Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (666)

Search Parameters:
Keywords = C, O co-doping

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2778 KB  
Article
Boosting Toluene Oxidation over Ru-Doped CoMn2O4 Spinel Catalysts by Constructing Ru–O–Mn/Co Chains
by Xue Wu, Shiyu Yu, Jian Mei, Bing Liu and Shijian Yang
Catalysts 2026, 16(1), 106; https://doi.org/10.3390/catal16010106 - 21 Jan 2026
Viewed by 88
Abstract
The development of efficient spinel oxide catalysts for low-temperature oxidation of volatile organic compounds (VOCs) remains an important research objective. In this work, Ru was doped into a CoMn2O4 spinel to enhance its catalytic activity toward toluene oxidation and the [...] Read more.
The development of efficient spinel oxide catalysts for low-temperature oxidation of volatile organic compounds (VOCs) remains an important research objective. In this work, Ru was doped into a CoMn2O4 spinel to enhance its catalytic activity toward toluene oxidation and the underlying promotion mechanism of Ru doping was systematically investigated. The resulting Ru-CoMn2O4 catalyst showed remarkable performance, with T90 reaching approximately 224 °C at a WHSV of 60,000 cm3 g−1 h−1 and nearly 100% CO2 selectivity above 200 °C. Mechanism studies revealed that the reaction followed both Mars–van Krevelen (MvK) and Eley–Rideal (E–R) pathways. The reaction rates were strongly influenced by the oxidizing capacity of the catalyst, the abundance of highly valent surface species (namely Co3+, Mn4+, and Ru4+), adsorbed toluene, lattice oxygen, gaseous toluene, and adsorbed oxygen. With Ru doping, new Ru–O–Mn and Ru–O–Co chains formed in the CoMn2O4 spinel structure, leading to a moderate enhancement in oxidizing ability and a moderate increase in the concentration of highly valent surface species, adsorbed toluene, and lattice oxygen. Although a slight reduction in adsorbed oxygen was observed, Ru doping significantly boosted the overall toluene oxidation activity of CoMn2O4. In summary, Ru-CoMn2O4 represented a promising catalyst for the efficient oxidation of VOCs. Full article
Show Figures

Graphical abstract

20 pages, 4761 KB  
Article
High-Performance CoxNiy@NC/SiO2 Catalysts Derived from ZIF-67 for Enhanced Hydrogenation of 1-Nitronaphthalene
by Xuedong Lan, Ming Zhong, Weidi Dai and Pingle Liu
Catalysts 2026, 16(1), 93; https://doi.org/10.3390/catal16010093 - 16 Jan 2026
Viewed by 278
Abstract
A series of silica-supported, nitrogen-doped carbon-encapsulated cobalt–nickel alloy catalysts (CoxNiy@NC/SiO2) was successfully synthesized and systematically evaluated for the liquid-phase hydrogenation of 1-nitronaphthalene to 1-naphthylamine. Physicochemical characterization confirmed that the incorporation of nickel promotes the formation of Co–Ni [...] Read more.
A series of silica-supported, nitrogen-doped carbon-encapsulated cobalt–nickel alloy catalysts (CoxNiy@NC/SiO2) was successfully synthesized and systematically evaluated for the liquid-phase hydrogenation of 1-nitronaphthalene to 1-naphthylamine. Physicochemical characterization confirmed that the incorporation of nickel promotes the formation of Co–Ni alloys and modulates the electronic structure of the catalysts. The catalytic performance was found to be highly sensitive to the Co/Ni ratio, with Co2Ni1@NC/SiO2 exhibiting the most outstanding activity. Under optimized reaction conditions (90 °C, 0.6 MPa H2, 5.5 h), both the conversion of 1-nitronaphthalene and the selectivity toward 1-naphthylamine reached approximately 99%. The catalyst also demonstrated excellent stability and recyclability, attributed to the protective nitrogen-doped carbon shell and the synergistic interaction between the Co–Ni alloy and M–Nx active sites. This work provides a new strategy for designing efficient and robust non-noble-metal catalysts for hydrogenation reactions. Full article
(This article belongs to the Special Issue Catalysis and Sustainable Green Chemistry)
Show Figures

