Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (120)

Search Parameters:
Keywords = C–H–O–S isotopes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 3320 KB  
Article
Origin of Archean Orogenic Gold Mineralization in the Atlantic City–South Pass District, Wyoming, USA: A Metamorphic Dehydration Versus Magmatic-Hydrothermal Model
by K. I. McGowan and Paul G. Spry
Minerals 2026, 16(2), 160; https://doi.org/10.3390/min16020160 - 30 Jan 2026
Viewed by 165
Abstract
The Atlantic City–South Pass (ACSP) orogenic gold district, Wind River Mountains, Wyoming, occurs in the Archean South Pass Greenstone Belt primarily within greywackes and igneous rocks metamorphosed to the upper greenschist–lower amphibolite facies. Approximately 10 Mt of gold has been produced from pyrite [...] Read more.
The Atlantic City–South Pass (ACSP) orogenic gold district, Wind River Mountains, Wyoming, occurs in the Archean South Pass Greenstone Belt primarily within greywackes and igneous rocks metamorphosed to the upper greenschist–lower amphibolite facies. Approximately 10 Mt of gold has been produced from pyrite and arsenopyrite-bearing quartz veins in deformation zones at the brittle–ductile transition. Multiple generations of primary and/or pseudosecondary fluid inclusions in gold-bearing quartz veins include one- and two-phase gaseous CO2-CH4 ± N2 inclusions and two- and three-phase gaseous CO2-CH4-H2O inclusions with rare NaCl daughter minerals. These primary/pseudosecondary inclusions show a broad range of homogenization temperatures (Th) of 177.2 to 420.0 °C, with salinities of halite-bearing inclusions of >26 wt. % NaCl, with a high concentration of CaCl2. Secondary aqueous inclusions formed at lower values of Th (80.9 to 243.4 °C, with one outlier of 301.1 °C). Carbon from graphitic schists associated with gold-quartz veins yields values of δ13C = −28.5 to −19.1 per mil, suggesting that the light C isotope compositions of some carbonates (δ13C = −11.0 to −1.5 per mil) involved exchange reactions with graphite in the schists. Isotopic compositions of sulfur in sulfides (δ34S = −1.0 to 3.6 per mil), oxygen in vein quartz (δ18O = 7.36 to 10.38 per mil), and hydrogen in fluid inclusions in vein quartz (δD = −125 to −55 per mil) are permissive of both magmatic-hydrothermal and metamorphic dehydration models for the origin of gold mineralization. However, a potential source of magmatic–hydrothermal fluids, the post-metamorphic Louis Lake granodiorite was unlikely to transport gold in a vapor state to become focused into shear zones as previously proposed. We favor a metamorphic dehydration model in which gold was derived from the South Pass supracrustal sequence and deposited in second-order shear zones that are spatially related to the first-order Roundtop Mountain Deformation Zone. Full article
(This article belongs to the Special Issue Ore Deposits Related to Metamorphism)
Show Figures

Graphical abstract

39 pages, 13928 KB  
Article
Genesis of the Hadamengou Gold Deposit, Northern North China Craton: Constraints from Ore Geology, Fluid Inclusion, and Isotope Geochemistry
by Liang Wang, Liqiong Jia, Genhou Wang, Liangsheng Ge, Jiankun Kang and Bin Wang
Minerals 2026, 16(1), 99; https://doi.org/10.3390/min16010099 - 20 Jan 2026
Viewed by 359
Abstract
The Hadamengou gold deposit, hosted in the Precambrian metamorphic basement, is a super-large gold deposit occurring along the northern margin of the North China Craton. Despite extensive investigation, the genesis of the gold mineralization is poorly understood and remains highly debated. This study [...] Read more.
The Hadamengou gold deposit, hosted in the Precambrian metamorphic basement, is a super-large gold deposit occurring along the northern margin of the North China Craton. Despite extensive investigation, the genesis of the gold mineralization is poorly understood and remains highly debated. This study integrates a comprehensive dataset, including fluid inclusion microthermometry and C-H-O-S-Pb isotopes, to better constrain the genesis and ore-forming mechanism of the deposit. Hydrothermal mineralization can be divided into pyrite–potassium feldspar–quartz (Stage I), quartz–gold–pyrite–molybdenite (Stage II), quartz–gold–polymetallic sulfide (Stage III), and quartz–carbonate stages (Stage IV). Four types of primary fluid inclusions are identified, including pure CO2-type, composite CO2-H2O-type, aqueous-type, and solid-daughter mineral-bearing-type inclusions. Microthermometric and compositional data reveal that the fluids were mesothermal to hypothermal, H2O-dominated, and CO2-rich fluids containing significant N2 and low-to-moderate salinity, indicative of a magmatic–hydrothermal origin. Fluid inclusion assemblages further imply that the ore-forming fluids underwent fluid immiscibility, causing CO2 effusion and significant changes in physicochemical conditions that destabilized gold bisulfide complexes. The hydrogen–oxygen isotopic compositions, moreover, support a dominant magmatic water source, with increasing meteoric water input during later stages. The carbon–oxygen isotopes are also consistent with a magmatic carbon source. Sulfur and lead isotopes collectively imply that ore-forming materials were derived from a hybrid crust–mantle magmatic reservoir, with minor contribution from the country rocks. By synthesizing temporal–spatial relationships between magmatic activity and ore formation, and the regional tectonic evolution, we suggest that the Hadamengou is an intrusion-related magmatic–hydrothermal lode gold deposit. It is genetically associated with multi-stage magmatism induced by crust–mantle interaction, which developed within the extensional tectonic regimes. Full article
(This article belongs to the Section Mineral Deposits)
Show Figures

