Three Solutions for a Double-Phase Variable-Exponent Kirchhoff Problem
Abstract
1. Introduction
2. Mathematical Background and Auxiliary Results
- (i)
- (ii)
- ;
- (iii)
- .
- (i)
- (ii)
- (iii)
- In particular, if is constant, then
- with .
- such that .
- If , then ;
- ;
- If ;
- If ;
- ;
- ;
- ;
- If in , then .
- , are continuous for all with for all .
- and are compact for all with for all .
- If ;
- If .
3. The Main Results
- (a1)
- ;
- (a2)
- for each , the functional is coercive.
- is a Carathéodory function and there exist real parameters satisfying
- There exists a real parameter and with satisfying
- for all ;
- is a -continuous nondecreasing function satisfying
- There exist positive real parameters withsatisfying
- is coercive.
- is Gâteaux-differentiable and the Gâteaux derivative given by the formula foris bounded and continuous.
- is strictly monotone.
- satisfies the -property—that is,
- is coercive and a homeomorphism.
- is sequentially weakly lower semicontinuous.
- a.e. in ;
- a.e. in and for all n.
4. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kirchhoff, G. Mechanik; B.G. Teubner: Leipzig, Germany, 1883. [Google Scholar]
- Zhikov, V.V. Averaging of functionals of the calculus of variations and elasticity theory. Math. USSR-Izv. 1987, 29, 33. [Google Scholar] [CrossRef]
- Baroni, P.; Colombo, M.; Mingione, G. Harnack inequalities for double phase functionals. Nonlinear Anal. Theory Methods Appl. 2015, 121, 206–222. [Google Scholar] [CrossRef]
- Baroni, P.; Colombo, M.; Mingione, G. Regularity for general functionals with double phase. Calc. Var. Partial. Differ. Equ. 2018, 57, 1–48. [Google Scholar] [CrossRef]
- Colombo, M.; Mingione, G. Bounded minimisers of double phase variational integrals. Arch. Ration. Mech. Anal. 2015, 218, 219–273. [Google Scholar] [CrossRef]
- Colombo, M.; Mingione, G. Regularity for double phase variational problems. Arch. Ration. Mech. Anal. 2015, 215, 443–496. [Google Scholar] [CrossRef]
- Marcellini, P. Regularity and existence of solutions of elliptic equations with p, q-growth conditions. J. Differ. Equ. 1991, 90, 1–30. [Google Scholar] [CrossRef]
- Marcellini, P. Regularity of minimizers of integrals of the calculus of variations with non standard growth conditions. Arch. Ration. Mech. Anal. 1989, 105, 267–284. [Google Scholar] [CrossRef]
- Galewski, M.; Motreanu, D. On variational competing (p,q)- Laplacian Dirichlet problem with gradient depending weight. Appl. Math. Lett. 2024, 148, 108881. [Google Scholar] [CrossRef]
- Bu, W.; An, T.; Qian, D.; Li, Y. (p(x),q(x))-Kirchhoff-Type Problems Involving Logarithmic Nonlinearity with Variable Exponent and Convection Term. Fractal Fract. 2022, 6, 255. [Google Scholar] [CrossRef]
- Lapa, E.C.; Rivera, V.P.; Broncano, J.Q. No-flux boundary problems involving p(x)-Laplacian-like operators. Electron. J. Diff. Equ. 2015, 2015, 1–10. [Google Scholar]
- El Ouaarabi, M.; Allalou, C.; Melliani, S. Existence result for Neumann problems with p(x)-Laplacian-like operators in generalized Sobolev spaces. Rend. Del Circ. Mat. Palermo Ser. 2 2023, 72, 1337–1350. [Google Scholar] [CrossRef]
- Albalawi, K.S.; Alharthi, N.H.; Vetro, F. Gradient and parameter dependent Dirichlet (p(x),q(x))-Laplace type problem. Mathematics 2022, 10, 1336. [Google Scholar] [CrossRef]