Graphical abstract

16 pages, 2968 KB  
Article
Turning CO2 into Ethanol: Enhancing Electrochemical Reduction Through Cu-Doped Electrodes
by Jose Antonio Abarca, Ana M. Ferraria, Ana M. Botelho do Rego, Sara Realista, Paulo N. Martinho, Angel Irabien and Guillermo Díaz-Sainz
Energies 2026, 19(2), 354; https://doi.org/10.3390/en19020354 - 11 Jan 2026
Viewed by 285
Abstract
The electrochemical reduction of CO2 to ethanol represents a sustainable alternative to recycle CO2 into a value-added product, yet achieving high selectivity and efficiency remains a challenge. This work explores Cu-based catalysts supported on SiO2 and ZrO2, with [...] Read more.
The electrochemical reduction of CO2 to ethanol represents a sustainable alternative to recycle CO2 into a value-added product, yet achieving high selectivity and efficiency remains a challenge. This work explores Cu-based catalysts supported on SiO2 and ZrO2, with and without ZnO doping, for ethanol production in a continuous flow-cell system. Gas diffusion electrodes are fabricated using commercial catalysts with varying Cu loadings (5–10%) and ZnO contents (2–3.5%). Comprehensive characterization by XPS confirms the presence of Cu2+ and Zn2+ species, while SEM reveals that ZnO incorporation improves surface uniformity and aggregate distribution compared to undoped samples. Electrochemical tests demonstrate that 10% Cu on SiO2 achieves a Faradaic efficiency of 96% for ethanol at −3 mA cm−2, outperforming both doped catalysts and previously reported materials. However, efficiency declines at higher current densities, indicating a trade-off between selectivity and productivity. ZnO doping enhances C2+ product formation but does not surpass the undoped catalyst in ethanol selectivity. These results underline the importance of catalyst composition, support interactions, and operating conditions, and point to further optimization of electrode architecture and cell configuration to sustain high ethanol yields under industrially relevant conditions. Full article
Show Figures

Figure 1

14 pages, 1184 KB  
Article
Highly Efficient Electrochemical Degradation of Dyes via Oxygen Reduction Reaction Intermediates on N-Doped Carbon-Based Composites Derived from ZIF-67
by Maja Ranković, Nemanja Gavrilov, Anka Jevremović, Aleksandra Janošević Ležaić, Aleksandra Rakić, Danica Bajuk-Bogdanović, Maja Milojević-Rakić and Gordana Ćirić-Marjanović
Processes 2026, 14(1), 130; https://doi.org/10.3390/pr14010130 - 30 Dec 2025
Viewed by 280
Abstract
A cobalt-containing zeolitic imidazolate framework (ZIF-67) was carbonized by different routes to composite materials (cZIFs) composed of metallic Co, Co3O4, and N-doped carbonaceous phase. The effect of the carbonization procedure on the water pollutant removal properties of cZIFs was [...] Read more.
A cobalt-containing zeolitic imidazolate framework (ZIF-67) was carbonized by different routes to composite materials (cZIFs) composed of metallic Co, Co3O4, and N-doped carbonaceous phase. The effect of the carbonization procedure on the water pollutant removal properties of cZIFs was studied. Higher temperature and prolonged thermal treatment resulted in more uniform particle size distribution (as determined by nanoparticle tracking analysis, NTA) and surface charge lowering (as determined by zeta potential measurements). Surface-governed environmental applications of prepared cZIFs were tested using physical (adsorption) and electrochemical methods for dye degradation. Targeted dyes were methylene blue (MB) and methyl orange (MO), chosen as model compounds to establish the specificity of selected remediation procedures. Electrodegradation was initiated via an intermediate reactive oxygen species formed during oxygen reduction reaction (ORR) on cZIFs serving as electrocatalysts. The adsorption test showed relatively uniform adsorption sites at the surface of cZIFs, reaching a removal of over 70 mg/g for both dyes while governed by pseudo-first-order kinetics favored by higher mesoporosity. In the electro-assisted degradation process, cZIF samples demonstrated impressive efficiency, achieving almost complete degradation of MB and MO within 4.5 h. Detailed analysis of energy consumption in the degradation process enabled the calculation of the current conversion efficiency index and the amount of charge associated with O2•−/OH generation, normalized by the quantity of removed dye, for tested materials. Here, the proposed method will assist similar research studies on the removal of organic water pollutants to discriminate among electrode materials and procedures based on energy efficiency. Full article
Show Figures

