Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,298)

Search Parameters:
Keywords = C–N cycle

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 8052 KiB  
Article
Unraveling TNXB Epigenetic Alterations Through Genome-Wide DNA Methylation Analysis and Their Implications for Colorectal Cancer
by Jesús Pilo, Alejandro Rego-Calvo, Libia-Alejandra García-Flores, Isabel Arranz-Salas, Ana Isabel Alvarez-Mancha, Andrea G. Izquierdo, Ana B. Crujeiras, Julia Alcaide, Maria Ortega-Castan, Hatim Boughanem and Manuel Macías-González
Int. J. Mol. Sci. 2025, 26(15), 7197; https://doi.org/10.3390/ijms26157197 - 25 Jul 2025
Abstract
Aberrant DNA methylation has been shown to be a fingerprint characteristic in human colorectal tumors. In this study, we hypothesize that investigating global DNA methylation could offer potential candidates for clinical application in CRC. The epigenome-wide association analysis was conducted in both the [...] Read more.
Aberrant DNA methylation has been shown to be a fingerprint characteristic in human colorectal tumors. In this study, we hypothesize that investigating global DNA methylation could offer potential candidates for clinical application in CRC. The epigenome-wide association analysis was conducted in both the tumor area (N = 27) and the adjacent tumor-free (NAT) area (N = 15). We found 78,935 differentially methylated CpG sites (DMCs) (FDR < 0.05), 42,888 hypomethylated and 36,047 hypermethylation showing overall hypomethylation. Gene ontology and KEGG analysis of differentially methylated genes showed significant enrichment in developmental genes, as well as in genes involved in metabolic processes and the cell cycle, such as the TFGβ and cAMP signaling pathways. Through filtered analysis, we identified TNXB as the most epigenetically dysregulated gene, hypomethylated and downregulated in CRC (both with p < 0.001) and associated with poor overall survival. In the functional analysis, TNXB was epigenetically regulated in a dose-dependent manner, suggesting a potential role in CRC. The epigenetic dysregulation and functional role of TNXB in CRC could have clinical implications, serving as indicators of malignant potential, with adverse effects associated with disease origin and progression in CRC. Full article
(This article belongs to the Special Issue Advancements in Cancer Biomarkers)
Show Figures

Figure 1

15 pages, 1897 KiB  
Article
Dual Mechanisms of Nitrate in Alleviating Ammonium Toxicity: Enhanced Photosynthesis and Optimized Ammonium Utilization in Orychophragmus violaceus
by Kaiyan Zhang, Haitao Li, Hongtao Hang, Xinhua He and Yanyou Wu
Agronomy 2025, 15(8), 1789; https://doi.org/10.3390/agronomy15081789 - 25 Jul 2025
Abstract
Ammonium (NH4+) toxicity impairs plant growth, but nitrate (NO3) can mitigate this effect through unresolved mechanisms. Using leaf δ13C values (photosynthetic capacity) and a bidirectional 15N tracer (NH4+ assimilation efficiency and source [...] Read more.
Ammonium (NH4+) toxicity impairs plant growth, but nitrate (NO3) can mitigate this effect through unresolved mechanisms. Using leaf δ13C values (photosynthetic capacity) and a bidirectional 15N tracer (NH4+ assimilation efficiency and source utilization), this study investigated these mechanisms in 35-day-old Orychophragmus violaceus plantlets grown in modified Murashige and Skoog media under varying NH4+:NO3 ratios. 15N isotope fractionation during NH4+ (same fixed 20 mM NH4Cl) assimilation decreased with increasing NO3 supply (10, 20, and 40 mM NaNO3). Under 20 mM NH4+15N = −2.64‰) at two 15NO3-labels (δ15N-NO3 = 8.08‰, low 15N, L) and (δ15N-NO3 = 22.67‰, high 15N, H), increasing NO3 concentrations enhanced NO3 assimilation, alleviating acidic stress from NH4+ and improving photosynthesis. Higher NO3 levels also increased NH4+ utilization efficiency, reducing futile NH4+ cycling and decreasing associated 15N fractionation during assimilation. Our results demonstrate that NO3 alleviates NH4+ toxicity primarily by enhancing photosynthetic performance and optimizing NH4+ utilization efficiency. Full article
Show Figures

