N/S Co-Doped Mesoporous Carbon Hollow Spheres: Toward Efficient and Durable Oxygen Reduction
Abstract
1. Introduction
2. Materials and Methods
2.1. Synthesis of S-Doped and N/S Co-Doped OMCHS
2.2. Physicochemical Features
2.3. Electrochemical Characterization
2.4. Use of Generative AI (GenAI) Tools
3. Results and Discussion
3.1. Physicochemical Characterization of N-S-Doped OMCHS
3.2. Catalytic Activity of the N/S Co-Doped OMCHS for the ORR
3.3. Surface Chemical Composition of S-Doped and N/S-Doped OMCHS Before ADT
3.4. Catalytic Activity for the ORR and Surface Chemical Composition of S Doped and N/S Co-Doped OMCHS After ADT
3.5. Correlation Between Surface Chemical Evolution and ORR Performance Before and After ADT
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ahmed, S.; Islam, M.T.; Karim, M.A.; Karim, N.M. Exploitation of renewable energy for sustainable development and overcoming power crisis in Bangladesh. Renew. Energy 2014, 72, 223–235. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, J.; He, F.; Chen, Y.; Zhu, J.; Wang, D.; Mu, S.; Yang, H. Defect and Doping Co-Engineered Non-Metal Nanocarbon ORR Electrocatalyst. Nano-Micro Lett. 2021, 13, 65. [Google Scholar] [CrossRef] [PubMed]
- Ma, R.; Lin, G.; Zhou, Y.; Liu, Q.; Zhang, T.; Shan, G.; Yang, M.; Wang, J. A review of oxygen reduction mechanisms for metal-free carbon-based electrocatalysts. NPJ Comput. Mater. 2019, 5, 78. [Google Scholar] [CrossRef]
- Zhu, Y.P.; Guo, C.; Zheng, Y.; Qiao, S.Z. Surface and Interface Engineering of Noble-Metal-Free Electrocatalysts for Efficient Energy Conversion Processes. Acc. Chem. Res. 2017, 50, 915–923. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Higgins, D.; Tao, H.; Hsu, R.S.; Chen, Z. Highly Active Nitrogen-Doped Carbon Nanotubes for Oxygen Reduction Reaction in Fuel Cell Applications. J. Phys. Chem. C 2019, 113, 21008–21013. [Google Scholar] [CrossRef]
- Bao, X.; von Deak, D.; Biddinger, E.J.; Ozkan, U.S.; Hadad, C.M. A computational exploration of the oxygen reduction reaction over a carbon catalyst containing a phosphinate functional group. Chem. Commun. 2010, 46, 8621–8623. [Google Scholar] [CrossRef]
- Wang, D.; Su, D. Heterogeneous nanocarbon materials for oxygen reduction reaction. Energy Environ. Sci. 2014, 7, 576–591. [Google Scholar] [CrossRef]
- Ge, X.; Sumboja, A.; Wuu, D.; An, T.; Li, B.; Goh, F.W.T.; Hor, T.S.A.; Zong, Y.; Liu, Z. Oxygen Reduction in Alkaline Media: From Mechanisms to Recent Advances of Catalysts. ACS Catal. 2015, 5, 4643–4667. [Google Scholar] [CrossRef]
- Yang, Z.; Yao, Z.; Li, G.; Fang, G.; Nie, H.; Liu, Z.; Zhou, X.; Chen, X.; Huang, S. Sulfur-doped graphene as an efficient metal-free cathode catalyst for oxygen reduction. ACS Nano 2012, 6, 205–211. [Google Scholar] [CrossRef]