Figure 1

22 pages, 2417 KB  
Article
Sustainable Carbon Source from Almond Shell Waste: Synthesis, Characterization, and Electrochemical Properties
by Katarina Nikolić, Milan Kragović, Marija Stojmenović, Jasmina Popović, Jugoslav Krstić, Janez Kovač and Jelena Gulicovski
Materials 2026, 19(1), 8; https://doi.org/10.3390/ma19010008 - 19 Dec 2025
Viewed by 367
Abstract
This study demonstrates the complete transformation of almond shell waste into a high-performance carbon material for carbon paste electrode (CPE) fabrication. The biocarbon was synthesized via carbonization at 800 °C and subsequently activated with CO2, resulting in a semicrystalline structure rich [...] Read more.
This study demonstrates the complete transformation of almond shell waste into a high-performance carbon material for carbon paste electrode (CPE) fabrication. The biocarbon was synthesized via carbonization at 800 °C and subsequently activated with CO2, resulting in a semicrystalline structure rich in carbonyl groups—consistent with its lignocellulosic origin (34.25% cellulose, 13.48% hemicellulose, 48.03% lignin). Carbonization increased the total pore volume of carbonized almond (CAR_ALD) by nearly 13-fold and the specific surface area by over two orders of magnitude compared to raw almond (RAW_ALD), while CO2 activation further enhanced activated almond’s (ACT_ALD) surface area (~19%) and pore volume (~35%). To improve electrochemical performance, Bi2O3 doped with Sm was applied as a surface modifier. Comprehensive characterization (N2 physisorption X-Ray Diffraction (XRD), Fourier Transform Infrared Spectroscopic Analysis (FTIR), X-Ray Photoelectron Spectroscopic Analysis (XPS), Thermogravimetric and Differential Thermal Analysis (TG-DTA), Cyclic voltammetry (CV), Electrochemical impedance spectroscopy (EIS)) confirmed the material’s structural integrity, graphitic features, and successful modifier incorporation. Electrochemical testing revealed the highest current response (48 µA) for the CPE fabricated from CAR_ALD/Bi2O3-Sm, indicating superior electrocatalytic activity and reduced charge transfer resistance. Notably, this is the first report of a fully functional CPE working electrode fabricated entirely from waste material. Full article
(This article belongs to the Section Energy Materials)
Show Figures

Graphical abstract

13 pages, 1999 KB  
Article
Optimizing Organic Photovoltaic Efficiency Through Controlled Doping of ZnS/Co Nanoparticles
by Jude N. Ike and Raymond Tichaona Taziwa
Solids 2025, 6(4), 69; https://doi.org/10.3390/solids6040069 - 11 Dec 2025
Viewed by 303
Abstract
Thin-film organic solar cells (TFOSCs) are gaining momentum as next-generation photovoltaic technologies due to their lightweight nature, mechanical flexibility, and low cost-effective fabrication. In this pioneering study, we report for the first time the incorporation of cobalt-doped zinc sulfide [...] Read more.
Thin-film organic solar cells (TFOSCs) are gaining momentum as next-generation photovoltaic technologies due to their lightweight nature, mechanical flexibility, and low cost-effective fabrication. In this pioneering study, we report for the first time the incorporation of cobalt-doped zinc sulfide (ZnS/Co) nanoparticles (NPs) into a poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PC61BM) bulk-heterojunction photoactive layer. ZnS/Co NPs were successfully synthesized via a wet chemical method and integrated at varying concentrations (1%wt, 3%wt, and 5%wt) to systematically investigate their influence on device performance. The optimal doping concentration of 3%wt yielded a remarkable power conversion efficiency (PCE) of 4.76%, representing a 102% enhancement over the pristine reference device (2.35%) under ambient laboratory conditions. The observed positive trend is attributed to the localized surface plasmon resonance (LSPR) effect and near-field optical enhancement induced by the presence of ZnS/Co NPs in the active layer, thereby increasing light-harvesting capability and exciton dissociation. Comprehensive morphological and optical characterizations using high-resolution scanning electron microscopy (HRSEM), high-resolution transmission electron microscopy (HRTEM), and spectroscopic techniques confirmed uniform nanoparticle dispersion, nanoscale crystallinity, and effective light absorption. These findings highlight the functional role of ZnS/Co NPs as dopants in enhancing TFOSC performance, providing valuable insights into optimizing nanoparticle concentration. This work offers a scalable and impactful strategy for advancing high-efficiency, flexible, and wearable organic photovoltaic devices. Full article
Show Figures