Figure 1

19 pages, 2047 KB  
Article
Indolizinoquinolinedione Metal Complexes: Structural Characterization, In Vitro Antibacterial, and In Silico Studies
by Jacopo Vigna, Michael Marchesi, Ibtissem Djinni, Miša Mojca Cajnko, Kristina Sepčić, Andrea Defant and Ines Mancini
Molecules 2026, 31(2), 348; https://doi.org/10.3390/molecules31020348 - 19 Jan 2026
Viewed by 265
Abstract
In the search for solutions to the global health threat posed by antimicrobial resistance, the development of new compounds is crucial. In this context, the in vitro testing of known indolizinoquinolinedione analogs 17 revealed that N,N-syn regioisomers are [...] Read more.
In the search for solutions to the global health threat posed by antimicrobial resistance, the development of new compounds is crucial. In this context, the in vitro testing of known indolizinoquinolinedione analogs 17 revealed that N,N-syn regioisomers are more active than N,N-anti regioisomers. In particular, compound 2 (ethyl 5,12-dihydro-5,12-dioxoindolizino[2,3-g]quinoline-6-carboxylate) exhibited the most significant activity against Bacillus subtilis, B. cereus, Staphylococcus aureus, and methicillin-resistant S. aureus (MRSA) bacteria. The reported increased bioactivity of metal complexes and their ability to overcome drug resistance through metal coordination have induced the study of new metal complexes of compound 2. FT-IR spectroscopy combined with DFT-simulated spectra confirmed the C=O chelation in all Zn, Cu, and Mn complexes 810. ESI-MS isotopic cluster analysis and UV-Vis-derived Job’s plot provided significant evidence for 1:1 chelation. Finally, 1H NMR data were correlated to the DFT-calculated charge distribution. Complexes 810 displayed similar activity against B. subtilis, although this was lower than that for 2, and there were comparable effects with 2 and vancomycin antibiotic against S. aureus. FTsZ protein as a potential target of B. subtilis and DNA gyrase of S. aureus and MRSA were studied by docking calculations, revealing a good correlation with the in vitro results. Full article
(This article belongs to the Special Issue Discovery of Antibacterial Drugs)
Show Figures

Graphical abstract

28 pages, 5718 KB  
Article
Differences in Geothermal Fluids in Sandstone and Carbonate Geothermal Reservoirs Based on Isotope Characteristics
by Hanxiong Zhang, Guiling Wang, Wei Zhang and Jiayi Zhao
Sustainability 2026, 18(2), 766; https://doi.org/10.3390/su18020766 - 12 Jan 2026
Viewed by 239
Abstract
Geothermal fluids are the main carrier of hydrothermal geothermal resources. Identifying the differences in geothermal fluids in different types of reservoirs is a prerequisite and fundamental for the efficient development of geothermal resources and is of great significance for scientific research on geothermal [...] Read more.
Geothermal fluids are the main carrier of hydrothermal geothermal resources. Identifying the differences in geothermal fluids in different types of reservoirs is a prerequisite and fundamental for the efficient development of geothermal resources and is of great significance for scientific research on geothermal resources. The North China Plain contains a typical carbonate thermal reservoir, and in this paper, the hydrochemical, isotopic, and redox characteristics of the geothermal fluids in sandstone and carbonate reservoirs are studied to obtain the differences in the geothermal fluids in the Rongcheng geothermal field in Xiong’an New Area. The results indicate that the geothermal fluids in the sandstone and carbonate reservoirs are mainly supplied by atmospheric rainfall, and the hydrochemical type is mainly Cl-Na type. By comparing and analyzing the stable isotope (O, H, C, S, and Sr) characteristics of the two types of geothermal fluids, it is found that the variation range of δ13C values for two types of sandstone thermal storage geothermal fluids was found to be −10.6‰~−12.8‰, while the variation range of δ13C values for carbonate thermal storage geothermal fluids was −3.3‰~−7.5‰. The 87Sr/86Sr ratio of sandstone thermal storage geothermal fluids was distributed between 0.708–0.718, and the 87Sr/86Sr ratio of carbonate thermal storage geothermal fluids was distributed between 0.708–0.713. The range of δ34S values for sandstone thermal storage geothermal fluids was +9.46‰~+10.5‰, and the range of δ34S values for carbonate thermal storage geothermal fluids was +24.84‰~+34.49‰. The two types of geothermal fluids have been subjected to varying degrees of oxidation-reduction, and their cycling and mixing characteristics are different. This has resulted in the formation of relatively oxidized geothermal fluids in the sandstone geothermal reservoir and relatively reduced geothermal fluids in the carbonate geothermal reservoir. In future development and utilization of geothermal resources, paying attention to the basic characteristics of the geothermal fluids in different reservoirs and identifying the differences in different geothermal fluids can further improve the efficiency of geothermal resource development and utilization. Full article
Show Figures

