Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (816)

Search Parameters:
Keywords = C, N and P cycles

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1010 KiB  
Article
The Effect of cdk1 Gene Knockout on Heat Shock-Induced Polyploidization in Loach (Misgurnus anguillicaudatus)
by Hanjun Jiang, Qi Lei, Wenhao Ma, Junru Wang, Jing Gong, Xusheng Guo and Xiaojuan Cao
Life 2025, 15(8), 1223; https://doi.org/10.3390/life15081223 - 2 Aug 2025
Viewed by 161
Abstract
(1) Background: Polyploid fish are highly important in increasing fish production, improving fish quality, and breeding new varieties. The loach (Misgurnus anguillicaudatus), as a naturally polyploid fish, serves as an ideal biological model for investigating the mechanisms of chromosome doubling; (2) [...] Read more.
(1) Background: Polyploid fish are highly important in increasing fish production, improving fish quality, and breeding new varieties. The loach (Misgurnus anguillicaudatus), as a naturally polyploid fish, serves as an ideal biological model for investigating the mechanisms of chromosome doubling; (2) Methods: In this study, tetraploidization in diploid loach was induced by heat shock treatment, and, for the first time, the role of the key cell cycle gene cdk1 (cyclin-dependent kinase 1) in chromosome doubling was investigated; (3) Results: The experimental results show that when eggs are fertilized for 20 min and then subjected to a 4 min heat shock treatment at 39–40 °C, this represents the optimal induction condition, resulting in a tetraploid rate of 44%. Meanwhile, the results of the cdk1 knockout model (2n cdk1−/−) constructed using CRISPR/Cas9 showed that the absence of cdk1 significantly increased the chromosome doubling efficiency of the loach. The qPCR analysis revealed that knockout of cdk1 significantly upregulated cyclin genes (ccnb3,ccnc, and ccne1), while inhibiting expression of the separase gene espl1 (p < 0.05); (4) Conclusions: During chromosome doubling in diploid loaches induced by heat shock, knocking out the cdk1 gene can increase the tetraploid induction rate. This effect may occur through downregulation of the espl1 gene. This study offers novel insights into optimizing the induced breeding technology of polyploid fish and deciphering its molecular mechanism, while highlighting the potential application of integrating gene editing with physical induction. Full article
(This article belongs to the Section Animal Science)
Show Figures

Figure 1

17 pages, 3193 KiB  
Article
Effects of Nitrogen and Phosphorus Additions on the Stability of Soil Carbon Fractions in Subtropical Castanopsis sclerophylla Forests
by Yunze Dai, Xiaoniu Xu and LeVan Cuong
Forests 2025, 16(8), 1264; https://doi.org/10.3390/f16081264 - 2 Aug 2025
Viewed by 135
Abstract
Soil organic carbon (SOC) pool plays an extremely important role in regulating the global carbon (C) cycle and climate change. Atmospheric nitrogen (N) and phosphorus (P) deposition caused by human activities has significant impacts on soil C sequestration potential of terrestrial ecosystem. To [...] Read more.
Soil organic carbon (SOC) pool plays an extremely important role in regulating the global carbon (C) cycle and climate change. Atmospheric nitrogen (N) and phosphorus (P) deposition caused by human activities has significant impacts on soil C sequestration potential of terrestrial ecosystem. To investigate the effects of N and P deposition on soil C sequestration and C-N coupling relationship in broad-leaved evergreen forests, a 6-year field nutrient regulation experiment was implemented in subtropical Castanopsis sclerophylla forests with four different N and P additions: N addition (100 kg N·hm−2·year−1), N + P (100 kg N·hm−2·year−1 + 50 kg P·hm−2·year−1), P addition (50 kg P·hm−2·year−1), and CK (0 kg N·hm−2·year−1). The changes in the C and N contents and stable isotope distributions (δ13C and δ15N) of different soil organic fractions were examined. The results showed that the SOC and total nitrogen (STN) (p > 0.05) increased with N addition, while SOC significantly decreased with P addition (p < 0.05), and N + P treatment has low effect on SOC, STN (p > 0.05). By density grouping, it was found that N addition significantly increased light fraction C and N (LFOC, LFN), significantly decreased the light fraction C to N ratio (LFOC/N) (p < 0.05), and increased heavy fraction C and N (HFOC, HFN) accumulation and light fraction to total organic C ratio (LFOC/SOC, p > 0.05). Contrary to N addition, P addition was detrimental to the accumulation of LFOC, LFN and reduced LFOC/SOC. It was found that different reactive oxidized carbon (ROC) increased under N addition but ROC/SOC did not change, while N + P and P treatments increased ROC/SOC, resulting in a decrease in SOC chemical stability. Stable isotope analysis showed that N addition promoted the accumulation of new soil organic matter, whereas P addition enhanced the transformation and utilization of C and N from pre-existing organic matter. Additionally, N addition indirectly increased LFOC by significantly decreasing pH; significantly contributed to LFOC and ROC by increasing STN accumulation promoted by NO3-N and NH4+-N; and decreased light fraction δ13C by significantly increasing dissolved organic C (p < 0.05). P addition had directly significant negative effect on LFOC and SOC (p < 0.05). In conclusion, six-year N deposition enhances soil C and N sequestration while the P enrichment reduces the content of soil C, N fractions and stability in Castanopsis sclerophylla forests. The results provide a scientific basis for predicting the soil C sink function of evergreen broad-leaved forest ecosystem under the background of future climate change. Full article
(This article belongs to the Section Forest Soil)
Show Figures