Graphical abstract

23 pages, 4476 KB  
Article
Methanol Oxidation over Pd-Doped Co- and/or Ag-Based Catalysts: Effect of Impurities (H2O and CO)
by Eleni Pachatouridou, Angelos Lappas and Eleni Iliopoulou
Catalysts 2025, 15(12), 1129; https://doi.org/10.3390/catal15121129 - 2 Dec 2025
Viewed by 607
Abstract
The methanol oxidation reaction was investigated on Co- and/or Ag-based γ-Al2O3 catalysts, which were prepared by different methods (WI: wet impregnation and SI: spray impregnation) and further doped with noble metals (Pd, Pt). During the present study, three different reaction [...] Read more.
The methanol oxidation reaction was investigated on Co- and/or Ag-based γ-Al2O3 catalysts, which were prepared by different methods (WI: wet impregnation and SI: spray impregnation) and further doped with noble metals (Pd, Pt). During the present study, three different reaction pathways were revealed. The complete oxidation of methanol to CO2 and H2O was achieved on Pd-doped catalysts prepared by the spray impregnation method (Pd-Co/Al-SI and Pd-Ag/Al-SI), while partial oxidation to intermediates such as formaldehyde was observed for Ag/alumina catalysts. The dehydration reaction of methanol to dimethyl ether was carried out on Co/alumina, Ag-Co/alumina, and Pt-Co/alumina catalysts. The improved reducibility of the 5Co/Al-SI catalyst with the incorporation of Pd, combined with the easier surface oxygen desorption, resulted in higher catalytic activity compared to the Pt-doped catalyst. On the other hand, the incorporation of Pd into Ag/Al-SI enhanced the well-dispersed Ag2O species, mainly affecting the structural properties of the catalyst, thus resulting in partial oxidation of methanol. The 0.5 wt.% Pd-5 wt.% Co/γ-Al2O3 catalyst, prepared by the spray impregnation method, exhibited the highest methanol oxidation efficiency (T50: 43 °C) and was further evaluated in the presence of H2O and CO in the feed for several hours on stream and at reaction temperature of 230 °C. The presence of impurities initially reduced the catalyst’s activity from 100% methanol conversion (in the absence of H2O and CO in the feed) to 80%; however, over time complete methanol oxidation was regained (achieving again 100% methanol conversion after 12 h on stream). Characterization of the used catalyst (after the stability experiment) revealed that in addition to the Co3O4 phase, initially formed in the fresh, as-prepared catalyst, some Co3O4 species were reduced to CoO under the reaction conditions, suggesting that the active phase of the 0.5Pd-5Co/Al-SI catalyst for the methanol oxidation reaction in the presence of the impurities (such as H2O and CO) is probably a mixture of Co3O4 and CoO phases. Full article
(This article belongs to the Section Environmental Catalysis)
Show Figures