Figure 1

26 pages, 30392 KB  
Article
Multisystem (S–Pb–He–Ar–H–O) Isotopic and Fluid Inclusion Constraints on the Genesis of the Chaijiagou Porphyry Mo Deposit, North China Craton
by Wei Xie, Chao Jin, Qingdong Zeng, Lingli Zhou, Rui Dong, Zhao Wang and Kaiyuan Wang
Minerals 2026, 16(1), 71; https://doi.org/10.3390/min16010071 - 12 Jan 2026
Viewed by 294
Abstract
The Chaijiagou Mo deposit (0.11 Mt Mo @ 0.07%) is located along the northern margin of the North China Craton. This study integrates ore geology, S–Pb–He–Ar–H–O isotopes, and fluid inclusion (FI) analyses to constrain the sources of ore-forming fluids and metals, as well [...] Read more.
The Chaijiagou Mo deposit (0.11 Mt Mo @ 0.07%) is located along the northern margin of the North China Craton. This study integrates ore geology, S–Pb–He–Ar–H–O isotopes, and fluid inclusion (FI) analyses to constrain the sources of ore-forming fluids and metals, as well as mineralization mechanisms. Three principal inclusion types were identified: liquid-rich, vapor-rich, and saline FIs. Microthermometry documents a progressive decline in homogenization temperatures and salinities from early to late mineralization stages: Stage 1 (360–450 °C; 5.3–11.3 and 35.4–51.5 wt.% NaCl equation), Stages 2.1–2.2 (320–380 °C and 260–340 °C; 5.4–11.8 and 33.8–44.5 wt.% NaCl equation), and Stage 4 (140–200 °C; 0.4–3.9 wt.% NaCl equation). Noble gas and stable isotope data reveal that the ore-forming fluids were initially dominated by crustally derived magmatic–hydrothermal components with a minor mantle contribution, subsequently experiencing significant meteoric water input. S–Pb isotopic compositions demonstrate a genetic relationship between mineralization and the ore-bearing granite porphyry, indicating a magmatic origin for both sulfur and lead. Fluid–rock interactions and fluid boiling were the dominant controls on molybdenite and chalcopyrite deposition during Stage 2, whereas mixing with meteoric waters triggered galena and sphalerite precipitation in Stage 3. Full article
(This article belongs to the Special Issue Selected Papers from the 7th National Youth Geological Congress)
Show Figures

Figure 1

12 pages, 2146 KB  
Article
The Influence of the Hydrogen Isotope Effect on the Kinetics of Amoxicillin and Essential Elements Interaction
by Daniil A. Sundukov, Olga V. Levitskaya, Tatiana V. Pleteneva and Anton V. Syroeshkin
Hydrogen 2026, 7(1), 2; https://doi.org/10.3390/hydrogen7010002 - 24 Dec 2025
Viewed by 376
Abstract
Chemical incompatibility between active pharmaceutical ingredients (APIs) and mineral supplements may affect their bioavailability and effectiveness. Water, as the main component of physiological fluids, plays a crucial role in these interactions. Natural waters vary in the deuterium. Estimation of the kinetic isotope effect [...] Read more.
Chemical incompatibility between active pharmaceutical ingredients (APIs) and mineral supplements may affect their bioavailability and effectiveness. Water, as the main component of physiological fluids, plays a crucial role in these interactions. Natural waters vary in the deuterium. Estimation of the kinetic isotope effect (KIE) provides valuable information on reaction mechanisms in solvents with different D/H ratios and with the replacement of protium with deuterium in API molecules. Studies of the kinetics of interactions between zinc ions and amoxicillin in water with a natural isotopic composition (D/H = 145 ppm) and in heavy water (99.9% D2O) offer a model for predicting similar interactions in vivo. The presence of chiral centers in the amoxicillin molecule allowed the use of polarimetry to study the influence of the solvent isotopic composition, temperature, and pH on the rate of interaction. In heavy water, a twofold decrease in the rate of amoxicillin binding to hydrated zinc ions was observed compared to natural water at 20 °C. Arrhenius kinetics confirmed the observed KIE: Ea = 112.5 ± 1.3 kJ/mol for D2O and 96.0 ± 2.1 kJ/mol for H2O. For the first time, kinetic polarimetric studies demonstrated differences in the mechanisms of binding of d- and s-element cations to amoxicillin. Full article
Show Figures

