increase of up to 30%. Moreover, longitudinal roughness is more sensitive to variations in operating conditions. Finally, in all tests, the asperities of longitudinal roughness were found to influence the friction behaviour, unlike transverse roughness. Full article
(This article belongs to the Special Issue Experimental Modelling of Tribosystems)
Show Figures

Figure 1

20 pages, 323 KiB  
Article
Three Solutions for a Double-Phase Variable-Exponent Kirchhoff Problem
by Mustafa Avci
Mathematics 2025, 13(15), 2462; https://doi.org/10.3390/math13152462 - 30 Jul 2025
Viewed by 147
Abstract
In this article, we study a double-phase variable-exponent Kirchhoff problem and show the existence of at least three solutions. The proposed model, as a generalization of the Kirchhoff equation, is interesting since it is driven by a double-phase operator that governs anisotropic and [...] Read more.
In this article, we study a double-phase variable-exponent Kirchhoff problem and show the existence of at least three solutions. The proposed model, as a generalization of the Kirchhoff equation, is interesting since it is driven by a double-phase operator that governs anisotropic and heterogeneous diffusion associated with the energy functional, as well as encapsulating two different types of elliptic behavior within the same framework. To tackle the problem, we obtain regularity results for the corresponding energy functional, which makes the problem suitable for the application of a well-known critical point result by Bonanno and Marano. We introduce an n-dimensional vector inequality, not covered in the literature, which provides a key auxiliary tool for establishing essential regularity properties of the energy functional such as C1-smoothness, the (S+)-condition, and sequential weak lower semicontinuity. Full article
(This article belongs to the Section C1: Difference and Differential Equations)
18 pages, 3415 KiB  
Article
Study on the Modification of Dietary Fiber and Degradation of Zearalenone in Corn Germ Meal by Solid-State Fermentation with Bacillus subtilis K6
by Jiahao Li, Kailong Li, Langwen Tang, Chun Hua, Na Chen, Chenxian Yang, Ying Xin and Fusheng Chen
Foods 2025, 14(15), 2680; https://doi.org/10.3390/foods14152680 - 30 Jul 2025
Viewed by 165
Abstract
Although corn germ meal is a rich source of dietary fiber, it contains a relatively low proportion of soluble dietary fiber (SDF) and is frequently contaminated with high levels of zearalenone (ZEN). Solid-state fermentation has the dual effects of modifying dietary fiber (DF) [...] Read more.
Although corn germ meal is a rich source of dietary fiber, it contains a relatively low proportion of soluble dietary fiber (SDF) and is frequently contaminated with high levels of zearalenone (ZEN). Solid-state fermentation has the dual effects of modifying dietary fiber (DF) and degrading mycotoxins. This study optimized the solid-state fermentation process of corn germ meal using Bacillus subtilis K6 through response surface methodology (RSM) to enhance SDF yield while efficiently degrading ZEN. Results indicated that fermentation solid-to-liquid ratio and time had greater impacts on SDF yield and ZEN degradation rate than fermentation temperature. The optimal conditions were determined as temperature 36.5 °C, time 65 h, and solid-to-liquid ratio 1:0.82 (w/v). Under these conditions, the ZEN degradation rate reached 96.27 ± 0.53%, while the SDF yield increased from 9.47 ± 0.68% to 20.11 ± 1.87% (optimizing the SDF/DF ratio from 1:7 to 1:3). Scanning electron microscopy (SEM) and confocal laser scanning microscope (CLSM) revealed the structural transformation of dietary fiber from smooth to loose and porous forms. This structural modification resulted in a significant improvement in the physicochemical properties of dietary fiber, with water-holding capacity (WHC), oil-holding capacity (OHC), and water-swelling capacity (WSC) increasing by 34.8%, 16.4%, and 15.2%, respectively. Additionally, the protein and total phenolic contents increased by 23.0% and 82.61%, respectively. This research has achieved efficient detoxification and dietary fiber modification of corn germ meal, significantly enhancing the resource utilization rate of corn by-products and providing technical and theoretical support for industrial production applications. Full article
Show Figures