Figure 1

26 pages, 8282 KiB  
Article
Performance Evaluation of Robotic Harvester with Integrated Real-Time Perception and Path Planning for Dwarf Hedge-Planted Apple Orchard
by Tantan Jin, Xiongzhe Han, Pingan Wang, Yang Lyu, Eunha Chang, Haetnim Jeong and Lirong Xiang
Agriculture 2025, 15(15), 1593; https://doi.org/10.3390/agriculture15151593 - 24 Jul 2025
Abstract
Apple harvesting faces increasing challenges owing to rising labor costs and the limited seasonal workforce availability, highlighting the need for robotic harvesting solutions in precision agriculture. This study presents a 6-DOF robotic arm system designed for harvesting in dwarf hedge-planted orchards, featuring a [...] Read more.
Apple harvesting faces increasing challenges owing to rising labor costs and the limited seasonal workforce availability, highlighting the need for robotic harvesting solutions in precision agriculture. This study presents a 6-DOF robotic arm system designed for harvesting in dwarf hedge-planted orchards, featuring a lightweight perception module, a task-adaptive motion planner, and an adaptive soft gripper. A lightweight approach was introduced by integrating the Faster module within the C2f module of the You Only Look Once (YOLO) v8n architecture to optimize the real-time apple detection efficiency. For motion planning, a Dynamic Temperature Simplified Transition Adaptive Cost Bidirectional Transition-Based Rapidly Exploring Random Tree (DSA-BiTRRT) algorithm was developed, demonstrating significant improvements in the path planning performance. The adaptive soft gripper was evaluated for its detachment and load-bearing capacities. Field experiments revealed that the direct-pull method at 150 mN·m torque outperformed the rotation-pull method at both 100 mN·m and 150 mN·m. A custom control system integrating all components was validated in partially controlled orchards, where obstacle clearance and thinning were conducted to ensure operation safety. Tests conducted on 80 apples showed a 52.5% detachment success rate and a 47.5% overall harvesting success rate, with average detachment and full-cycle times of 7.7 s and 15.3 s per apple, respectively. These results highlight the system’s potential for advancing robotic fruit harvesting and contribute to the ongoing development of autonomous agricultural technologies. Full article
(This article belongs to the Special Issue Agricultural Machinery and Technology for Fruit Orchard Management)
Show Figures

Figure 1

19 pages, 6502 KiB  
Article
Facile Synthesis of β-C3N4 and Its Novel MnTeO3 Nanohybrids for Remediating Water Contaminated by Pharmaceuticals
by Mohamed R. Elamin, Nuha Y. Elamin, Tarig G. Ibrahim, Mutaz Salih, Abuzar Albadri, Rasha Ramadan and Babiker Y. Abdulkhair
Processes 2025, 13(8), 2357; https://doi.org/10.3390/pr13082357 - 24 Jul 2025
Abstract
A facile method was adopted to fabricate β-C3N4, and it was then doped with manganese and tellurium to obtain novel 10%MnTeO3@β-C3N4 (10%MnTe@β) and 20%MnTeO3@β-C3N4 (20%MnTe@β) nanohybrids. The β-C3 [...] Read more.
A facile method was adopted to fabricate β-C3N4, and it was then doped with manganese and tellurium to obtain novel 10%MnTeO3@β-C3N4 (10%MnTe@β) and 20%MnTeO3@β-C3N4 (20%MnTe@β) nanohybrids. The β-C3N4, 10%MnTe@β, and 20%MnTe@β showed surface areas of 85.86, 97.40, and 109.54 m2 g−1, respectively. Using ciprofloxacin (CIP) as a pollutant example, 10%MnTe@β and 20%MnTe@β attained equilibrium at 60 and 45 min with qt values of 48.88 and 77.41 mg g−1, respectively, and both performed better at pH = 6.0. The kinetic studies revealed a better agreement with the pseudo-second-order model for CIP sorption on 10%MnTe@β and 20%MnTe@β, indicating that the sorption was controlled by a liquid film mechanism, which suggests a high affinity of CIP toward 10%MnTe@β and 20%MnTe@β. The sorption equilibria outputs indicated better alignment with the Freundlich and Langmuir models for CIP removal by 10%MnTe@β and 20%MnTe@β, respectively. The thermodynamic analysis revealed that CIP removal by 10%MnTe@β and 20%MnTe@β was exothermic, which turned more spontaneous as the temperature decreased. Applying 20%MnTe@β as the best sorbent to groundwater and seawater spiked with CIP resulted in average efficiencies of 94.8% and 91.08%, respectively. The 20%MnTe@β regeneration–reusability average efficiency was 95.14% within four cycles, which might nominate 20%MnTe@β as an efficient and economically viable sorbent for remediating CIP-contaminated water. Full article
Show Figures