Graphical abstract

17 pages, 2529 KB  
Article
Stable Isotope and Elemental Characteristics for Origin Identification of Rice from China and Thailand
by Xiaofan Xing, Fengmei Sun, Weigui Zhang, Weixing Zhang, Yongzhi Zhang, Karyne M. Rogers, Chunlin Li and Yuwei Yuan
Plants 2026, 15(1), 42; https://doi.org/10.3390/plants15010042 - 23 Dec 2025
Viewed by 463
Abstract
China, as the primary importer of Thailand’s high-quality rice (Oryza sativa L.), has an urgent need for effective origin discrimination methods between premium aromatic rice from China and Thailand to prevent origin mislabeling issues. In this study, stable isotope and elemental multivariate [...] Read more.
China, as the primary importer of Thailand’s high-quality rice (Oryza sativa L.), has an urgent need for effective origin discrimination methods between premium aromatic rice from China and Thailand to prevent origin mislabeling issues. In this study, stable isotope and elemental multivariate analysis combined with partial least squares discriminant analysis (PLS-DA) were used to build an origin traceability model for Chinese and Thai rice from different production areas. Multivariate analysis of variance revealed that Thai rice exhibited significantly higher δ13C (−26.4 ± 0.4‰) and δ18O (25.9 ± 1.1‰) values, but a significantly lower δ15N value (3.5 ± 0.8‰) compared to the three major producing regions of China. These differences are directly related to geographical and climatic factors such as latitude, precipitation, and temperature. A PLS-DA model demonstrated high performance in the classification of different Chinese indica rice and Thailand rice origins. Through cross-validation, the classification accuracy for the training set reached 97.3%. For the independent testing set, the classification accuracy was recorded to be 95.0%. Furthermore, external blind sample verification was conducted, and the classification accuracy achieved was 100%. Ca, K, Na, δ18O, Zn and δ2H were found to be important variables to discriminate between Chinese indica rice and Thai rice. Finally, for country of origin labelling claims, this rice study provides the basis for a suitable regulatory method to detect mislabeled Thai origin rice and prevent fraud. Full article
Show Figures

Figure 1

25 pages, 8162 KB  
Article
Genesis of the Laoliwan Ag-Pb-Zn Deposit, Southern Margin of the North China Craton, China: Constrained by C-H-O-S-Pb Isotopes and Sulfide Rb-Sr Geochronology
by Jianling Xue, Zhenshan Pang, Hui Chen, Peichao Ding, Ruya Jia, Wen Tao, Ruifeng Shen, Banglu Zhang, Nini Mou and Yan Yang
Minerals 2025, 15(11), 1122; https://doi.org/10.3390/min15111122 - 28 Oct 2025
Viewed by 703
Abstract
The Laoliwan Ag-Pb-Zn deposit is situated in the southern margin of the North China Craton and represents the first large-scale Ag-Pb-Zn ore deposit discovered in the Xiaoshan District. Ag-Pb-Zn orebodies are structurally controlled by NW- and NNW-trending faults and primarily hosted within early [...] Read more.
The Laoliwan Ag-Pb-Zn deposit is situated in the southern margin of the North China Craton and represents the first large-scale Ag-Pb-Zn ore deposit discovered in the Xiaoshan District. Ag-Pb-Zn orebodies are structurally controlled by NW- and NNW-trending faults and primarily hosted within early Cretaceous granite porphyry intrusions. In this study, sulfide Rb-Sr isotope dating and C-H-O-S-Pb multiple isotope compositions were conducted to constrain the ore genesis of this deposit. The Rb-Sr isotopic data of sulfides yield a weighted mean isochron age of 132.8 ± 9.5 Ma and an initial 87Sr/86Sr ratio of 0.7115 ± 0.00016, indicating that mineralization occurred during the early Cretaceous and the ore-forming materials were derived from a crust–mantle mixed reservoir. The δ13 C (−1.3‰ to 0.7‰), δD (−96.3‰ to −86.7‰) and δ18OH2O (0.3‰ to 5.6‰) values suggest that the ore-forming fluids were mainly derived from magmatic water with a contribution of meteoric water during mineralization. The δ34S values of sulfides (+2.0‰ to +5.8‰) indicate a magmatic source. The Pb isotope data (206Pb/204Pb = 17.301–17.892, 207Pb/204Pb = 15.498–15.560, 208Pb/204Pb = 37.873–38.029) also reveal that the ore-forming materials originated from the lower crust with a small amount from the mantle source. By integrating geochronological and geochemical data, this study proposes that the Laoliwan Ag-Pb-Zn deposit is characterized as an epithermal deposit, with potential for the discovery of concealed porphyry Cu-Mo mineralization at depth. It is inferred to be related to tectonic–magmatic–fluid activities in the context of early Cretaceous lithospheric thinning along the southern margin of the North China Craton. Full article
(This article belongs to the Section Mineral Deposits)
Show Figures