Figure 1

13 pages, 1600 KiB  
Article
LIMK2-1 Is a Phosphorylation-Dependent Inhibitor of Protein Phosphatase-1 Catalytic Subunit and Myosin Phosphatase Holoenzyme
by Andrea Kiss, Emese Tóth, Zsófia Bodogán, Mohamad Mahfood, Zoltán Kónya and Ferenc Erdődi
Int. J. Mol. Sci. 2025, 26(15), 7347; https://doi.org/10.3390/ijms26157347 - 30 Jul 2025
Viewed by 116
Abstract
The C-kinase-activated protein phosphatase-1 (PP1) inhibitor of 17 kDa (CPI-17) is a specific inhibitor of the PP1 catalytic subunit (PP1c) and the myosin phosphatase (MP) holoenzyme. CPI-17 requires the phosphorylation of Thr38 in the peptide segment 35ARV(P)TVKYDRREL46 for inhibitory activity. CPI-17 [...] Read more.
The C-kinase-activated protein phosphatase-1 (PP1) inhibitor of 17 kDa (CPI-17) is a specific inhibitor of the PP1 catalytic subunit (PP1c) and the myosin phosphatase (MP) holoenzyme. CPI-17 requires the phosphorylation of Thr38 in the peptide segment 35ARV(P)TVKYDRREL46 for inhibitory activity. CPI-17 regulates myosin phosphorylation in smooth muscle contraction and the tumorigenic transformation of several cell lines via the inhibition of MP. A phosphospecific antibody (anti-CPI-17pThr38) against the phosphorylation peptide was used to determine the phosphorylation levels in cells. We found that phospho-CPI-17 and its closely related proteins are not present in HeLa and MCF7 cells after inducing phosphorylation by inhibiting phosphatases with calyculin A. In contrast, cross-reactions of proteins in the 40–220 kDa range with anti-CPI-17pThr38 were apparent. Searching the protein database for similarities to the CPI-17 phosphorylation sequence revealed several proteins with 42–75% sequence identities. The LIMK2-1 isoform emerged as a possible PP1 inhibitor. Experiments with Flag-LIMK2-1 overexpressed in tsA201 cells proved that LIMK2-1 interacts with PP1c isoforms and is phosphorylated predominantly by protein kinase C. Phosphorylated LIMK2-1 inhibits PP1c and the MP holoenzyme with similar potencies (IC50 ~28–47 nM). In conclusion, our results suggest that LIMK2-1 is a novel phosphorylation-dependent inhibitor of PP1c and MP and may function as a CPI-17-like phosphatase inhibitor in cells where CPI-17 is present but not phosphorylated upon phosphatase inhibition. Full article
(This article belongs to the Special Issue 25th Anniversary of IJMS: Updates and Advances in Macromolecules)
Show Figures