Figure 1

16 pages, 2877 KiB  
Article
Functional Disruption of IQGAP1 by Truncated PALB2 in Two Cases of Breast Cancer: Implications for Proliferation and Invasion
by Natalia-Dolores Pérez-Rodríguez, Rita Martín-Ramírez, Rebeca González-Fernández, María del Carmen Maeso, Julio Ávila and Pablo Martín-Vasallo
Biomedicines 2025, 13(8), 1804; https://doi.org/10.3390/biomedicines13081804 - 23 Jul 2025
Viewed by 63
Abstract
Background/Objectives: Truncating mutations in PALB2, a critical component of the BRCA1-PALB2-BRCA2 homologous recombination repair complex, are associated with increased risk and aggressiveness of breast cancer. The consequences of PALB2 truncation on the expression, localization, and functional dynamics of the scaffold protein IQGAP1 [...] Read more.
Background/Objectives: Truncating mutations in PALB2, a critical component of the BRCA1-PALB2-BRCA2 homologous recombination repair complex, are associated with increased risk and aggressiveness of breast cancer. The consequences of PALB2 truncation on the expression, localization, and functional dynamics of the scaffold protein IQGAP1 were investigated in this study based on two cases of truncated PALB2 human breast invasive ductal carcinoma (IDC), specifically, c.1240C>T (p.Arg414*) and c.2257C>T (p.Arg753*). Methods: Using confocal microscopy, we examined co-expression patterns of IQGAP1 with PALB2, PCNA, CK7, and β-tubulin in tumor tissues from both control cancer and PALB2-mutated cases. Results: In PALB2-truncated tumors, IQGAP1 exhibited enhanced peripheral and plasma membrane localization with elevated co-localization levels compared to controls, suggesting altered cytoskeletal organization. PALB2 truncation increased nuclear and cytoplasmic N-terminal PALB2 immunoreactivity, indicating the presence of truncated isoforms disrupting the homologous recombination repair system. Co-expression analyses with PCNA revealed an inverse expression pattern between IQGAP1 and proliferation markers, suggesting S-phase cell cycle-dependent heterogeneity. Furthermore, the loss of IQGAP1 dominance over CK7 and β-tubulin in mutant tumors, along with persistent intercellular spacing, implied a loss of cell–cell cohesion and the acquisition of invasive traits. Conclusions: These data support a model where PALB2 truncation triggers a reorganization of IQGAP1 that disrupts its canonical structural functions and facilitates tumor progression via enhanced motility and impaired cell–cell interaction. IQGAP1 thus serves as both a functional effector and potential biomarker in PALB2-mutated IDC, opening novel paths for diagnosis and targeted therapeutic intervention. Full article
(This article belongs to the Section Cancer Biology and Oncology)
Show Figures