Graphical abstract

13 pages, 12398 KB  
Article
Synergistic Zn/Al Co-Doping and Sodium Enrichment Enable Reversible Phase Transitions in High-Performance Layered Sodium Cathodes
by Yaru Qin, Tingfei Yang, Na Chen, Jiale Li, Anqi Li, Yu Miao, Chenglong Shi, Jianmin Ma and Xue Qin
Molecules 2025, 30(23), 4628; https://doi.org/10.3390/molecules30234628 - 2 Dec 2025
Viewed by 395
Abstract
Layered transition-metal oxides are among the most promising sodium-ion battery cathodes owing to their high specific capacities and structurally tunable frameworks. However, the prototypical P2-Na0.67Ni0.33Mn0.67O2 (NM) undergoes an irreversible P2 → O2 phase transition at high [...] Read more.
Layered transition-metal oxides are among the most promising sodium-ion battery cathodes owing to their high specific capacities and structurally tunable frameworks. However, the prototypical P2-Na0.67Ni0.33Mn0.67O2 (NM) undergoes an irreversible P2 → O2 phase transition at high voltages, accompanied by severe lattice strain and capacity fade, which hinders practical deployment. Here, we propose a cooperative regulation strategy that couples Zn/Al co-doping with Na enrichment, and successfully synthesize P2-Na0.80Ni0.14Zn0.14Mn0.58Al0.14O2 (NMZA-N14). The optimized NMZA-N14 delivers an initial discharge capacity of 125 mAh g−1 at 0.1C and demonstrates exceptional cycling and rate performance, retaining 98.6% of its capacity after 100 cycles at 0.2C and 93.6% after 200 cycles at 1C. Kinetic analyses indicate a higher Na+ diffusion coefficient and a lower charge-transfer resistance in NMZA-N14, evidencing substantially accelerated ion transport. In situ X-ray diffraction further reveals a reversible P2 → OP4 phase transition in the high-voltage regime with a unit-cell volume change of only ~2.27%, thereby avoiding the irreversible structural degradation observed in NM. This synergistic modulation markedly enhances structural stability and electrochemical kinetics, providing a viable pathway for the rational design of high-performance sodium-ion battery cathodes. Full article
Show Figures

Figure 1

21 pages, 3437 KB  
Article
N/S Co-Doped Mesoporous Carbon Hollow Spheres: Toward Efficient and Durable Oxygen Reduction
by I. L. Alonso-Lemus, J. C. Carrillo-Rodríguez, B. Escobar-Morales and F. J. Rodríguez-Varela
Chemistry 2025, 7(6), 187; https://doi.org/10.3390/chemistry7060187 - 24 Nov 2025
Viewed by 782
Abstract
This study reports the design of N- and S-doped ordered mesoporous carbon hollow spheres (OMCHS) as metal-free electrocatalysts for the oxygen reduction reaction (ORR) in alkaline media. Three electrocatalysts were synthesized using molecular precursors: (i) 2-thiophenemethanol (S-OMCHS), (ii) 2-pyridinecarboxaldehyde/2-thiophenemethanol (N1-S-OMCHS), and (iii) pyrrole/2-thiophenemethanol [...] Read more.
This study reports the design of N- and S-doped ordered mesoporous carbon hollow spheres (OMCHS) as metal-free electrocatalysts for the oxygen reduction reaction (ORR) in alkaline media. Three electrocatalysts were synthesized using molecular precursors: (i) 2-thiophenemethanol (S-OMCHS), (ii) 2-pyridinecarboxaldehyde/2-thiophenemethanol (N1-S-OMCHS), and (iii) pyrrole/2-thiophenemethanol (N2-S-OMCHS). Among them, S-OMCHS exhibited the best activity (Eonset = 0.88 V, E½ = 0.81 V, n ≈ 3.95), surpassing both co-doped analogs. After conducting an accelerated degradation test (ADT), S-OMCHS and N1-S-OMCHS showed improved catalytic behavior and outstanding long-term stability. Surface analysis confirmed that performance evolution correlates with heteroatom reorganization: S-OMCHS retained and regenerated thiophene-S and C=O/quinone species, while N1-S-OMCHS converted N-quaternary into N-pyridinic/pyrrolic, both enhancing O2 adsorption and *OOH reduction through synergistic spin–charge coupling. Conversely, oxidation of N and loss of thiophene-S in N2-S-OMCHS led to partial deactivation. These results establish a direct link between surface chemistry evolution and electrocatalytic durability, demonstrating that controlled heteroatom doping stabilizes active sites and sustains the four-electron ORR pathway. The approach provides a rational design framework for next-generation, metal-free carbon electrocatalysts in alkaline fuel cells and energy conversion technologies. Full article
(This article belongs to the Section Electrochemistry and Photoredox Processes)
Show Figures