Figure 1

12 pages, 1421 KiB  
Article
Enzymatic Stoichiometry and Driving Factors Under Different Land-Use Types in the Qinghai–Tibet Plateau Region
by Yonggang Zhu, Feng Xiong, Derong Wu, Baoguo Zhao, Wenwu Wang, Biao Bi, Yihang Liu, Meng Liang and Sha Xue
Land 2025, 14(8), 1550; https://doi.org/10.3390/land14081550 - 28 Jul 2025
Viewed by 149
Abstract
Eco-enzymatic stoichiometry provides a basis for understanding soil ecosystem functions, with implications for land management and ecological protection. Long-term climatic factors and human interferences have caused significant land-use transformations in the Qinghai–Tibet Plateau region, affecting various ecological functions, such as soil nutrient cycling [...] Read more.
Eco-enzymatic stoichiometry provides a basis for understanding soil ecosystem functions, with implications for land management and ecological protection. Long-term climatic factors and human interferences have caused significant land-use transformations in the Qinghai–Tibet Plateau region, affecting various ecological functions, such as soil nutrient cycling and chemical element balance. It is currently unclear how large-scale land-use conversion affects soil ecological stoichiometry. In this study, 763 soil samples were collected across three land-use types: farmland, grassland, and forest land. In addition, changes in soil physicochemical properties and enzyme activity and stoichiometry were determined. The soil available phosphorus (SAP) and total phosphorus (TP) concentrations were the highest in farmland soil. Bulk density, pH, SAP, TP, and NO3-N were lower in forest soil, whereas NH4+-N, available nitrogen, soil organic carbon (SOC), available potassium, and the soil nutrient ratio increased. Land-use conversion promoted soil β-1,4-glucosidase, N-acetyl-β-glucosaminidase, and alkaline phosphatase activities, mostly in forest soil. The eco-enzymatic C:N ratio was higher in farmland soils but grassland soils had a higher enzymatic C:P and N:P. Soil microorganisms were limited by P nutrients in all land-use patterns. C limitation was the highest in farmland soil. The redundancy analysis indicated that the ecological stoichiometry in farmland was influenced by TN, whereas grass and forest soils were influenced by SOC. Overall, the conversion of cropland or grassland to complex land-use types can effectively enhance soil nutrients, enzyme activities, and ecosystem functions, providing valuable insights for ecological restoration and sustainable land management in alpine regions. Full article
(This article belongs to the Section Land Use, Impact Assessment and Sustainability)
Show Figures