Figure 1

20 pages, 4727 KiB  
Article
Developing a Novel Fermented Milk with Anti-Aging and Anti-Oxidative Properties Using Lactobacillus kefiranofaciens HL1 and Lactococcus lactis APL015
by Sheng-Yao Wang, Wei-Chen Yen, Yen-Po Chen, Jia-Shian Shiu and Ming-Ju Chen
Nutrients 2025, 17(15), 2447; https://doi.org/10.3390/nu17152447 - 27 Jul 2025
Viewed by 482
Abstract
Background/Objectives: Lactobacillus kefiranofaciens HL1, isolated from kefir, exhibits antioxidant and anti-aging activities, defined here as improved cognitive function and reductions in oxidative stress and inflammatory markers. However, its poor milk viability limits application. This study developed a novel fermented milk by co-culturing [...] Read more.
Background/Objectives: Lactobacillus kefiranofaciens HL1, isolated from kefir, exhibits antioxidant and anti-aging activities, defined here as improved cognitive function and reductions in oxidative stress and inflammatory markers. However, its poor milk viability limits application. This study developed a novel fermented milk by co-culturing HL1 with Lactococcus lactis subsp. cremoris APL015 (APL15) to enhance fermentation and health benefits. Methods: HL1 and APL15 were co-cultured to produce fermented milk (FM), and fermentation performance, microbial viability, texture, and syneresis were evaluated. A D-galactose-induced aging BALB/c mouse model was used to assess cognitive function, oxidative stress, inflammation, antioxidant enzyme activity, and gut microbiota after 8 weeks of oral administration. Results: FM reached pH 4.6 within 16 h, with high viable counts (~109 CFU/mL) for both strains. HL1 viability and texture were maintained, with smooth consistency and low syneresis. In vivo, FM improved cognitive behavior (Y-maze, Morris water maze), reduced oxidative damage (MDA), lowered IL-1β and TNF-α, and enhanced brain SOD levels. FM-fed mice exhibited increased short-chain fatty acid producers, higher cecal butyrate, and reduced Clostridium perfringens. Conclusions: The co-cultured fermented milk effectively delivers HL1 and provides antioxidant, anti-inflammatory, and anti-aging effects in vivo, likely via gut–brain axis modulation. It shows promise as a functional food for healthy aging. Full article
(This article belongs to the Section Prebiotics and Probiotics)
Show Figures

Figure 1

15 pages, 4855 KiB  
Article
An Investigation of the Surface-Regulating Mechanism of Tungsten Alloys Using the Electrochemical Polishing Process
by Yachun Mao, Yanqiu Xu, Shiru Le, Maozhong An, Zhijiang Wang and Yuhan Zhang
Solids 2025, 6(3), 39; https://doi.org/10.3390/solids6030039 - 24 Jul 2025
Viewed by 226
Abstract
Tungsten and tungsten alloys are widely used in important industrial fields due to their high density, hardness, melting point, and corrosion resistance. However, machining often leaves processing marks on their surface, significantly affecting the surface quality of precision components in industrial applications. Electrolytic [...] Read more.
Tungsten and tungsten alloys are widely used in important industrial fields due to their high density, hardness, melting point, and corrosion resistance. However, machining often leaves processing marks on their surface, significantly affecting the surface quality of precision components in industrial applications. Electrolytic polishing offers high efficiency, low workpiece wear, and simple processing. In this study, an electrolytic polishing method is adopted and a novel trisodium phosphate–sodium hydroxide electrolytic polishing electrolyte is developed to study the effects of temperature, voltage, polishing time, and solution composition on the surface roughness of a tungsten–nickel–iron alloy. The optimal voltage, temperature, and polishing time are determined to be 15 V, 55 °C, and 35 s, respectively, when the concentrations of trisodium phosphate and sodium hydroxide are 100 g·L−1 and 6 g·L−1. In addition, glycerol is introduced into the electrolyte as an additive. The calculated LUMO value of glycerol is −5.90 eV and the HOMO value is 0.40 eV. Moreover, electron enrichment in the hydroxyl region of glycerol can form an adsorption layer on the surface of the tungsten alloy, inhibit the formation of micro-pits, balance ion diffusion, and thus promote the formation of a smooth surface. At 100 mL·L−1 of glycerol, the roughness of the tungsten–nickel–iron alloy decreases significantly from 1.134 μm to 0.582 μm. The electrochemical polishing mechanism of the tungsten alloy in a trisodium phosphate electrolyte is further investigated and explained according to viscous film theory. This study demonstrates that the trisodium phosphate–sodium hydroxide–glycerol electrolyte is suitable for electropolishing tungsten–nickel–iron alloys. Overall, the results support the application of tungsten–nickel–iron alloy in the electronics, medical, and atomic energy industries. Full article
Show Figures