Figure 1

18 pages, 3332 KB  
Article
Effect of Mn/Cu Ratio on the Structure–Performance Relationship of Spinel-Type Mn–Cu/Al2Ox Catalysts for Methanol Steam Reforming
by Qiang Zhang, Shiming Qiu, Yanfei Zheng and Yingying Huang
Catalysts 2025, 15(11), 1091; https://doi.org/10.3390/catal15111091 - 20 Nov 2025
Cited by 1 | Viewed by 792
Abstract
The development of highly active, thermally stable, and low-CO-selective catalysts is critical for practical methanol steam reforming (MSR) to produce high-purity hydrogen for fuel cell applications. In this work, a series of Mn–Cu/Al2Ox catalysts with varying Mn/Cu/Al molar ratios were [...] Read more.
The development of highly active, thermally stable, and low-CO-selective catalysts is critical for practical methanol steam reforming (MSR) to produce high-purity hydrogen for fuel cell applications. In this work, a series of Mn–Cu/Al2Ox catalysts with varying Mn/Cu/Al molar ratios were synthesized via co-precipitation and systematically investigated to establish the relationship between composition, structure, and catalytic performance. XRD analysis revealed the formation of spinel-type CuAl2O4 and MnAl2O4 phases, with Mn preferentially occupying octahedral B-sites to form MnAl2O4, thereby inducing lattice distortion and inhibiting grain growth. SEM and TEM–EDS mapping confirmed uniform elemental distribution and a porous nanoscale morphology, while H2-TPR results suggested that increasing the Mn/Cu ratio strengthens Mn–Cu interactions, shifts Cu2+ reduction to higher temperatures, and enhances Cu dispersion (up to 26.11 m2/g). XPS analysis indicated that Mn doping enriches Mn3+ species and facilitates oxygen vacancy formation, which promotes water–gas shift (WGS) activity and suppresses CO formation. Catalytic testing (240–300 °C) showed that Mn2Cu2Al4Ox achieved the highest methanol conversion while maintaining low CO selectivity; in contrast, reducing the Mn/Cu ratio increased CO selectivity, detrimental to hydrogen purification. Stability tests under continuous steam exposure for 24 h demonstrated minimal activity loss (~2%) and negligible increase in CO selectivity (<1%), confirming excellent hydrothermal stability. The results indicate that tailoring the Mn/Cu ratio optimizes the balance between redox properties and metallic Cu dispersion, offering a promising route to design low-CO, durable catalysts for on-site hydrogen generation via MSR. Full article
Show Figures

Graphical abstract

21 pages, 5717 KB  
Article
Effect of Partial Fe-Substitution by Y and/or Ce in BaFeO3-Based Oxides on Oxygen Diffusion
by Anna Khodimchuk, Irina Svishch, Egor Gordeev and Natalia Porotnikova
Crystals 2025, 15(11), 998; https://doi.org/10.3390/cryst15110998 - 19 Nov 2025
Viewed by 563
Abstract
The chemical diffusion coefficients of oxygen (Dδ) for the oxides BaFe0.9Ce0.1O3−δ (BFC10), BaFe0.9Y0.1O3−δ (BFY10), and BaFe0.8Ce0.1Y0.1O3−δ (BFCY1010) were determined by [...] Read more.
The chemical diffusion coefficients of oxygen (Dδ) for the oxides BaFe0.9Ce0.1O3−δ (BFC10), BaFe0.9Y0.1O3−δ (BFY10), and BaFe0.8Ce0.1Y0.1O3−δ (BFCY1010) were determined by the oxygen pressure relaxation method in the T = 600–800 °C and pO2 = 0.1–3.5 kPa ranges. The oxygen diffusion coefficients at 700 °C were found to be 1.80·10−5, 3.92·10−5, and 1.85·10−5 cm2/s for BFC10, BFY10, and BFCY1010, respectively. It was established that the volume oxygen diffusion increases in the order Dδ(BFY10) > Dδ(BFCY1010) > Dδ(BFC10), which correlates with the data on oxygen non-stoichiometry (δ), and is associated with the oxygen vacancy content in oxides. The values of effective activation energies were determined: 1.21 ± 0.04, 1.31 ± 0.10, and 1.18 ± 0.09 eV for BFC10, BFY10, and BFCY1010, respectively. A comparative analysis of oxygen transport highlights the potential of co-doped BaFe0.8Ce0.1Y0.1O3−δ as a promising cobalt-free cathode material with triple (oxygen, proton, electron) conductivity. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