Figure 1

16 pages, 2713 KiB  
Article
Change in C, N, and P Characteristics of Hypericum kouytchense Organs in Response to Altitude Gradients in Karst Regions of SW China
by Yage Li, Chunyan Zhao, Jiajun Wu, Suyan Ba, Shuo Liu and Panfeng Dai
Plants 2025, 14(15), 2307; https://doi.org/10.3390/plants14152307 - 26 Jul 2025
Viewed by 170
Abstract
The environmental heterogeneity caused by altitude can lead to trade-offs in nutrient utilization and allocation strategies among plant organs; however, there is still a lack of research on the nutrient variation in the “flower–leaf–branch–fine root–soil” systems of native shrubs along altitude gradients in [...] Read more.
The environmental heterogeneity caused by altitude can lead to trade-offs in nutrient utilization and allocation strategies among plant organs; however, there is still a lack of research on the nutrient variation in the “flower–leaf–branch–fine root–soil” systems of native shrubs along altitude gradients in China’s unique karst regions. Therefore, we analyzed the carbon (C), nitrogen (N), and phosphorus (P) contents and their ratios in flowers, leaves, branches, fine roots, and surface soil of Hypericum kouytchense shrubs across 2200–2700 m altitudinal range in southwestern China’s karst areas, where this species is widely distributed and grows well. The results show that H. kouytchense organs had higher N content than both global and Chinese plant averages. The order of C:N:P value across plant organs was branches > fine roots > flowers > leaves. Altitude significantly affected the nutrient dynamics in plant organs and soil. With increasing altitude, P content in plant organs exhibited a significant concave pattern, leading to unimodal trends in the C:P of plant organs, as well as the N:P of leaves and fine roots. Meanwhile, plant organs except branches displayed significant homeostasis coefficients in C:P and fine root P, indicating a shift in H. kouytchense’s P utilization strategy from acquisitive-type to conservative-type. Strong positive relationships between plant organs and soil P and available P revealed that P was the key driver of nutrient cycling in H. kouytchense shrubs, enhancing plant organ–soil coupling relationships. In conclusion, H. kouytchense demonstrates flexible adaptability, suggesting that future vegetation restoration and conservation management projects in karst ecosystems should consider the nutrient adaptation strategies of different species, paying particular attention to P utilization. Full article
(This article belongs to the Special Issue Plant Functional Diversity and Nutrient Cycling in Forest Ecosystems)
Show Figures

Figure 1

14 pages, 8052 KiB  
Article
Unraveling TNXB Epigenetic Alterations Through Genome-Wide DNA Methylation Analysis and Their Implications for Colorectal Cancer
by Jesús Pilo, Alejandro Rego-Calvo, Libia-Alejandra García-Flores, Isabel Arranz-Salas, Ana Isabel Alvarez-Mancha, Andrea G. Izquierdo, Ana B. Crujeiras, Julia Alcaide, Maria Ortega-Castan, Hatim Boughanem and Manuel Macías-González
Int. J. Mol. Sci. 2025, 26(15), 7197; https://doi.org/10.3390/ijms26157197 - 25 Jul 2025
Viewed by 171
Abstract
Aberrant DNA methylation has been shown to be a fingerprint characteristic in human colorectal tumors. In this study, we hypothesize that investigating global DNA methylation could offer potential candidates for clinical application in CRC. The epigenome-wide association analysis was conducted in both the [...] Read more.
Aberrant DNA methylation has been shown to be a fingerprint characteristic in human colorectal tumors. In this study, we hypothesize that investigating global DNA methylation could offer potential candidates for clinical application in CRC. The epigenome-wide association analysis was conducted in both the tumor area (N = 27) and the adjacent tumor-free (NAT) area (N = 15). We found 78,935 differentially methylated CpG sites (DMCs) (FDR < 0.05), 42,888 hypomethylated and 36,047 hypermethylation showing overall hypomethylation. Gene ontology and KEGG analysis of differentially methylated genes showed significant enrichment in developmental genes, as well as in genes involved in metabolic processes and the cell cycle, such as the TFGβ and cAMP signaling pathways. Through filtered analysis, we identified TNXB as the most epigenetically dysregulated gene, hypomethylated and downregulated in CRC (both with p < 0.001) and associated with poor overall survival. In the functional analysis, TNXB was epigenetically regulated in a dose-dependent manner, suggesting a potential role in CRC. The epigenetic dysregulation and functional role of TNXB in CRC could have clinical implications, serving as indicators of malignant potential, with adverse effects associated with disease origin and progression in CRC. Full article
(This article belongs to the Special Issue Advancements in Cancer Biomarkers)
Show Figures