- Xiang, Q.; Zou, X.; Qiang, Y.; Hu, B.; Cen, Y.; Xu, C.; Liu, L.; Zhou, Y.; Chen, C. Self-assembly porous metal- free electrocatalysts templated from sulfur for efficient oxygen reduction reaction. Appl. Surf. Sci. 2018, 462, 65–72. [Google Scholar] [CrossRef]
- Liang, J.; Jiao, Y.; Jaroniec, M.; Qiao, S.Z. Sulfur and nitrogen dual-doped mesoporous graphene electrocatalyst for oxygen reduction with synergistically enhanced performance. Angew. Chemie. Int. Ed. 2012, 51, 11496–11500. [Google Scholar] [CrossRef]
- Yang, S.; Mao, X.; Cao, Z.; Yin, Y.; Wang, Z.; Shi, M.; Dong, H. Onion-derived N, S self-doped carbon materials as highly efficient metal-free electrocatalysts for the oxygen reduction reaction. Appl. Surf. Sci. 2018, 427, 626–634. [Google Scholar] [CrossRef]
- You, C.; Liao, S.; Li, H.; Hou, S.; Peng, H.; Zeng, X.; Liu, F.; Zheng, R.; Fu, Z.; Li, Y. Uniform nitrogen and sulfur co-doped carbon nanospheres as catalysts for the oxygen reduction reaction. Carbon 2014, 69, 294–301. [Google Scholar] [CrossRef]
- Han, C.; Wang, S.; Wang, J.; Li, M.; Deng, J.; Li, H.; Wang, Y. Controlled synthesis of sustainable N-doped hollow core-mesoporous shell carbonaceous nanospheres from biomass. Nano Res. 2014, 7, 1809–1819. [Google Scholar] [CrossRef]
- Zhou, T.; Zhou, Y.; Ma, R.; Zhou, Z.; Liu, G.; Liu, Q.; Zhu, Y.; Wang, J. Nitrogen-doped hollow mesoporous carbon spheres as a highly active and stable metal-free electrocatalyst for oxygen reduction. Carbon 2017, 114, 177–186. [Google Scholar] [CrossRef]
- Pang, Y.; Wang, K.; Xie, H.; Sun, Y.; Titirici, M.M.; Chai, G.L. Mesoporous Carbon Hollow Spheres as Efficient Electrocatalysts for Oxygen Reduction to Hydrogen Peroxide in Neutral Electrolytes. ACS Catal. 2020, 10, 7434–7442. [Google Scholar] [CrossRef]
- Duraisamy, V.; Krishnan, R.; Kumar, S.M.S. N-Doped Hollow Mesoporous Carbon Nanospheres for Oxygen Reduction Reaction in Alkaline Media. ACS Appl. Nano Mater. 2020, 3, 8875–8887. [Google Scholar] [CrossRef]
- Qiu, Z.; Huang, N.; Ge, X.; Xuan, J.; Wang, P. Preparation of N-doped nano-hollow capsule carbon nanocage as ORR catalyst in alkaline solution by PVP modified F127. Int. J. Hydrogen Energy 2020, 45, 8667–8675. [Google Scholar] [CrossRef]
- Yan, J.; Zheng, X.; Wei, C.; Sun, Z.; Zeng, K.; Shen, L.; Sun, J.; Rümmeli, M.; Yang, R. Nitrogen-doped hollow carbon polyhedron derived from salt-encapsulated ZIF-8 for efficient oxygen reduction reaction. Carbon 2021, 171, 320–328. [Google Scholar] [CrossRef]
- Fan, M.; Pan, X.; Lin, W.; Zhang, H. Carbon-Covered Hollow Nitrogen-Doped Carbon Nanoparticles and Nitrogen-Doped Carbon-Covered Hollow Carbon Nanoparticles for Oxygen Reduction. ACS Appl. Nano Mater. 2020, 3, 3487–3493. [Google Scholar] [CrossRef]