Figure 1

19 pages, 15681 KB  
Article
Genesis of W Mineralization in the Caledonian Granite Porphyry of the Chuankou W Deposit, South China: Insights from Fluid Inclusions and C–H–O–S Isotopes
by Wei Liu, Yi Wang, Yong-Jun Shao, Wen-Jing Mao and Zhongfa Liu
Appl. Sci. 2025, 15(19), 10553; https://doi.org/10.3390/app151910553 - 29 Sep 2025
Viewed by 595
Abstract
The Chuankou deposit is a super-large W deposit formed during the Indosinian collision event in South China, and its mineralization is suggested to be related to the Indosinian muscovite granite. However, two types of W mineralizations were discovered in the Caledonian granite porphyry [...] Read more.
The Chuankou deposit is a super-large W deposit formed during the Indosinian collision event in South China, and its mineralization is suggested to be related to the Indosinian muscovite granite. However, two types of W mineralizations were discovered in the Caledonian granite porphyry in the Chuankou W deposit: disseminated scheelite and quartz-wolframite-scheelite vein mineralizations. The genesis of W mineralization in the Caledonian granite porphyry is not yet clear. This paper focuses on fluid microthermometry and stable isotopes (C, H, O, S) analysis of the quartz and scheelite in the ores in the Caledonian granite porphyry in the Chuankou W deposit. The aims are to determine the nature and evolution of the ore-forming fluids, the origin of the ore-forming materials involved in the two types of W mineralization in the Caledonian granite porphyry, and to provide a detailed discussion of the deposit’s genesis. Microthermometry results of fluid inclusions with scheelite and quartz from two stages show that the average homogenization temperature in the quartz-veins within the Caledonian granite porphyry is 248 °C, and the average salinity is 6.31 wt.% NaCl eq (n = 85), the average homogenization temperature in the quartz-veins within the slate is 219 °C, and the average salinity is 5.57 wt.% NaCl eq (n = 49). The ore-forming fluids experienced an evolution from high temperature and high salinity to low temperature and low salinity. Sulfur isotope compositions show that the δ34S values of pyrite and arsenopyrite in the quartz-veins within the Caledonian granite porphyry are 2.06 to 3.28‰ and −0.38 to 0.21‰, respectively, and the δ34S value of pyrite in the quartz-veins within the slate is −1.72 to 0.47‰. The δ34S values of each stage are close to 0‰, indicating that the origin of sulfur mainly from magma. The H-O isotope compositions of the quartz indicate that the ore-forming fluid was primarily magmatic water. The low δ18OH2O values (1.74 to 1.58‰) are influenced by fluid–rock interactions or the incorporation of atmospheric precipitation. The carbon isotopes (δ13C = −9.5 to 8.3‰) indicate a magmatic origin, but the C isotopes of quartz in the quartz-veins within the slate shift toward sedimentary rocks, reflecting the incorporation of rock components in the late mineralization period. These isotopic differences indicate that the fluid–rock interaction gradually strengthened during fluid evolution. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

29 pages, 9860 KB  
Article
The Source and Evolution of Ore-Forming Fluids in the Xiaobaihegou Fluorite Deposit, Altyn-Tagh Orogen, NW China: Constraints from Trace Element, Fluid Inclusion, and Isotope Studies
by Kang Chen, Wenlei Song, Yuanwei Wang, Long Zhang, Yongkang Jing, Yi Zhang, Yongbao Gao, Ming Liu, Nan Deng and Junwei Wu
Minerals 2025, 15(8), 840; https://doi.org/10.3390/min15080840 - 8 Aug 2025
Viewed by 1026
Abstract
The Xiaobaihegou fluorite deposit is located in the southwest of the Altyn-Tagh Orogen, NW China. However, the provenance, thermodynamic properties, and enrichment mechanisms of the ore-forming fluids in this deposit remain unclear. Fluorite mineralization primarily occurs in the vicinity of the contact zone [...] Read more.
The Xiaobaihegou fluorite deposit is located in the southwest of the Altyn-Tagh Orogen, NW China. However, the provenance, thermodynamic properties, and enrichment mechanisms of the ore-forming fluids in this deposit remain unclear. Fluorite mineralization primarily occurs in the vicinity of the contact zone between the granite and the wall rocks. The zircon U-Pb age of the alkali-feldspar granite in the Xiaobaihegou fluorite deposit is 482.3 ± 4.1 Ma. The ore-hosting lithologies are mainly calcareous rock series of the Altyn Group. The ore bodies are controlled by NE-trending faults and consist primarily of veined, brecciated, massive, and banded ores. The ore mineral assemblage is primarily composed of calcite and fluorite. The rare earth element (REE) patterns of fluorite and calcite in the Xiaobaihegou deposit exhibit right-dipping LREE enrichment with distinct negative Eu anomalies, which closely resemble those of the alkali-feldspar granite. This similarity suggests that the REE distribution patterns of fluorite and calcite were likely inherited from the pluton. The ore-forming process can be divided into an early stage and a late stage. The massive ores formed in the early stage contain mainly gas-rich two-phase fluid inclusions and CO2-bearing three-phase inclusions, with homogenization temperatures ranging from 235 °C to 426 °C and salinities from 28.59% to 42.40% NaCl equivalent. In the late stage, brecciated and stockwork ores were formed. They host liquid-rich two-phase and gas-rich two-phase fluid inclusions, with homogenization temperatures ranging from 129 °C to 350 °C and salinities from 0.88% to 21.61% NaCl equivalent. The results of hydrogen and oxygen isotope studies indicate that the ore-forming fluids were derived from a mixture of magmatic–hydrothermal and meteoric water. Fluorite precipitation in the early stage was mainly due to the mixing of magmatic–hydrothermal solution and meteoric water, as well as a water–rock reaction. In the late stage, fluid mixing further occurred, resulting in a decrease in temperature and the formation of brecciated and stockwork ores. The 87Sr/86Sr and 143Nd/144Nd ratios of fluorite from the deposit range from 0.71033 to 0.71272 and 0.511946 to 0.512073, respectively, indicating that the ore-forming material originates from the crust. Based on the ore-forming characteristics, it is proposed that Ca may be primarily leached from the strata formation, while F may predominantly originate from magmatic–hydrothermal solutions. The formation of fluorite deposits is closely related to the transition of the Central Altyn-Tagh Block and Qaidam Block from a compressional orogenic environment to an extensional tectonic environment. Full article
(This article belongs to the Section Mineral Deposits)
Show Figures