19 pages, 15785 KB  
Article
Cu Doping-Enabled Control of Grain Boundary Fusion and Particle Size in Single-Crystal LiNi0.5Co0.2Mn0.3O2 Cathode Materials
by Lang Xu, Zhipeng Wang, Ya Li, Jie Ding, Xiang Li, Ziqian Wang, Mingjiao Wu, Qiujian Zhang, Mingwu Xiang, Wei Bai, Fangkun Li and Yongshun Liang
Batteries 2025, 11(11), 418; https://doi.org/10.3390/batteries11110418 - 13 Nov 2025
Viewed by 552
Abstract
Copper (Cu) doping is recognized as an effective strategy to enhance the electrochemical properties of LiNi1−x−yCoxMnyO2 (NCM) cathode materials. However, the influence of Cu2+ doping on particle size and grain boundary fusion remains insufficiently explored. [...] Read more.
Copper (Cu) doping is recognized as an effective strategy to enhance the electrochemical properties of LiNi1−x−yCoxMnyO2 (NCM) cathode materials. However, the influence of Cu2+ doping on particle size and grain boundary fusion remains insufficiently explored. A simple microwave-assisted solution combustion synthesis method was used to introduce Cu2+ into LiNi0.5Co0.2Mn0.3O2 (NCM523), aiming to regulate particle size and grain boundary fusion. The results demonstrate that increasing the Cu2+ doping content promotes particle growth, while an appropriate doping level reduces the degree of grain boundary fusion and cation mixing. Benefiting from these structural improvements, the optimized LiNi0.5Co0.2Mn0.29Cu0.01O2 (Cu–1) cathode exhibits significantly enhanced electrochemical performance, delivering a discharge capacity of 128.6 mAh g−1 after 100 cycles at 0.2 C, which is 32 mAh g−1 higher than value of the undoped sample (96.6 mAh g−1). These findings underscore that tailored Cu2+ doping can effectively optimize the microstructure of NCM523, leading to superior cycling stability, and provide new insights into the design of high-performance NCM cathodes. Full article
(This article belongs to the Special Issue Multiscale Co-Design of Electrode Architectures and Electrolytes)
Show Figures

Graphical abstract

32 pages, 5875 KB  
Systematic Review
Thermally Conductive Biopolymers in Regenerative Medicine and Oncology: A Systematic Review
by Ivett Poma-Paredes, Oscar Vivanco-Galván, Darwin Castillo-Malla and Yuliana Jiménez-Gaona
Pharmaceuticals 2025, 18(11), 1708; https://doi.org/10.3390/ph18111708 - 11 Nov 2025
Viewed by 684
Abstract
Background: Minimally invasive hyperthermia and regenerative therapies require materials that deliver precise, localized heat without compromising biocompatibility. Most conventional polymers are thermally insulating and challenging to control in vivo, motivating this review. Objectives: We aimed to (i) examine the use of thermally enhanced [...] Read more.
Background: Minimally invasive hyperthermia and regenerative therapies require materials that deliver precise, localized heat without compromising biocompatibility. Most conventional polymers are thermally insulating and challenging to control in vivo, motivating this review. Objectives: We aimed to (i) examine the use of thermally enhanced biopolymers in hyperthermia-based therapies, (ii) appraise evidence from clinical and preclinical studies, (iii) identify and classify principal applications in regenerative medicine. Methods: A PRISMA-guided systematic review (2020–2025) with predefined inclusion/exclusion criteria was conducted and complemented by a bibliometric analysis using VOSviewer for mapping and visualization. Results: Modifying biopolymers—via functionalization with photothermal or magnetic nanoagents (Au; Fe2O3/Fe3O4/CoFe2O4; CuS; Ag; MXenes, e.g., Nb2C), crosslinking strategies, and hybrid formulations—significantly increased thermal conductivity, enabling localized hyperthermia and controlled drug release. In vitro and in vivo studies showed that europium-doped iron oxide nanoparticles embedded in chitosan generated heat efficiently while sparing healthy tissues, underscoring the need to balance biocompatibility and thermal performance. Hydrogel systems enriched with carbon nanomaterials (graphene, carbon nanotubes) and matrices such as GelMA, PNIPAM, hyaluronic acid, and PLA/PLGA demonstrated tissue compatibility and effective thermal behavior; graphene was compatible with neural tissue without inducing inflammation. Conclusions: Thermally conductive biopolymers show growing potential for oncology and regenerative medicine. The evidence supports further academic and interdisciplinary research to optimize safety, performance, and translational pathways. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Graphical abstract