Graphical abstract

19 pages, 10032 KiB  
Article
Synthesis, Characterization, and Enzyme Conjugation of Polycaprolactone Nanofibers for Tissue Engineering
by Chandana B. Shivakumar, Nithya Rani Raju, Pruthvi G. Ramu, Prashant M. Vishwanath, Ekaterina Silina, Victor Stupin and Raghu Ram Achar
Pharmaceutics 2025, 17(8), 953; https://doi.org/10.3390/pharmaceutics17080953 - 23 Jul 2025
Viewed by 364
Abstract
Background/Objectives: A nanostructured membrane of polycaprolactone (a synthetic polymer) was synthesized using an electrospinning technique aiming to enhance its hydrophilicity and rate of degradation by surface modification via aminolysis. Since polycaprolactone nanofibrous films are naturally hydrophobic and with slow degradation, which restricts [...] Read more.
Background/Objectives: A nanostructured membrane of polycaprolactone (a synthetic polymer) was synthesized using an electrospinning technique aiming to enhance its hydrophilicity and rate of degradation by surface modification via aminolysis. Since polycaprolactone nanofibrous films are naturally hydrophobic and with slow degradation, which restricts their use in biological systems, amino groups were added to the fiber surface using the aminolysis technique, greatly increasing the wettability of the membranes. Methods: Polycaprolactone nanofibrous membranes were synthesized via the electrospinning technique and surface modification by aminolysis. Trypsin, pepsin, and pancreatin were conjugated onto the aminolyzed PNF surface to further strengthen biocompatibility by enhancing the hydrophilicity, porosity, and biodegradation rate. SEM, FTIR, EDX, and liquid displacement method were performed to investigate proteolytic efficiency and morphological and physical characteristics such as hydrophilicity, porosity, and degradation rates. Results: Enzyme activity tests, which showed a zone of clearance, validated the successful enzyme conjugation and stability over a wide range of pH and temperatures. Scanning electron microscopy (SEM) confirms the smooth morphology of nanofibers with diameters ranging from 150 to 950 nm. Fourier transform infrared spectroscopy (FTIR) revealed the presence of O–H, C–O, C=O, C–N, C–H, and O–H functional groups. Energy-dispersive X-ray (EDX) elemental analysis indicates the presence of carbon, oxygen, and nitrogen atoms owing to the presence of peptide and amide bonds. The liquid displacement technique and contact angle proved that Pepsin-PNFs possess notably increased porosity (88.50% ± 0.31%) and hydrophilicity (57.6° ± 2.3 (L), 57.9° ± 2.5 (R)), respectively. Pancreatin-PNFs demonstrated enhanced enzyme activity and degradation rate on day 28 (34.61%). Conclusions: These enzyme-conjugated PNFs thus show improvements in physicochemical properties, making them ideal candidates for various biomedical applications. Future studies must aim for optimization of enzyme conjugation and in vitro and in vivo performance to investigate the versatility of these scaffolds. Full article
Show Figures

Figure 1

16 pages, 2130 KiB  
Article
A Distinct miRNA Profile in Intimal Hyperplasia of Failed Arteriovenous Fistulas Reveals Key Pathogenic Pathways
by Carmen Ciavarella, Francesco Vasuri, Alessio Degiovanni, Lena Christ, Raffaella Mauro, Mauro Gargiulo and Gianandrea Pasquinelli
Biomolecules 2025, 15(8), 1064; https://doi.org/10.3390/biom15081064 - 23 Jul 2025
Viewed by 284
Abstract
Intimal hyperplasia (IH) compromises the patency of arteriovenous fistula (AVF) vascular access in patients with end-stage kidney disease. Uncontrolled cell proliferation and migration, driven by inflammation, shear stress and surgery, are well-known triggers in IH. Recently, microRNAs (miRNAs) have emerged as regulators of [...] Read more.
Intimal hyperplasia (IH) compromises the patency of arteriovenous fistula (AVF) vascular access in patients with end-stage kidney disease. Uncontrolled cell proliferation and migration, driven by inflammation, shear stress and surgery, are well-known triggers in IH. Recently, microRNAs (miRNAs) have emerged as regulators of core mechanisms in cardiovascular diseases and as potential markers of IH. This study was aimed at identifying a specific miRNA panel in failed AVFs and clarifying the miRNA involvement in IH. miRNA profiling performed in tissues from patients with IH (AVFs) and normal veins (NVs) highlighted a subset of four miRNAs significantly deregulated (hsa-miR-155-5p, hsa-miR-449a-5p, hsa-miR-29c-3p, hsa-miR-194-5p) between the two groups. These miRNAs were analyzed in tissue-derived cells (NVCs and AVFCs), human aortic smooth muscle cells (HAOSMCs) and human umbilical vein endothelial cells (HUVECs). The panel of hsa-miR-449a-5p, hsa-miR-155-5p, hsa-miR-29c-3p and hsa-miR-194-5p was up-regulated in AVFCs, HAOSMCs and HUVEC under inflammatory stimuli. Notably, overexpression of hsa-miR-449a-5p exacerbated the proliferative, migratory and inflammatory features of AVFCs. In vitro pharmacological modulation of these miRNAs with pioglitazone, particularly the down-regulation of hsa-miR-155-5p and hsa-miR-29c-3p, suggested their involvement in IH pathogenesis and a potential translational application. Overall, these findings provide new insights into the pathogenesis of AVF failure, reinforcing the miRNA contribution to IH detection and prevention. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Graphical abstract