Figure 1

21 pages, 5158 KB  
Article
Genesis of the Erentaolegai Silver Deposit, Inner Mongolia, Northeast China: Evidence from Fluid Inclusion and H-O-S Isotopes
by Yushan Zuo, Xintong Dong, Zhengxi Gao, Liwen Wu, Zhao Liu, Jiaqi Xu, Shanming Zhang and Wentian Mi
Minerals 2025, 15(7), 748; https://doi.org/10.3390/min15070748 - 17 Jul 2025
Viewed by 1095
Abstract
The Erentaolegai silver deposit is located within the Derbugan metallogenic belt in the eastern segment of the Central Asia–Mongolia giant orogenic belt. The ore bodies are primarily hosted in the volcanic rocks of the Middle Jurassic Tamulangou Formation of the Mesozoic. The mineralization [...] Read more.
The Erentaolegai silver deposit is located within the Derbugan metallogenic belt in the eastern segment of the Central Asia–Mongolia giant orogenic belt. The ore bodies are primarily hosted in the volcanic rocks of the Middle Jurassic Tamulangou Formation of the Mesozoic. The mineralization process of the deposit is divided into three stages: Stage I: Pyrite–Quartz Stage; Stage II: Sulfide–Quartz Stage; Stage III: Quartz–Manganese Carbonate Stage. This paper discusses the ore-forming fluids, ore-forming materials, and deposit genesis of the Erentaolegai silver deposits using fluid inclusions microthermometry, laser Raman spectroscopy, and H-O-S isotope analyses. Fluid inclusion microthermometry and laser Raman spectroscopy analyses indicate that the Erentaolegai silver deposit contains exclusively fluid-rich two-phase fluid inclusions, all of which belong to the H2O-NaCl system. Homogenization temperatures of fluid inclusions in the three stages (from early to late) ranged from 257 to 311 °C, 228 to 280 °C, and 194 to 238 °C, corresponding to salinities of 1.91 to 7.86 wt%, 2.07 to 5.41 wt%, and 0.70–3.55 wt% NaCl equivalent, densities of 0.75 to 0.83 g/cm−3, 0.80 to 0.86 g/cm−3 and 0.85 to 0.89 g/cm−3. The mineralization pressure ranged from 12.2 to 29.5 MPa, and the mineralization depth was 0.41 to 0.98 km, indicating low-pressure and shallow-depth mineralization conditions. H-O isotope results indicate that the ore-forming fluid is a mixture of magmatic fluids and meteoric water, with meteoric contribution dominating in the late stage. The δ34S values of metallic sulfides ranged from −1.8 to +4.0‰, indicating that the metallogenic material of the Erentaolegai silver deposit was dominated by a deep magmatic source. This study concludes that meteoric water mixing and subsequent fluid cooling served as the primary mechanism for silver mineral precipitation. The Erentaolegai silver deposit is classified as a low-sulfidation epithermal silver deposit. Full article
(This article belongs to the Special Issue Recent Developments in Rare Metal Mineral Deposits)
Show Figures

Figure 1

17 pages, 1308 KB  
Article
Elemental and Isotopic Fingerprints of Potatoes
by Cezara Voica, Ioana Feher, Romulus Puscas, Andreea Maria Iordache and Gabriela Cristea
Foods 2025, 14(14), 2440; https://doi.org/10.3390/foods14142440 - 10 Jul 2025
Viewed by 1229
Abstract
Nowadays, food traceability represents an important issue in the current context of trade agreements, which influence global food prices. Many consumers prefer to pay a higher price for a traditional cultivation regime of a certain food product that comes from a certain region, [...] Read more.
Nowadays, food traceability represents an important issue in the current context of trade agreements, which influence global food prices. Many consumers prefer to pay a higher price for a traditional cultivation regime of a certain food product that comes from a certain region, appreciating the taste of the respective foodstuff. The potato is now the world’s fourth most important food crop in terms of human consumption, after wheat, maize, and rice. In this context, 100 potato samples from the Romanian market were collected. While 68 samples came from Romania, the rest of the 32 were from abroad (Hungary, France, Greece, Italy, Germany, Egypt, and Poland). The countries selected for potato sample analysis are among the main exporters of potatoes to the Romanian market. The samples were investigated by their multi-elemental and isotopic (2H, 18O and 13C) fingerprints, using Inductively Coupled Plasma Mass Spectrometry (ICP-MS) and Isotope Ratio Mass Spectrometry (IRMS). Then, to distinguish the geographical origin, the experimental results were statistically processed using linear discriminant analysis (LDA). The best markers that emphasize Romanian potatoes were identified to be δ13Cbulk, δ2Hwater, and Sr. Full article
Show Figures