Figure 1

26 pages, 312 KiB  
Article
REN+HOMES Positive Carbon Building Methodology in Co-Design with Residents
by Dorin Beu, Alessio Pacchiana, Elena Rastei, Horaţiu Albu and Theodor Contolencu
Architecture 2025, 5(3), 51; https://doi.org/10.3390/architecture5030051 - 23 Jul 2025
Viewed by 61
Abstract
This article demonstrates how positioning residents as active co-designers fundamentally transforms both the process and outcomes of carbon-positive building development. Through structured collaborative workshops, shared decision-making protocols, and continuous partnership throughout the building lifecycle, the REN+HOMES Positive Carbon Building methodology challenges the conventional [...] Read more.
This article demonstrates how positioning residents as active co-designers fundamentally transforms both the process and outcomes of carbon-positive building development. Through structured collaborative workshops, shared decision-making protocols, and continuous partnership throughout the building lifecycle, the REN+HOMES Positive Carbon Building methodology challenges the conventional expert-driven approach to sustainable construction. Developed and validated through the H2020 REN+HOMES project, this resident-centered approach achieved remarkable technical performance—65.9% reduction in final energy demand—while simultaneously enhancing community ownership and long-term sustainability practices. By integrating participatory design with Zero Emissions Building (ZEB) criteria, renewable energy systems, and national carbon offset programs, the methodology proves that resident collaboration is not merely beneficial but essential for creating buildings that truly serve both environmental and human needs. This research establishes a new paradigm where technical excellence emerges from authentic partnership between residents and sustainability experts, offering a replicable framework for community-driven environmental regeneration. Full article
12 pages, 395 KiB  
Article
Effects of Translucency-Enhancing Coloring Liquids on the Mechanical Properties of 3Y- and 4Y-TZP Zirconia Ceramics
by Andreas Pfeffer, Sebastian Hahnel, Angelika Rauch and Martin Rosentritt
Ceramics 2025, 8(3), 92; https://doi.org/10.3390/ceramics8030092 - 22 Jul 2025
Viewed by 137
Abstract
The aim of translucency-enhancing liquids (TEL) is to locally influence the phase composition of zirconia in order to increase its translucency. This study aimed to determine the influence of TEL on 3Y- and 4Y-TZP zirconia concerning roughness, hardness, wear, flexural strength, dynamic stability [...] Read more.
The aim of translucency-enhancing liquids (TEL) is to locally influence the phase composition of zirconia in order to increase its translucency. This study aimed to determine the influence of TEL on 3Y- and 4Y-TZP zirconia concerning roughness, hardness, wear, flexural strength, dynamic stability and fracture force of fixed dental prostheses after thermal cycling and mechanical loading. Two zirconia materials (4Y-TZP; 3Y-TZP-LA, n = 8 per material and test) were investigated with and without prior application of TEL. Two-body wear tests were performed in a pneumatic pin-on-block design (50 N, 120,000 cycles, 1.6 Hz) with steatite balls (r = 1.5 mm) as antagonists. Mean and maximum vertical loss as well as roughness (Ra, Rz) were measured with a 3D laser-scanning microscope (KJ 3D, Keyence, J). Antagonist wear was determined as percent area of the projected antagonist area. Martens hardness (HM; ISO 14577-1) and biaxial flexural strength (BFS; ISO 6872) were investigated. The flexural fatigue limit BFSdyn was determined under cyclic loading in a staircase approach with a piston-on-three-ball-test. Thermal cycling and mechanical loading (TCML: 2 × 3000 × 5 °C/55 °C, 2 min/cycle, H2O dist., 1.2 × 106 force á 50 N) was performed on four-unit fixed dental prostheses (FDPs) (n = 8 per group) and the fracture force after TCML was determined. Statistics: ANOVA, Bonferroni test, Kaplan–Meier survival, Pearson correlation; α = 0.05. TEL application significantly influences roughness, hardness, biaxial flexural strength, dynamic performance, as well as fracture force after TCML in 3Y-TZP. For 4Y-TZP, a distinct influence of TEL was only identified for BFS. The application of TEL on 3Y- or 4Y-TZP did not affect wear. TEL application has a strong effect on the mechanical properties of 3Y-TZP and minor effects on 4Y-TZP. All effects of the TEL application are of a magnitude that is unlikely to restrict clinical application. Full article
(This article belongs to the Special Issue Advances in Ceramics, 3rd Edition)
Show Figures

Graphical abstract

12 pages, 11599 KiB  
Article
Dual pH- and Temperature-Responsive Fluorescent Hybrid Materials Based on Carbon Dot-Grafted Triamino-Tetraphenylethylene/N-Isopropylacrylamide Copolymers
by Huan Liu, Yuxin Ding, Longping Zhou, Shirui Xu and Bo Liao
C 2025, 11(3), 53; https://doi.org/10.3390/c11030053 - 22 Jul 2025
Viewed by 89
Abstract
Carbon dots (CDs), a class of carbon-based fluorescent nanomaterials, have garnered significant attention due to their tunable optical properties and functional versatility. In this study, we developed a hybrid material by grafting pH- and temperature-responsive copolymers onto CDs via reversible addition-fragmentation chain-transfer (RAFT) [...] Read more.
Carbon dots (CDs), a class of carbon-based fluorescent nanomaterials, have garnered significant attention due to their tunable optical properties and functional versatility. In this study, we developed a hybrid material by grafting pH- and temperature-responsive copolymers onto CDs via reversible addition-fragmentation chain-transfer (RAFT) polymerization. Triamino-tetraphenylethylene (ATPE) and N-isopropylacrylamide (NIPAM) were copolymerized at varying ratios and covalently linked to CDs, forming a dual-responsive system. Structural characterization using FTIR, 1H NMR, and TEM confirmed the successful grafting of the copolymers onto CDs. The hybrid material exhibited pH-dependent fluorescence changes in acidic aqueous solutions, with emission shifting from 450 nm (attributed to CDs) to 500 nm (aggregation-induced emission, AIE, from ATPE) above a critical pH threshold. Solid films of the hybrid material demonstrated reversible fluorescence quenching under HCl vapor and recovery/enhancement under NH3 vapor, showing excellent fatigue resistance over multiple cycles. Temperature responsiveness was attributed to the thermosensitive poly(NIPAM) segments, with fluorescence intensity increasing above 35 °C due to polymer chain collapse and ATPE aggregation. This work provides a strategy for designing multifunctional hybrid materials with potential applications in recyclable optical pH/temperature sensors. Full article
Show Figures