33 pages, 4464 KiB  
Article
Physicochemical and Structural Characteristics of Date Seed and Starch Composite Powder as Prepared by Heating at Different Temperatures
by Muna Al-Mawali, Maha Al-Khalili, Mohammed Al-Khusaibi, Myo Tay Zar Myint, Htet Htet Kyaw, Mohammad Shafiur Rahman, Abdullahi Idris Muhammad and Nasser Al-Habsi
Polymers 2025, 17(14), 1993; https://doi.org/10.3390/polym17141993 - 21 Jul 2025
Viewed by 502
Abstract
Date seeds, a by-product of the pitted-date industry, are often discarded as waste. This study investigated the interaction between date seed powder and starch at different concentrations (0, 1, 5, 10, and 20 g/25 g composite) and temperatures (40 °C and 70 °C). [...] Read more.
Date seeds, a by-product of the pitted-date industry, are often discarded as waste. This study investigated the interaction between date seed powder and starch at different concentrations (0, 1, 5, 10, and 20 g/25 g composite) and temperatures (40 °C and 70 °C). The results revealed that the hygroscopicity of date seed powder (9.94 g/100 g) was lower than starch (13.39 g/100 g), and its water absorption (75.8%) was also lower than starch (88.3%), leading to a reduced absorbance capacity in composites. However, the solubility increased with a higher date seed content due to its greater solubility (17.8 g/L) compared to starch (1.6 g/L). A morphological analysis showed rough, agglomerated particles in date seed powder, while starch had smooth, spherical shapes. This study also found that the composites formed larger particles at 40 °C and porous structures at 70 °C. Crystallinity decreased from 41.6% to 12.8% (40 °C) and from 24.0% to 11.3% (70 °C). A thermal analysis revealed three endothermic peaks (glass transitions and solid melting), with an additional oil-melting peak in high-seed samples. FTIR spectra showed changes in peak intensities and locations upon seed incorporation. Overall, these findings revealed that, the incorporation of date seed powder–starch composites into bakery formulations offers a promising strategy for developing fiber-enriched products, positioning them as functional ingredients with added nutritional value. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