Graphical abstract

20 pages, 9353 KB  
Article
Genesis of the Shabaosi Gold Field in the Western Mohe Basin, Northeast China: Evidence from Fluid Inclusions and H-O-S-Pb Isotopes
by Xiangwen Li, Zhijie Liu, Lingan Bai, Jian Wang, Shiming Liu and Guan Wang
Minerals 2025, 15(7), 721; https://doi.org/10.3390/min15070721 - 10 Jul 2025
Viewed by 637
Abstract
The Shabaosi gold field is located in the western Mohe Basin, part of the northern Great Xing’an Range, NE China, and contains multiple gold deposits. However, the sources of the ore-forming materials, the fluid evolution, and the genesis of these gold deposits have [...] Read more.
The Shabaosi gold field is located in the western Mohe Basin, part of the northern Great Xing’an Range, NE China, and contains multiple gold deposits. However, the sources of the ore-forming materials, the fluid evolution, and the genesis of these gold deposits have been disputed, especially regarding the classification of these deposits as either epithermal or orogenic gold systems. Based on detailed field geological investigations and previous research, we conducted systematic research on the Shabaosi, Sanshierzhan, Laogou, and Balifang gold deposits using fluid inclusion and H-O-S-Pb isotope data, with the aim of constraining the fluid properties, sources, and mineralization processes. Fluid inclusion analyses reveal diverse types, including vapor-rich, vapor–liquid, CO2-bearing, CO2-rich, and pure CO2. Additionally, only a very limited number of daughter mineral-bearing fluid inclusions have been observed exclusively in the Laogou gold deposit. During the early stages, the peak temperature primarily ranged from 240 °C to 280 °C, with salinity concentrations between 6 and 8 wt% NaCl equiv., representing a medium–low temperature, low salinity, and a heterogeneous CO2-CH4-H2O-NaCl system. With the influx of meteoric water, the fluids evolved gradually into a simple NaCl-H2O system with low temperatures (160–200 °C) and salinities (4–6 wt%). The main mineralization stage exhibited peak temperatures of 220–260 °C and salinities of 5–8 wt% NaCl equiv., corresponding to an estimated formation depth of 1.4–3.3 km. The δDV-SMOW values (−138.3‰ to −97.0‰) and δ18OV-SMOW values (−7.1‰ to 16.2‰) indicate that the magmatic–hydrothermal fluids were progressively diluted by meteoric water during mineralization. The sulfur isotopic compositions (δ34S = −0.9‰ to 1.8‰) and lead isotopic ratios (208Pb/204Pb = 38.398–38.579, 207Pb/204Pb = 15.571–15.636, and 206Pb/204Pb = 18.386–18.477) demonstrate that the gold predominantly originated from deep magmatic systems, with potential crustal contamination. Comparative analyses indicate that the Shabaosi gold field should be classified as a epizonal orogenic gold system, which shows distinct differences from epithermal gold deposits and corresponds to the extensional tectonic setting during the late-stage evolution of the Mongol–Okhotsk orogenic belt. Full article
Show Figures