Graphical abstract

21 pages, 4597 KiB  
Article
Preparation of Non-Covalent BPTCD/g-C3N4 Heterojunction Photocatalysts and Photodegradation of Organic Dyes Under Solar Irradiation
by Xing Wei, Gaopeng Jia, Ru Chen and Yalong Zhang
Nanomaterials 2025, 15(14), 1131; https://doi.org/10.3390/nano15141131 - 21 Jul 2025
Viewed by 171
Abstract
In this study, the BPTCD/g-C3N4 heterojunction photocatalyst was successfully prepared by the hydrothermal method. BPTCD (3,3′,4,4′-benzophenone tetracarboxylic dianhydride) is immobilised on the surface of g-C3N4 by non-covalent π-π stacking. The BPTCD/g-C3N4 heterojunction photocatalyst is [...] Read more.
In this study, the BPTCD/g-C3N4 heterojunction photocatalyst was successfully prepared by the hydrothermal method. BPTCD (3,3′,4,4′-benzophenone tetracarboxylic dianhydride) is immobilised on the surface of g-C3N4 by non-covalent π-π stacking. The BPTCD/g-C3N4 heterojunction photocatalyst is an all-organic photocatalyst with significantly improved photocatalytic performance compared with g-C3N4. BPTCD/g-C3N4-60% was able to effectively degrade MO solution (10 mg/L) to 99.9% and 82.8% in 60 min under full spectrum and visible light. The TOC measurement results indicate that MO can ultimately be decomposed into H2O and CO2 through photocatalytic action. The photodegradation of methyl orange by BPTCD/g-C3N4 composite materials under sunlight is mainly attributed to the successful construction of the heterojunction structure and its excellent π-π stacking effect. Superoxide radicals (O2) were found to be the main active species, while OH and h+ played a secondary role. The synthesised BPTCD/g-C3N4 also showed excellent stability in the activity of photodegradation of MO in wastewater, with the performance remaining above 90% after three cycles. The mechanism of the photocatalytic removal of MO dyes was also investigated by the trap agent experiments. Additionally, BPTCD/g-C3N4-60% demonstrated exceptional photodegradation performance in the degradation of methylene blue (MB). BPTCD/g-C3N4 heterojunctions have great potential to degrade organic pollutants in wastewater under solar irradiation conditions. Full article
(This article belongs to the Section Environmental Nanoscience and Nanotechnology)
Show Figures

Figure 1

17 pages, 2818 KiB  
Article
Carbon Density Change Characteristics and Driving Factors During the Natural Succession of Forests on Xinglong Mountain in the Transition Zone Between the Qinghai–Tibet and Loess Plateaus
by Wenzhen Zong, Zhengni Chen, Quanlin Ma, Lei Ling and Yiming Zhong
Atmosphere 2025, 16(7), 890; https://doi.org/10.3390/atmos16070890 - 20 Jul 2025
Viewed by 147
Abstract
The transition zone between the Qinghai–Tibet and Loess Plateaus is an important ecological functional area and carbon (C) reservoir in China. Studying the main drivers of C density changes in forest ecosystems is crucial to enhance the C sink potential of those ecosystems [...] Read more.
The transition zone between the Qinghai–Tibet and Loess Plateaus is an important ecological functional area and carbon (C) reservoir in China. Studying the main drivers of C density changes in forest ecosystems is crucial to enhance the C sink potential of those ecosystems in ecologically fragile regions. In this study, four stand types at different succession stages in the transition zone of Xinglong Mountain were selected as the study objective. The C densities of the ecosystem, vegetation, plant debris, and soil of each stand type were estimated, and the related driving factors were quantified. The results showed that the forest ecosystem C density continuously increased significantly with natural succession (381.23 Mg/hm2 to 466.88 Mg/hm2), indicating that the ecosystem has a high potential for C sequestration with progressive forest succession. The increase in ecosystem C density was mainly contributed to by the vegetation C density, which was jointly affected by the vegetation characteristics (C sink, mean diameter at breast height, mean tree height), litter C/N (nitrogen), and surface soil C/N, with factors explaining 95.1% of the variation in vegetation C density, while the net effect of vegetation characteristics was the strongest (13.9%). Overall, this study provides a new insight for understanding the C cycle mechanism in ecologically fragile areas and further improves the theoretical framework for understanding the C sink function of forest ecosystems. Full article
(This article belongs to the Section Biosphere/Hydrosphere/Land–Atmosphere Interactions)
Show Figures