Figure 1

19 pages, 6502 KiB  
Article
Facile Synthesis of β-C3N4 and Its Novel MnTeO3 Nanohybrids for Remediating Water Contaminated by Pharmaceuticals
by Mohamed R. Elamin, Nuha Y. Elamin, Tarig G. Ibrahim, Mutaz Salih, Abuzar Albadri, Rasha Ramadan and Babiker Y. Abdulkhair
Processes 2025, 13(8), 2357; https://doi.org/10.3390/pr13082357 - 24 Jul 2025
Viewed by 320
Abstract
A facile method was adopted to fabricate β-C3N4, and it was then doped with manganese and tellurium to obtain novel 10%MnTeO3@β-C3N4 (10%MnTe@β) and 20%MnTeO3@β-C3N4 (20%MnTe@β) nanohybrids. The β-C3 [...] Read more.
A facile method was adopted to fabricate β-C3N4, and it was then doped with manganese and tellurium to obtain novel 10%MnTeO3@β-C3N4 (10%MnTe@β) and 20%MnTeO3@β-C3N4 (20%MnTe@β) nanohybrids. The β-C3N4, 10%MnTe@β, and 20%MnTe@β showed surface areas of 85.86, 97.40, and 109.54 m2 g−1, respectively. Using ciprofloxacin (CIP) as a pollutant example, 10%MnTe@β and 20%MnTe@β attained equilibrium at 60 and 45 min with qt values of 48.88 and 77.41 mg g−1, respectively, and both performed better at pH = 6.0. The kinetic studies revealed a better agreement with the pseudo-second-order model for CIP sorption on 10%MnTe@β and 20%MnTe@β, indicating that the sorption was controlled by a liquid film mechanism, which suggests a high affinity of CIP toward 10%MnTe@β and 20%MnTe@β. The sorption equilibria outputs indicated better alignment with the Freundlich and Langmuir models for CIP removal by 10%MnTe@β and 20%MnTe@β, respectively. The thermodynamic analysis revealed that CIP removal by 10%MnTe@β and 20%MnTe@β was exothermic, which turned more spontaneous as the temperature decreased. Applying 20%MnTe@β as the best sorbent to groundwater and seawater spiked with CIP resulted in average efficiencies of 94.8% and 91.08%, respectively. The 20%MnTe@β regeneration–reusability average efficiency was 95.14% within four cycles, which might nominate 20%MnTe@β as an efficient and economically viable sorbent for remediating CIP-contaminated water. Full article
Show Figures