- Zheng, Y.; Chen, S.; Zhang, K.; Guan, J.; Yu, X.; Peng, W.; Song, H.; Zhu, J.; Xu, J.; Fan, X.; et al. Template-free construction of hollow mesoporous carbon spheres from a covalent triazine framework for enhanced oxygen electroreduction. J. Colloid. Interface Sci. 2022, 608, 3168–3177. [Google Scholar] [CrossRef]
- Xiong, W.; Li, H.; Cao, R. Nitrogen and sulfur dual-doped hollow mesoporous carbon spheres as efficient metal-free catalyst for oxygen reduction reaction. Inorg. Chem. Commun. 2020, 114, 107848. [Google Scholar] [CrossRef]
- Zhang, C.; Li, J.; Li, C.; Chen, W.; Guo, C. Surface and interface engineering of hollow carbon sphere-based electrocatalysts for the oxygen reduction reaction. J. Mater. Chem. A 2021, 9, 25706–25730. [Google Scholar] [CrossRef]
- Wei, Z.; Zhang, J.; Wang, H.; Li, X. Mesoporous Carbon Materials: Synthesis Methods, Properties, and Advanced Applications. Front. Mater. 2025, 12, 154392. [Google Scholar] [CrossRef]
- Pavlenko, V.; Khosravi, H.S.; Żółtowska, S.; Haruna, A.B.; Zahid, M.; Mansurov, Z.; Supiyeva, Z.; Galal, A.; Ozoemena, K.I.; Abbas, Q.; et al. A Comprehensive Review of Template-Assisted Porous Carbons: Modern Preparation Methods and Advanced Applications. Mater. Sci. Eng. R Rep. 2022, 149, 100682. [Google Scholar] [CrossRef]
- Deng, X.; Zhao, Z.; Fang, Y.; Yu, J. Protocol for the Nanocasting Method: Preparation of Ordered Mesoporous Carbon and Related Materials. Chem. Mater. 2017, 29, 40–52. [Google Scholar] [CrossRef]
- Carrillo-Rodríguez, J.C.; Garay-Tapia, A.M.; Escobar-Morales, B.; Escorcia-García, J.; Ochoa-Lara, M.T.; Rodríguez-Varela, F.J.; Alonso-Lemus, I.L. Insight into the performance and stability of N-doped Ordered Mesoporous Carbon Hollow Spheres for the ORR: Influence of the nitrogen species on their catalytic activity after ADT. Int. J. Hydrogen Energy 2021, 46, 26087–26100. [Google Scholar] [CrossRef]
- Chernyak, S.A.; Ivanov, A.S.; Maslakov, K.I.; Egorov, A.V.; Shen, Z.; Savilov, S.S.; Lunin, V.V. Oxidation, defunctionalization and catalyst life cycle of carbon nanotubes: A Raman spectroscopy view. Phys. Chem. Chem. Phys. 2017, 19, 2276–2285. [Google Scholar] [CrossRef]
- Claramunt, S.; Varea, A.; López-Díaz, D.; Velázquez, M.M.; Cornet, A.; Cirera, A. The Importance of Interbands on the Interpretation of the Raman Spectrum of Graphene Oxide. J. Phys. Chem. C 2015, 119, 10123–10129. [Google Scholar] [CrossRef]
- He, X.; Liu, X.; Nie, B.; Song, D. FTIR and Raman spectroscopy characterization of functional groups in various rank coals. Fuel 2017, 206, 555–563. [Google Scholar] [CrossRef]
- Li, Y.; Zhong, J.; Yang, X.Z.; Lan, G.J.; Tang, H.D.; Liu, H.Z. Simple synthesis of semi-graphitized ordered mesoporous carbons with tunable pore sizes. New Carbon Mater. 2011, 26, 123–129. [Google Scholar] [CrossRef]