- Radulescu, V.D. Isotropic and anisotropic double-phase problems: Old and new. Opusc. Math. 2019, 39, 259–279. [Google Scholar] [CrossRef]
- Zuo, J.; Massar, M. On a double phase problem of Kirchhoff-type with variable exponent. Discret. Contin. Dyn. Syst.-S 2024, 17, 3368–3383. [Google Scholar] [CrossRef]
- El Ahmadi, M.; Berrajaa, M.; Ayoujil, A. Existence of two solutions for Kirchhoff-double phase problems with a small perturbation without (AR)-condition. Discret. Contin. Dyn. Syst.-S 2025, 18, 169–181. [Google Scholar] [CrossRef]
- Bonanno, G.; Marano, S.A. On the structure of the critical set of non-differentiable functions with a weak compactness condition. Appl. Anal. 2010, 89, 1–10. [Google Scholar] [CrossRef]
- Cruz-Uribe, D.V.; Fiorenza, A. Variable Lebesgue Spaces: Foundations and Harmonic Analysis; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Diening, L.; Harjulehto, P.; Hästö, P.; Ruzicka, M. Lebesgue and Sobolev Spaces with Variable Exponents; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Edmunds, D.; Rákosník, J. Sobolev embeddings with variable exponent. Stud. Math. 2000, 3, 267–293. [Google Scholar] [CrossRef]
- Fan, X.; Zhao, D. On the spaces Lp(x)(Ω) and Wm,p(x)(Ω). J. Math. Anal. Appl. 2001, 263, 424–446. [Google Scholar] [CrossRef]
- Radulescu, V.D.; Repovs, D.D. Partial Differential Equations with Variable Exponents: Variational Methods and Qualitative Analysis; CRC Press: Boca Raton, FL, USA, 2015; Volume 9. [Google Scholar]
- Crespo-Blanco, Á.; Gasiński, L.; Harjulehto, P.; Winkert, P. A new class of double phase variable exponent problems: Existence and uniqueness. J. Differ. Equ. 2022, 323, 182–228. [Google Scholar] [CrossRef]
- Avci, M. Positive ground state solutions to a nonlocal singular elliptic problem. Canad. J. Appl. Math. 2019, 1, 1–14. [Google Scholar]
- Avci, M. Existence results for a class of singular p(x)-Kirchhoff equations. Complex Var. Elliptic Equ. 2025, 70, 1222–1253. [Google Scholar] [CrossRef]
- Bogachev, V. Measure Theory; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Massar, M. Existence results for an anisotropic variable exponent Kirchhoff-type problem. Complex Var. Elliptic Equ. 2024, 69, 234–251. [Google Scholar] [CrossRef]
- Lindqvist, P. Notes on the Stationary p-Laplace Equation; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Royden, H.; Fitzpatrick, P.M. Real Analysis; China Machine Press: Beijing, China, 2010. [Google Scholar]
- Zeidler, E. Nonlinear Functional Analysis and Its Applications: II/B: Nonlinear Monotone Operators; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Avci, M. Three Solutions for a Double-Phase Variable-Exponent Kirchhoff Problem. Mathematics 2025, 13, 2462. https://doi.org/10.3390/math13152462
Avci M. Three Solutions for a Double-Phase Variable-Exponent Kirchhoff Problem. Mathematics. 2025; 13(15):2462. https://doi.org/10.3390/math13152462
Chicago/Turabian StyleAvci, Mustafa. 2025. "Three Solutions for a Double-Phase Variable-Exponent Kirchhoff Problem" Mathematics 13, no. 15: 2462. https://doi.org/10.3390/math13152462
APA StyleAvci, M. (2025). Three Solutions for a Double-Phase Variable-Exponent Kirchhoff Problem. Mathematics, 13(15), 2462. https://doi.org/10.3390/math13152462