Figure 1

16 pages, 2268 KiB  
Article
Epichloë Endophyte Alters Bacterial Nitrogen-Cycling Gene Abundance in the Rhizosphere Soil of Perennial Ryegrass
by Munire Maimaitiyiming, Yanxiang Huang, Letian Jia, Mofan Wu and Zhenjiang Chen
Biology 2025, 14(7), 879; https://doi.org/10.3390/biology14070879 - 18 Jul 2025
Viewed by 164
Abstract
Perennial ryegrass (Lolium perenne), an important forage and turfgrass species, can establish a mutualistic symbiosis with the fungal endophyte Epichloë festucae var. lolii. Although the physiological and ecological impacts of endophyte infection on ryegrass have been extensively investigated, the response of [...] Read more.
Perennial ryegrass (Lolium perenne), an important forage and turfgrass species, can establish a mutualistic symbiosis with the fungal endophyte Epichloë festucae var. lolii. Although the physiological and ecological impacts of endophyte infection on ryegrass have been extensively investigated, the response of the soil microbial community and nitrogen-cycling gene to this relationship has received much less attention. The present study emphasized abundance and diversity variation in the AOB-amoA, nirK and nosZ functional genes in the rhizosphere soil of the endophyte–ryegrass symbiosis following litter addition. We sampled four times: at T0 (prior to first litter addition), T1 (post 120 d of 1st litter addition), T2 (post 120 d of 2nd litter addition) and T3 (post 120 d of 3rd litter addition) times. Real-time fluorescence quantitative PCR (qPCR) and PCR amplification and sequencing were used to characterize the abundance and diversity of the AOB-amoA, nirK and nosZ genes in rhizosphere soils of endophyte-infected (E+) plants and endophyte-free (E−) plants. A significant enhancement of total Phosphorus (P), Soil Organic Carbon (SOC), Ammonium ion (NH4+) and Nitrate ion (NO3) contents in the rhizosphere soil was recorded in endophyte-infected plants at different sampling times compared to endophyte-free plants (p ≤ 0.05). The absolute abundance of the AOB-amoA gene at T0 and T1 times was higher, as was the absolute abundance of the nosZ gene at T0, T1 and T3 times in the E+ plant rhizophere soils relative to E− plant rhizosphere soils. A significant change in relative abundance of the AOB-amoA and nosZ genes in the host rhizophere soils of endophyte-infected plants at T1 and T3 times was observed. The experiment failed to show any significant alteration in abundance and diversity of the nirK gene, and diversity of the AOB-amoA and nosZ genes. Analysis of the abundance and diversity of the nirK gene indicated that changes in soil properties accounted for approximately 70.38% of the variation along the first axis and 16.69% along the second axis, and soil NH4+ (p = 0.002, 50.4%) and soil C/P ratio (p = 0.012, 15.8%) had a strong effect. The changes in community abundance and diversity of the AOB-amoA and nosZ genes were mainly related to soil pH, N/P ratio and NH4+ content. The results demonstrate that the existence of tripartite interactions among the foliar endophyte E. festucae var. Lolii, L. perenne and soil nitrogen-cycling gene has important implications for reducing soil losses on N. Full article
(This article belongs to the Collection Plant Growth-Promoting Bacteria: Mechanisms and Applications)
Show Figures