15 pages, 2325 KiB  
Article
Research on Quantitative Analysis Method of Infrared Spectroscopy for Coal Mine Gases
by Feng Zhang, Yuchen Zhu, Lin Li, Suping Zhao, Xiaoyan Zhang and Chaobo Chen
Molecules 2025, 30(14), 3040; https://doi.org/10.3390/molecules30143040 - 20 Jul 2025
Viewed by 237
Abstract
Accurate and reliable detection of coal mine gases is the key to ensuring the safe service of coal mine production. Fourier Transform Infrared (FTIR) spectroscopy, due to its high sensitivity, non-destructive nature, and potential for online monitoring, has emerged as a key technique [...] Read more.
Accurate and reliable detection of coal mine gases is the key to ensuring the safe service of coal mine production. Fourier Transform Infrared (FTIR) spectroscopy, due to its high sensitivity, non-destructive nature, and potential for online monitoring, has emerged as a key technique in gas detection. However, the complex underground environment often causes baseline drift in IR spectra. Furthermore, the variety of gas species and uneven distribution of concentrations make it difficult to achieve precise and reliable online analysis using existing quantitative methods. This paper aims to perform a quantitative analysis of coal mine gases by FTIR. It utilized the adaptive smoothness parameter penalized least squares method to correct the drifted spectra. Subsequently, based on the infrared spectral distribution characteristics of coal mine gases, they could be classified into gases with mutually distinct absorption peaks and gases with overlapping absorption peaks. For gases with distinct absorption peaks, three spectral lines, including the absorption peak and its adjacent troughs, were selected for quantitative analysis. Spline fitting, polynomial fitting, and other curve fitting methods are used to establish a functional relationship between characteristic parameters and gas concentration. For gases with overlapping absorption peaks, a wavelength selection method bassed on the impact values of variables and population analysis was applied to select variables from the spectral data. The selected variables were then used as input features for building a model with a backpropagation (BP) neural network. Finally, the proposed method was validated using standard gases. Experimental results show detection limits of 0.5 ppm for CH4, 1 ppm for C2H6, 0.5 ppm for C3H8, 0.5 ppm for n-C4H10, 0.5 ppm for i-C4H10, 0.5 ppm for C2H4, 0.2 ppm for C2H2, 0.5 ppm for C3H6, 1 ppm for CO, 0.5 ppm for CO2, and 0.1 ppm for SF6, with quantification limits below 10 ppm for all gases. Experimental results show that the absolute error is less than 0.3% of the full scale (F.S.) and the relative error is within 10%. These results demonstrate that the proposed infrared spectral quantitative analysis method can effectively analyze mine gases and achieve good predictive performance. Full article
Show Figures

Figure 1

14 pages, 7197 KiB  
Article
Study on Self-Sharpening Mechanism and Polishing Performance of Triethylamine Alcohol on Gel Polishing Discs
by Yang Lei, Lanxing Xu and Kaiping Feng
Micromachines 2025, 16(7), 816; https://doi.org/10.3390/mi16070816 - 16 Jul 2025
Viewed by 228
Abstract
To address the issue of surface glazing that occurs during prolonged polishing with gel tools, this study employs a triethanolamine (TEA)-based polishing fluid system to enhance the self-sharpening capability of the gel polishing disc. The inhibitory mechanism of TEA concentration on disc glazing [...] Read more.
To address the issue of surface glazing that occurs during prolonged polishing with gel tools, this study employs a triethanolamine (TEA)-based polishing fluid system to enhance the self-sharpening capability of the gel polishing disc. The inhibitory mechanism of TEA concentration on disc glazing is systematically analyzed, along with its impact on the gel disc’s frictional wear behaviour. Furthermore, the synergistic effects of process parameters on both surface quality and material removal rate (MRR) of SiC are examined. The results demonstrate that TEA concentration is a critical factor in regulating polishing performance. At an optimal concentration of 4 wt%, an ideal balance between chemical chelation and mechanical wear is achieved, effectively preventing glazing while avoiding excessive tool wear, thereby ensuring sustained self-sharpening capability and process stability. Through orthogonal experiment optimization, the best parameter combination for SiC polishing is determined: 4 wt% TEA concentration, 98 N polishing pressure, and 90 rpm rotational speed. This configuration delivers both superior surface quality and desirable MRR. Experimental data confirm that TEA significantly enhances the self-sharpening performance of gel discs through its unique complex reaction. During the rough polishing stage, the MRR increases by 34.9% to 0.85 μm/h, while the surface roughness Sa is reduced by 51.3% to 6.29 nm. After subsequent CMP fine polishing, an ultra-smooth surface with a final roughness of 2.33 nm is achieved. Full article
Show Figures

Figure 1

Back to TopTop