18 pages, 8789 KB  
Article
Optimization of Plasma-Sprayed CeScYSZ Thermal Barrier Coating Parameters and Investigation of Their CMAS Corrosion Resistance
by Rongbin Li, Keyu Wang and Ziyan Li
Materials 2025, 18(22), 5114; https://doi.org/10.3390/ma18225114 - 11 Nov 2025
Viewed by 525
Abstract
Thermal barrier coatings (TBCs) are critical for protecting hot-section components in gas turbines and aero-engines. Traditional yttria-stabilized zirconia (YSZ) coatings are prone to phase transformation and sintering-induced failure at elevated temperatures. This study fabricated CeScYSZ (4 mol% CeO2 and 6 mol% Sc [...] Read more.
Thermal barrier coatings (TBCs) are critical for protecting hot-section components in gas turbines and aero-engines. Traditional yttria-stabilized zirconia (YSZ) coatings are prone to phase transformation and sintering-induced failure at elevated temperatures. This study fabricated CeScYSZ (4 mol% CeO2 and 6 mol% Sc2O3 co-doped YSZ)/NiCrAlY TBCs using atmospheric plasma spraying (APS). A five-factor, four-level orthogonal experimental design was employed to optimize spraying parameters, investigating the influence of powder feed rate, spray distance, current, hydrogen flow rate and primary gas flow rate on the coating’s microstructure and mechanical properties. The resistance to calcium–magnesium–alumino–silicate (CMAS) corrosion was compared between CeScYSZ and YSZ coatings. The results indicate that the optimal parameters are a spray distance of 100 mm, current of 500 A, argon flow rate of 30 L/min, hydrogen flow rate of 6 L/min, and powder feed rate of 45 g/min. Coatings produced under these conditions exhibited moderate porosity and excellent bonding strength. After exposure to CMAS corrosion at 1300 °C for 2 h, the CeScYSZ coating demonstrated significantly superior corrosion resistance compared to YSZ. This enhancement is attributed to the formation of a CaZrO3 physical barrier and the synergistic effect of Ce and Sc in suppressing deleterious phase transformations. This study provides an experimental basis for the preparation and application of high-performance TBCs. Full article
(This article belongs to the Special Issue Protective Coatings for Metallic Materials)
Show Figures

Figure 1

2099 KB  
Proceeding Paper
Printable Chemoresistive Sensor Based on PrFeTiO5 Solid Solution for Acetone Detection
by Danial Ahmed, Elena Spagnoli, Adil Chakir, Maura Mancinelli, Matteo Ferroni, Boubker Mehdaoui, Abdeslam El Bouari and Barbara Fabbri
Eng. Proc. 2025, 118(1), 48; https://doi.org/10.3390/ECSA-12-26592 - 7 Nov 2025
Viewed by 157
Abstract
Acetone necessitates reliable detection for the sake of both industrial and environmental safety. Metal oxides are widely used as functional materials for the development of gas sensors because techniques like nanostructure modification, doping, and solid solution formation can enhance their sensitivity and selectivity [...] Read more.
Acetone necessitates reliable detection for the sake of both industrial and environmental safety. Metal oxides are widely used as functional materials for the development of gas sensors because techniques like nanostructure modification, doping, and solid solution formation can enhance their sensitivity and selectivity by tuning structural and electronic properties. This study developed PrFeTiO5 nanostructures, synthesized via the solid-state reaction for acetone sensing. The sensor demonstrated a high response to acetone at an operating temperature of 400 °C, with a low influence of humidity, displaying outstanding selectivity towards acetaldehyde, NH3, H2, CO, and CO2, making it suitable across various applications. Full article
Show Figures

Figure 1

Back to TopTop