- Alwin, E.; Kočí, K.; Wojcieszak, R.; Zieliński, M.; Edelmannová, M.; Pietrowski, M. Influence of High Temperature Synthesis on the Structure of Graphitic Carbon Nitride and Its Hydrogen Generation Ability. J. Mater. 2020, 13, 2756. [Google Scholar] [CrossRef] [PubMed]
- Guan, D.; Shi, C.; Xu, H.; Gu, Y.; Zhong, J.; Sha, Y.; Hu, Z.; Ni, M.; Shao, Z. Simultaneously mastering operando strain and reconstruction effects via phase-segregation strategy for enhanced oxygen-evolving electrocatalysis. J. Energy Chem. 2023, 82, 572–580. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef]
- Chen, A.; Yu, Y.; Li, Y.; Wang, Y.; Li, Y.; Li, S.; Xia, K. Synthesis of macro-mesoporous carbon materials and hollow core/mesoporous shell carbon spheres as supercapacitors. J. Mater. Sci. 2016, 51, 4601–4608. [Google Scholar] [CrossRef]
- Chao, B.; Konggidinata, M.I.; Lin, L.; Zappi, M.; Gang, D.D. Effect of carbon precursors and pore expanding reagent on ordered mesoporous carbon for resorcinol removal. J. Water Process Eng. 2017, 17, 256–263. [Google Scholar] [CrossRef]
- Guo, J.; Yao, Y.; Yan, X.; Meng, X.; Wang, Q.; Zhang, Y.; Yan, S.; Zhao, X.; Luo, S. Emerging Carbon-Based Catalysts for the Oxygen Reduction Reaction: Insights into Mechanisms and Applications. Front. Mater. 2025, 12, 303. [Google Scholar] [CrossRef]
- Wang, C.; Yang, F.; Xu, C.; Cao, Y.; Zhong, H.; Li, Y. Sulfur-doped porous graphene frameworks as an efficient metal-free electrocatalyst for oxygen reduction reaction. Mater. Lett. 2018, 214, 209–212. [Google Scholar] [CrossRef]
- Klingele, M.; Pham, C.; Vuyyuru, K.R.; Britton, B.; Holdcroft, S.; Fischer, A.; Thiele, S. Sulfur doped reduced graphene oxide as metal-free catalyst for the oxygen reduction reaction in anion and proton exchange fuel cells. Electrochem. Commun. 2017, 77, 71–75. [Google Scholar] [CrossRef]
- Macias, E.M.; Valenzuela-Muñiz, A.M.; Alonso-Núñez, G.; Sánchez, M.H.F.; Gauvin, R.; Gómez, Y.V. Sulfur doped carbon nanohorns towards oxygen reduction reaction. Diam. Relat. Mater. 2020, 103, 107671. [Google Scholar] [CrossRef]
- Wang, H.; Bo, X.; Zhang, Y.; Guo, L. Sulfur-doped ordered mesoporous carbon with high electrocatalytic activity for oxygen reduction. Electrochim. Acta 2013, 108, 404–411. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, Y.; Du, Y.; Qing, M.; Yu, F.; Tian, Z.Q.; Shen, P.K. Highly active N,S co-doped hierarchical porous carbon nanospheres from green and template-free method for super capacitors and oxygen reduction reaction. Electrochim. Acta 2019, 318, 272–280. [Google Scholar] [CrossRef]
- Li, J.C.; Qin, X.; Hou, P.X.; Cheng, M.; Shi, C.; Liu, C.; Cheng, H.M.; Shao, M. Identification of active sites in nitrogen and sulfur co-doped carbon-based oxygen reduction catalysts. Carbon 2019, 147, 303–311. [Google Scholar] [CrossRef]