Figure 1

25 pages, 4259 KB  
Article
Towards Dual-Tracer SPECT for Prostate Cancer Imaging Using [99mTc]Tc-PSMA-I&S and [111In]In-RM2
by Carolina Giammei, Theresa Balber, Veronika Felber, Thomas Dillinger, Jens Cardinale, Marie R. Brandt, Anna Stingeder, Markus Mitterhauser, Gerda Egger and Thomas L. Mindt
Pharmaceuticals 2025, 18(7), 1002; https://doi.org/10.3390/ph18071002 - 3 Jul 2025
Viewed by 2225
Abstract
Background/Objectives: Radiolabeled biomolecules specifically targeting overexpressed structures on tumor cells hold great potential for prostate cancer (PCa) imaging and therapy. Due to heterogeneous target expression, single radiopharmaceuticals may not detect or treat all lesions, while simultaneously applying two or more radiotracers potentially [...] Read more.
Background/Objectives: Radiolabeled biomolecules specifically targeting overexpressed structures on tumor cells hold great potential for prostate cancer (PCa) imaging and therapy. Due to heterogeneous target expression, single radiopharmaceuticals may not detect or treat all lesions, while simultaneously applying two or more radiotracers potentially improves staging, stratification, and therapy of cancer patients. This study explores a dual-tracer SPECT approach using [111In]In-RM2 (targeting the gastrin-releasing peptide receptor, GRPR) and [99mTc]Tc-PSMA-I&S (targeting the prostate-specific membrane antigen, PSMA) as a proof of concept. To mimic heterogeneous tumor lesions in the same individual, we aimed to establish a dual xenograft mouse model for preclinical evaluation. Methods: CHO-K1 cells underwent lentiviral transduction for human GRPR or human PSMA overexpression. Six-to-eight-week-old female immunodeficient mice (NOD SCID) were subsequently inoculated with transduced CHO-K1 cells in both flanks, enabling a dual xenograft with similar target density and growth of both xenografts. Respective dual-isotope imaging and γ-counting protocols were established. Target expression was analyzed ex vivo by Western blotting. Results: In vitro studies showed similar target-specific binding and internalization of [111In]In-RM2 and [99mTc]Tc-PSMA-I&S in transduced CHO-K1 cells compared to reference lines PC-3 and LNCaP. However, in vivo imaging showed negligible tumor uptake in xenografts of the transduced cell lines. Ex vivo analysis indicated a loss of the respective biomarkers in the xenografts. Conclusions: Although the technical feasibility of a dual-tracer SPECT imaging approach using 111In and 99mTc has been demonstrated, the potential of [99mTc]Tc-PSMA-I&S and [111In]In-RM2 in a dual-tracer cocktail to improve PCa diagnosis could not be verified. The animal model, and in particular the transduced cell lines developed exclusively for this project, proved to be unsuitable for this purpose. The in/ex vivo experiments indicated that results from an in vitro model may not necessarily be successfully transferred to an in vivo setting. To assess the potential of this dual-tracer concept to improve PCa diagnosis, optimized in vivo models are needed. Nevertheless, our strategies address key challenges in dual-tracer applications, aiming to optimize future SPECT imaging approaches. Full article
Show Figures

Graphical abstract

19 pages, 6150 KB  
Article
Ore Genesis of the Jurassic Granite-Hosted Naizhigou Gold Deposit in the Jiapigou District of Northeast China: Constraints from Fluid Inclusions and H–O–S Isotopes
by Jilong Han, Zhicheng Lü, Chuntao Zhao, Xiaotian Zhang, Jinggui Sun, Shu Wang and Xinwen Zhang
Minerals 2025, 15(7), 696; https://doi.org/10.3390/min15070696 - 29 Jun 2025
Cited by 2 | Viewed by 837
Abstract
The Jiapigou mining district (>180 t Au) is an important gold district in China. For a long time, the ore genesis of the gold deposits in the Jiapigou district has been a subject of controversy and differing opinions, which has severely hindered metallogenic [...] Read more.
The Jiapigou mining district (>180 t Au) is an important gold district in China. For a long time, the ore genesis of the gold deposits in the Jiapigou district has been a subject of controversy and differing opinions, which has severely hindered metallogenic theories and mineral exploration. Here we present a comprehensive investigation including geology, fluid inclusions (FIs), and H–O–S isotopic data for the Naizhigou deposit in the Jiapigou district to elucidate the sources of orefluids and metals, as well as the metallogenic mechanism. The results show the following: (1) The Naizhigou deposit is characterized by quartz vein-type ores and is hosted in the Middle Jurassic granitic pluton. Native gold and sulfides were mainly deposited in the second stage (quartz–polymetallic sulfides) compared with the first (quartz–pyrite–molybdenite) and third (quartz–calcite) stages. (2) The FI studies indicated that the orefluids evolved from the early–main-stage CO2–H2O–NaCl system to the late-stage H2O–NaCl system and have homogenization temperatures of 289–363, 210–282, and 124–276 °C and salinities of 4.1–20.9, 5.8–16.4, and 6.1–12.7 wt% NaCl equivalent, respectively. Fluid boiling and fluid mixing collectively controlled the precipitation of gold and ore-forming elements. (3) The δD values of the FIs hosted in quartz from the three stags range from −81 to −75 ‰, from −99 to −86 ‰, and from −110 to −101 ‰, while δ18Owater values of these FIs range from 5.3 to 5.9 ‰, from 1.1 to 5.2 ‰, and from −2.1 to −0.7 ‰, respectively. Pyrite samples from the three stages in the Naizhigou deposit have δ34S values of 2.1 to 2.5 ‰, 3.1 to 4.3 ‰, and 3.8 to 3.9 ‰, respectively. The stable isotopes indicate that the orefluids and metals mainly originated from magma. A comparative study of regional observations reveals that the Naizhigou deposit is a magmatic-related mesothermal gold deposit, rather than a metamorphism-related orogenic gold deposit. The estimated ore-forming depths are 4.0–20.7 km, with exhumation depths of 4.1–5.5 km, which indicated that the deposit has been well preserved. Regionally, the new exploration strategies should place greater emphasis on work concerning ore-related plutons, ore-controlling faults, and hydrothermal alteration. Full article
Show Figures

Figure 1

Back to TopTop