Figure 1

37 pages, 911 KiB  
Review
Expression of Free Radicals and Reactive Oxygen Species in Endometriosis: Current Knowledge and Its Implications
by Jeongmin Lee, Seung Geun Yeo, Jae Min Lee, Sung Soo Kim, Jin-Woo Lee, Namhyun Chung and Dong Choon Park
Antioxidants 2025, 14(7), 877; https://doi.org/10.3390/antiox14070877 - 17 Jul 2025
Viewed by 285
Abstract
This review explores the dual role of reactive oxygen species (ROS) and free radicals in the pathogenesis of endometriosis, aiming to deepen our understanding of these processes through a systematic literature review. To assess the induction and involvement of ROS in endometriosis, we [...] Read more.
This review explores the dual role of reactive oxygen species (ROS) and free radicals in the pathogenesis of endometriosis, aiming to deepen our understanding of these processes through a systematic literature review. To assess the induction and involvement of ROS in endometriosis, we conducted a comprehensive literature review using Cochrane Libraries, EMBASE, Google Scholar, PubMed, and SCOPUS databases. Of 30 qualifying papers ultimately reviewed, 28 reported a significant contribution of ROS to the pathogenesis of endometriosis, while two found no association. The presence of ROS in endometriosis is associated with infertility, irregular menstrual cycles, painful menstruation, and chronic pelvic discomfort. Among individual ROS types studied, hydrogen peroxide was most frequently investigated, followed by lipid peroxides and superoxide radicals. Notable polymorphisms associated with ROS in endometriosis include those for AT-rich interactive domain 1A (ARID1A) and quinone oxidoreductase 1 (NQO1) isoforms. Key enzymes for ROS scavenging and detoxification include superoxide dismutase, glutathione, and glutathione peroxidase. Effective inhibitors of ROS related to endometriosis are vitamins C and E, astaxanthin, fatty acid-binding protein 4, cerium oxide nanoparticles (nanoceria), osteopontin, sphingosine 1-phosphate, N-acetyl-L-cysteine, catalase, and a high-antioxidant diet. Elevated levels of ROS and free radicals are involved in the pathogenesis of endometriosis, suggesting that targeting these molecules could offer potential therapeutic strategies. Full article
Show Figures

Figure 1

31 pages, 2679 KiB  
Article
Gut Microbial Postbiotics as Potential Therapeutics for Lymphoma: Proteomics Insights of the Synergistic Effects of Nisin and Urolithin B Against Human Lymphoma Cells
by Ahmad K. Al-Khazaleh, Muhammad A. Alsherbiny, Gerald Münch, Dennis Chang and Deep Jyoti Bhuyan
Int. J. Mol. Sci. 2025, 26(14), 6829; https://doi.org/10.3390/ijms26146829 - 16 Jul 2025
Viewed by 362
Abstract
Lymphoma continues to pose a significant global health burden, highlighting the urgent need for novel therapeutic strategies. Recent advances in microbiome research have identified gut-microbiota-derived metabolites, or postbiotics, as promising candidates in cancer therapy. This study investigates the antiproliferative and mechanistic effects of [...] Read more.
Lymphoma continues to pose a significant global health burden, highlighting the urgent need for novel therapeutic strategies. Recent advances in microbiome research have identified gut-microbiota-derived metabolites, or postbiotics, as promising candidates in cancer therapy. This study investigates the antiproliferative and mechanistic effects of two postbiotics, Nisin (N) and Urolithin B (UB), individually and in combination, against the human lymphoma cell line HKB-11. Moreover, this study evaluated cytotoxic efficacy and underlying molecular pathways using a comprehensive experimental approach, including the Alamar Blue assay, combination index (CI) analysis, flow cytometry, reactive oxygen species (ROS) quantification, and bottom-up proteomics. N and UB displayed notable antiproliferative effects, with IC50 values of 1467 µM and 87.56 µM, respectively. Importantly, their combination at a 4:6 ratio demonstrated strong synergy (CI = 0.09 at IC95), significantly enhancing apoptosis (p ≤ 0.0001) and modulating oxidative stress. Proteomic profiling revealed significant regulation of key proteins related to lipid metabolism, mitochondrial function, cell cycle control, and apoptosis, including upregulation of COX6C (Log2FC = 2.07) and downregulation of CDK4 (Log2FC = −1.26). These findings provide mechanistic insights and underscore the translational potential of postbiotics in lymphoma treatment. Further preclinical and clinical investigations are warranted to explore their role in therapeutic regimens. Full article
Show Figures