- Xing, X.; Liu, R.; Anjass, M.; Cao, K.; Kaiser, U.; Zhang, G.; Streb, C. Bimetallic manganese-vanadium functionalized N,S-doped carbon nanotubes as efficient oxygen evolution and oxygen reduction electrocatalysts. Appl. Catal. B Environ. 2020, 277, 119195. [Google Scholar] [CrossRef]
- Lin, H.; Chen, D.; Lu, C.; Zhang, C.; Qiu, F.; Han, S.; Zhuang, X. Rational synthesis of N/S-doped porous carbons as high efficient electrocatalysts for oxygen reduction reaction and Zn-Air batteries. Electrochim. Acta 2018, 266, 17–26. [Google Scholar] [CrossRef]
- Rambabu, G.; Turtayeva, Z.; Xu, F.; Maranzana, G.; Emo, M.; Hupont, S.; Mamlouk, M.; Desforges, A.; Vigolo, B. Insights into the electrocatalytic behavior of nitrogen and sulfur co-doped carbon nanotubes toward oxygen reduction reaction in alkaline media. J. Mater. Sci. 2022, 57, 16739–16754. [Google Scholar] [CrossRef]
- Kundu, J.; Kwon, T.; Lee, K.; Choi, S. Exploration of metal-free 2D electrocatalysts toward the oxygen electroreduction. Exploration 2024, 4, 20220174. [Google Scholar] [CrossRef]
- Chen, C.; Levitin, G.; Hess, D.W.; Fuller, T.F. XPS investigation of Nafion® membrane degradation. J. Power Sources 2007, 169, 288–295. [Google Scholar] [CrossRef]
- Sun, Y.; Wu, J.; Tian, J.; Jin, C.; Yang, R. Sulfur-doped carbon spheres as efficient metal-free electrocatalysts for oxygen reduction reaction. Electrochim. Acta 2015, 178, 806–812. [Google Scholar] [CrossRef]
- Wang, B.; Hu, J.; Zhang, L. Nitrogen and sulfur co-doped hierarchical porous carbon as functional sulfur host for lithium-sulfur batteries. Mater. Today Commun. 2021, 27, 102312. [Google Scholar] [CrossRef]
- Wen, Y.; Zhu, H.; Hao, J.; Lu, S.; Zong, W.; Lai, F.; Ma, P.; Dong, W.; Liu, T.; Du, M. Metal-free boro and sulphur co-doped carbon nanofibers with optimized p-band centers for highly efficient nitrogen electroreduction to ammonia. Appl. Catal. B Environ. 2021, 292, 120144. [Google Scholar] [CrossRef]
- Li, F.; Sun, L.; Luo, Y.; Li, M.; Xu, Y.; Hu, G.; Li, X.; Wang, L. Effect of thiophene S on the enhanced ORR electrocatalytic performance of sulfur-doped graphene quantum dot/reduced graphene oxide nanocomposites. RSC Adv. 2018, 8, 19635–19641. [Google Scholar] [CrossRef]
- Park, J.E.; Jang, Y.; Kim, Y.; Song, M.; Yoon, S.; Kim, D.; Kim, S. Sulfur-doped graphene as a potential alternative metal-free electrocatalyst and Pt-catalyst supporting material for oxygen reduction reaction. Phys. Chem. Chem. Phys. 2014, 16, 103–109. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Zhi, L.; Tang, K.; Feng, X.; Maier, J.; Müllen, K. Efficient synthesis of heteroatom (N or S)-doped graphene based on ultrathin graphene oxide-porous silica sheets for oxygen reduction reactions. Adv. Funct. Mater. 2012, 22, 3634–3640. [Google Scholar] [CrossRef]