Figure 1

18 pages, 1414 KiB  
Article
Field Validation of the DNDC-Rice Model for Crop Yield, Nitrous Oxide Emissions and Carbon Sequestration in a Soybean System with Rye Cover Crop Management
by Qiliang Huang, Nobuko Katayanagi, Masakazu Komatsuzaki and Tamon Fumoto
Agriculture 2025, 15(14), 1525; https://doi.org/10.3390/agriculture15141525 - 15 Jul 2025
Viewed by 312
Abstract
The DNDC-Rice model effectively simulates yield and greenhouse gas emissions within a paddy system, while its performance under upland conditions remains unclear. Using data from a long-term cover crop experiment (fallow [FA] vs. rye [RY]) in a soybean field, this study validated the [...] Read more.
The DNDC-Rice model effectively simulates yield and greenhouse gas emissions within a paddy system, while its performance under upland conditions remains unclear. Using data from a long-term cover crop experiment (fallow [FA] vs. rye [RY]) in a soybean field, this study validated the DNDC-Rice model’s performance in simulating soil dynamics, crop growth, and C-N cycling processes in upland systems through various indicators, including soil temperature, water-filled pore space (WFPS), soybean biomass and yield, CO2 and N2O fluxes, and soil organic carbon (SOC). Based on simulated results, the underestimation of cumulative N2O flux (25.6% in FA and 5.1% in RY) was attributed to both underestimated WFPS and the algorithm’s limitations in simulating N2O emission pulses. Overestimated soybean growth increased respiration, leading to the overestimation of CO2 flux. Although the model captured trends in SOC stock, the simulated annual values differed from observations (−9.9% to +10.1%), potentially due to sampling errors. These findings indicate that the DNDC-Rice model requires improvements in its N cycling algorithm and crop growth sub-models to improve predictions for upland systems. This study provides validation evidence for applying DNDC-Rice to upland systems and offers direction for improving model simulation in paddy-upland rotation systems, thereby enhancing its applicability in such contexts. Full article
(This article belongs to the Special Issue Detection and Management of Agricultural Non-Point Source Pollution)
Show Figures

Figure 1

17 pages, 4663 KiB  
Article
Low-Cycle Fatigue Behavior of Nuclear-Grade Austenitic Stainless Steel Fabricated by Additive Manufacturing
by Jianhui Shi, Huiqiang Liu, Zhengping Liu, Runzhong Wang, Huanchun Wu, Haitao Dong, Xinming Meng and Min Yu
Crystals 2025, 15(7), 644; https://doi.org/10.3390/cryst15070644 - 13 Jul 2025
Viewed by 282
Abstract
The application of additive manufacturing technology in the field of nuclear power is becoming increasingly promising. The low-cycle fatigue behavior of Z2CN19-10 controlled-nitrogen-content stainless steel (SS) was investigated by fatigue equipment, scanning electron microscopy (SEM), electron backscatter diffraction (EBSD), and transmission electron microscopy [...] Read more.
The application of additive manufacturing technology in the field of nuclear power is becoming increasingly promising. The low-cycle fatigue behavior of Z2CN19-10 controlled-nitrogen-content stainless steel (SS) was investigated by fatigue equipment, scanning electron microscopy (SEM), electron backscatter diffraction (EBSD), and transmission electron microscopy (TEM), including additive manufactured (AM) and forged materials. The results showed that the microstructure of the AM material exhibited anisotropy for the X, Y, and Z directions. The tensile and impact properties of the X, Y, and Z directions in AM material were similar. The fatigue life (Nf) of X- and Y-direction specimens was better than that of Z-direction specimens. The tensile, impact, and fatigue properties of all AM materials were lower than those of the forged specimens. The Z direction specimens of AM material showed the best plastic strain by the highest transition fatigue life (NT) during the fatigue strain amplitude at 0.3% to 0.6%. The forged specimens showed the best fatigue properties under the plastic strain amplitude control mode. Fatigue fracture surfaces of AM and forged materials exhibited multi- and single-fatigue crack initiation sites, respectively. This could be attributed to the presence of incompletely melted particles and manufacturing defects inside the AM specimens. The dislocation morphology of AM and forged fatigue specimens was observed to study the low-cycle fatigue behaviors in depth. Full article
Show Figures

Figure 1

Back to TopTop