- Fan, M.; Zhu, C.; Yang, J.; Sun, D. Facile self-assembly N-doped graphene quantum dots/graphene for oxygen reduction reaction. Electrochim. Acta 2016, 216, 102–109. [Google Scholar] [CrossRef]
- Perazzolo, V.; Durante, C.; Pilot, R.; Paduano, A.; Zheng, J.; Rizzi, G.A.; Martucci, A.; Granozzi, G.; Gennaro, A. Nitrogen and sulfur doped mesoporous carbon as metal-free electrocatalysts for the in situ production of hydrogen peroxide. Carbon 2015, 95, 949–963. [Google Scholar] [CrossRef]
- Perazzolo, V.; Grądzka, E.; Durante, C.; Pilot, R.; Vicentini, N.; Rizzi, G.A.; Granozzi, G.; Gennaro, A. Chemical and Electrochemical Stability of Nitrogen and Sulphur Doped Mesoporous Carbons. Electrochim. Acta 2016, 197, 251–262. [Google Scholar] [CrossRef]
- Flyagina, I.S.; Hughes, K.J.; Pourkashanian, M.; Ingham, D.B. A Theoretical Study of Molecular Oxygen Chemisorption on N, B, or O Doped Carbon Edge Sites. Fuel Cells 2014, 14, 709–719. [Google Scholar] [CrossRef]
- Maouche, C.; Zhou, Y.; Li, B.; Cheng, C.; Wu, Y.; Li, J.; Gao, S.; Yang, J. Thermal treated three-dimensional N-doped graphene as efficient metal free-catalyst for oxygen reduction reaction. J. Electroanal. Chem. 2019, 853, 113536. [Google Scholar] [CrossRef]
- Friedman, A.K.; Shi, W.; Losovyj, Y.; Siedle, A.R.; Baker, L.A. Mapping Microscale Chemical Heterogeneity in Nafion Membranes with X-ray Photoelectron Spectroscopy. J. Electrochem. Soc. 2018, 165, H733–H741. [Google Scholar] [CrossRef]
- Chen, S.; Luo, T.; Chen, K.; Lin, Y.; Fu, J.; Liu, K.; Cai, C.; Wang, Q.; Li, H.; Li, X.; et al. Chemical Identification of Catalytically Active Sites on Oxygen-doped Carbon Nanosheet to Decipher the High Activity for Electro-synthesis Hydrogen Peroxide. Angew. Chem. Int. Ed. 2021, 60, 16607–16614. [Google Scholar] [CrossRef]
- Kim, D.W.; Heo, S.; Lee, J.S.; Lim, S.Y. Metal-Free, NH3-Activated N-Doped Mesoporous Nanocarbon Electrocatalysts for the Oxygen Reduction Reaction. Electrochem. Commun. 2021, 129, 107092. [Google Scholar] [CrossRef]
- Wütscher, A.; Eckhard, T.; Hiltrop, D.; Lotz, K.; Schuhmann, W.; Andronescu, C.; Mühler, M. Nitrogen-Doped Metal-Free Carbon Materials Derived from Cellulose as Electrocatalysts for the Oxygen Reduction Reaction. ChemElectroChem 2019, 6, 514–521. [Google Scholar] [CrossRef]
- Zhu, M.; Xie, P.; Fan, L.F.; Rong, M.Z.; Zhang, M.Q.; Zhang, Z.P. Performance Improvement of N-Doped Carbon ORR Catalyst via Large Through-Hole Structure. Nanotechnology 2020, 31, 335717. [Google Scholar] [CrossRef] [PubMed]
- Tang, H.; Chen, W.; Wang, J.; Dugger, T.; Cruz, L.; Kisailus, D. Electrocatalytic N-Doped Graphitic Nanofiber–Metal/Metal Oxide Nanoparticle Composites. Small 2018, 14, 1703459. [Google Scholar] [CrossRef] [PubMed]
- Jia, N.; Weng, Q.; Shi, Y.; Shi, X.; Chen, X.; Chen, P.; An, Z.; Chen, Y. N-doped Carbon Nanocages: Bifunctional Electrocatalysts for the Oxygen Reduction and Evolution Reactions. Nano Res. 2018, 11, 1905–1916. [Google Scholar] [CrossRef]
- Jiang, T.; Jiang, W.C.; Li, Y.L.; Xu, Y.S.; Zhao, M.Y.; Deng, M.Y.; Wang, Y. Facile Regulation of Porous N-Doped Carbon-Based Catalysts from Covalent Organic Frameworks Nanospheres for Highly-Efficient Oxygen Reduction Reaction. Carbon 2021, 180, 92–100. [Google Scholar] [CrossRef]
- Mena-Durán, C.J.; Alonso-Lemus, I.L.; Quintana, P.; Barbosa, R.; Ordoñez, L.C.; Escobar, B. Preparation of metal-free electrocatalysts from cassava residues for the oxygen reduction reaction: A sulfur functionalization approach. Int. J. Hydrogen Energy 2018, 43, 3172–3179. [Google Scholar] [CrossRef]
- Seredych, M.; Bandosz, T.J. Confined Space Reduced Graphite Oxide Doped with Sulfur as Metal-Free Oxygen Reduction Catalyst. Carbon 2014, 66, 227–233. [Google Scholar] [CrossRef]
- Li, W.; Yang, D.; Chen, H.; Gao, Y.; Li, H. Sulfur-Doped Carbon Nanotubes as Catalysts for the Oxygen Reduction Reaction in Alkaline Medium. Electrochimica Acta 2015, 165, 191–197. [Google Scholar] [CrossRef]
- Chen, G.; Liu, J.; Li, Q.; Guan, P.; Yu, X.; Xing, L.; Zhang, J.; Che, R. A Direct H2O2 Production Based on Hollow Porous Carbon Sphere–Sulfur Nanocrystal Composites by Confinement Effect as Oxygen Reduction Electrocatalysts. Nano Res. 2019, 12, 2614–2622. [Google Scholar] [CrossRef]
- Jiao, R.; Zhang, W.; Sun, H.; Li, A. N- and S-Doped Nanoporous Carbon Framework Derived from Conjugated Microporous Polymers Incorporation with Ionic Liquids for Efficient Oxygen Reduction Reaction. Mater. Today Energy 2020, 16, 100382. [Google Scholar] [CrossRef]
- Singh, K.P.; Song, M.Y.; Yu, J.-S. Iodine-Treated Heteroatom-Doped Carbon: Conductivity Driven Electrocatalytic Activity. J. Mater. Chem. A 2014, 2, 18115–18124. [Google Scholar] [CrossRef]
- Wang, F.; Ma, Z.; Xu, X.; Wang, H.; Li, D.; Zhang, Y.; Zhao, J. Metal-Free B, N Co-Doped Hierarchical Porous Carbon as Electrocatalysts for the Oxygen Reduction Reaction. ChemistryOpen 2021, 10, 100090. [Google Scholar] [CrossRef] [PubMed]
- Gong, T.; Qi, R.; Liu, X.; Li, X.; Zhang, H.; Wang, C.; Liu, Y.; Zheng, B.; Xiao, L.; Wang, S. N, F-Codoped Microporous Carbon Nanofibers as Efficient Metal-Free Electrocatalysts for the Oxygen Reduction Reaction. Nano-Micro Lett. 2019, 11, Article 9. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Xiao, Z.; Kong, D.; Iqbal, R.; Yang, Q.-H.; Zhi, L. N,P Co-Doped Hollow Carbon Nanofiber Membranes with Superior Mass Transfer Property for Trifunctional Metal-Free Electrocatalysis. Nano Energy 2019, 64, 103879. [Google Scholar] [CrossRef]
- Lv, Y.; Yang, L.; Cao, D. Sulfur, Nitrogen and Fluorine Triple-Doped Metal-Free Carbon Electrocatalysts for the Oxygen Reduction Reaction. ChemElectroChem 2019, 6, 741–747. [Google Scholar] [CrossRef]
- Ferrero, G.A.; Fuertes, A.B.; Sevilla, M.; Titirici, M.M. Efficient Metal-Free N-Doped Mesoporous Carbon Catalysts for ORR by a Template-Free Approach. Carbon 2016, 106, 179–187. [Google Scholar] [CrossRef]
- Alia, S.M.; Ngo, C.; Shulda, S.; Ha, M.-A.; Dameron, A.A.; Weker, J.N.; Neyerlin, K.C.; Kocha, S.S.; Pylypenko, S.; Pivovar, B.S. Exceptional Oxygen Reduction Reaction Activity and Durability of Platinum–Nickel Nanowires Through Synthesis and Post-Treatment Optimization. ACS Omega 2017, 2, 1408–1418. [Google Scholar] [CrossRef]
- Jaouen, F.; Herranz, J.; Lefèvre, M.; Dodelet, J.-P.; Kramm, U.I.; Herrmann, I.; Bogdanoff, P.; Maruyama, J.; Nagaoka, A.; Dahn, J.R.; et al. Cross-Laboratory Experimental Study of Non-Noble-Metal Electrocatalysts for the Oxygen Reduction Reaction. ACS Appl. Mater. Interfaces 2009, 1, 1623–1639. [Google Scholar] [CrossRef]









| Sample | SSA | Average Pore Size | Pore Volume | Average Diameter | Wall Thickness |
|---|---|---|---|---|---|
| (m2 g−1) | (nm) | (cm3 g−1) | (Avg., nm) | (Avg., nm) | |
| S-OMCHS | 1007 | 1.9 | 1.88 | 262 ± 15 | 45 |
| N1-S-OMCHS | 283 | 4.4 | 0.43 | 260 ± 19 | 46 |
| N2-S-OMCHS | 622 | 4.0 | 0.91 | 276 ±17 | 34 |
| Samples | Eonset (V/RHE) | E1/2 (V/RHE) | j at 0.8 V/RHE (mA cm−2) | HO2− at 0.4 V/RHE (%) | n at 0.4 V/RHE | |||||
|---|---|---|---|---|---|---|---|---|---|---|
| 1st | 3000th | 1st | 3000th | 1st | 3000th | 1st | 3000th | 1st | 3000th | |
| S-OMCHS | 0.88 | 0.88 | 0.81 | 0.82 | −1.49 | −1.69 | 2.4 | 1.1 | 3.95 | 3.97 |
| N1-S-OMCHS | 0.86 | 0.88 | 0.78 | 0.78 | −0.60 | −0.72 | 1.0 | 1.9 | 3.97 | 3.96 |
| N2-S-OMCHS | 0.85 | 0.84 | 0.77 | 0.76 | −0.42 | −0.30 | 3.2 | 4.1 | 3.93 | 3.91 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alonso-Lemus, I.L.; Carrillo-Rodríguez, J.C.; Escobar-Morales, B.; Rodríguez-Varela, F.J. N/S Co-Doped Mesoporous Carbon Hollow Spheres: Toward Efficient and Durable Oxygen Reduction. Chemistry 2025, 7, 187. https://doi.org/10.3390/chemistry7060187
Alonso-Lemus IL, Carrillo-Rodríguez JC, Escobar-Morales B, Rodríguez-Varela FJ. N/S Co-Doped Mesoporous Carbon Hollow Spheres: Toward Efficient and Durable Oxygen Reduction. Chemistry. 2025; 7(6):187. https://doi.org/10.3390/chemistry7060187
Chicago/Turabian StyleAlonso-Lemus, I. L., J. C. Carrillo-Rodríguez, B. Escobar-Morales, and F. J. Rodríguez-Varela. 2025. "N/S Co-Doped Mesoporous Carbon Hollow Spheres: Toward Efficient and Durable Oxygen Reduction" Chemistry 7, no. 6: 187. https://doi.org/10.3390/chemistry7060187
APA StyleAlonso-Lemus, I. L., Carrillo-Rodríguez, J. C., Escobar-Morales, B., & Rodríguez-Varela, F. J. (2025). N/S Co-Doped Mesoporous Carbon Hollow Spheres: Toward Efficient and Durable Oxygen Reduction. Chemistry, 7(6), 187. https://doi.org/10.3390/chemistry7060187