Figure 1

16 pages, 2877 KiB  
Article
Functional Disruption of IQGAP1 by Truncated PALB2 in Two Cases of Breast Cancer: Implications for Proliferation and Invasion
by Natalia-Dolores Pérez-Rodríguez, Rita Martín-Ramírez, Rebeca González-Fernández, María del Carmen Maeso, Julio Ávila and Pablo Martín-Vasallo
Biomedicines 2025, 13(8), 1804; https://doi.org/10.3390/biomedicines13081804 - 23 Jul 2025
Viewed by 416
Abstract
Background/Objectives: Truncating mutations in PALB2, a critical component of the BRCA1-PALB2-BRCA2 homologous recombination repair complex, are associated with increased risk and aggressiveness of breast cancer. The consequences of PALB2 truncation on the expression, localization, and functional dynamics of the scaffold protein IQGAP1 [...] Read more.
Background/Objectives: Truncating mutations in PALB2, a critical component of the BRCA1-PALB2-BRCA2 homologous recombination repair complex, are associated with increased risk and aggressiveness of breast cancer. The consequences of PALB2 truncation on the expression, localization, and functional dynamics of the scaffold protein IQGAP1 were investigated in this study based on two cases of truncated PALB2 human breast invasive ductal carcinoma (IDC), specifically, c.1240C>T (p.Arg414*) and c.2257C>T (p.Arg753*). Methods: Using confocal microscopy, we examined co-expression patterns of IQGAP1 with PALB2, PCNA, CK7, and β-tubulin in tumor tissues from both control cancer and PALB2-mutated cases. Results: In PALB2-truncated tumors, IQGAP1 exhibited enhanced peripheral and plasma membrane localization with elevated co-localization levels compared to controls, suggesting altered cytoskeletal organization. PALB2 truncation increased nuclear and cytoplasmic N-terminal PALB2 immunoreactivity, indicating the presence of truncated isoforms disrupting the homologous recombination repair system. Co-expression analyses with PCNA revealed an inverse expression pattern between IQGAP1 and proliferation markers, suggesting S-phase cell cycle-dependent heterogeneity. Furthermore, the loss of IQGAP1 dominance over CK7 and β-tubulin in mutant tumors, along with persistent intercellular spacing, implied a loss of cell–cell cohesion and the acquisition of invasive traits. Conclusions: These data support a model where PALB2 truncation triggers a reorganization of IQGAP1 that disrupts its canonical structural functions and facilitates tumor progression via enhanced motility and impaired cell–cell interaction. IQGAP1 thus serves as both a functional effector and potential biomarker in PALB2-mutated IDC, opening novel paths for diagnosis and targeted therapeutic intervention. Full article
(This article belongs to the Section Cancer Biology and Oncology)
Show Figures

Figure 1

12 pages, 11599 KiB  
Article
Dual pH- and Temperature-Responsive Fluorescent Hybrid Materials Based on Carbon Dot-Grafted Triamino-Tetraphenylethylene/N-Isopropylacrylamide Copolymers
by Huan Liu, Yuxin Ding, Longping Zhou, Shirui Xu and Bo Liao
C 2025, 11(3), 53; https://doi.org/10.3390/c11030053 - 22 Jul 2025
Viewed by 243
Abstract
Carbon dots (CDs), a class of carbon-based fluorescent nanomaterials, have garnered significant attention due to their tunable optical properties and functional versatility. In this study, we developed a hybrid material by grafting pH- and temperature-responsive copolymers onto CDs via reversible addition-fragmentation chain-transfer (RAFT) [...] Read more.
Carbon dots (CDs), a class of carbon-based fluorescent nanomaterials, have garnered significant attention due to their tunable optical properties and functional versatility. In this study, we developed a hybrid material by grafting pH- and temperature-responsive copolymers onto CDs via reversible addition-fragmentation chain-transfer (RAFT) polymerization. Triamino-tetraphenylethylene (ATPE) and N-isopropylacrylamide (NIPAM) were copolymerized at varying ratios and covalently linked to CDs, forming a dual-responsive system. Structural characterization using FTIR, 1H NMR, and TEM confirmed the successful grafting of the copolymers onto CDs. The hybrid material exhibited pH-dependent fluorescence changes in acidic aqueous solutions, with emission shifting from 450 nm (attributed to CDs) to 500 nm (aggregation-induced emission, AIE, from ATPE) above a critical pH threshold. Solid films of the hybrid material demonstrated reversible fluorescence quenching under HCl vapor and recovery/enhancement under NH3 vapor, showing excellent fatigue resistance over multiple cycles. Temperature responsiveness was attributed to the thermosensitive poly(NIPAM) segments, with fluorescence intensity increasing above 35 °C due to polymer chain collapse and ATPE aggregation. This work provides a strategy for designing multifunctional hybrid materials with potential applications in recyclable optical pH/temperature sensors. Full article
Show Figures

Graphical abstract

16 pages, 2268 KiB  
Article
Epichloë Endophyte Alters Bacterial Nitrogen-Cycling Gene Abundance in the Rhizosphere Soil of Perennial Ryegrass
by Munire Maimaitiyiming, Yanxiang Huang, Letian Jia, Mofan Wu and Zhenjiang Chen
Biology 2025, 14(7), 879; https://doi.org/10.3390/biology14070879 - 18 Jul 2025
Viewed by 254
Abstract
Perennial ryegrass (Lolium perenne), an important forage and turfgrass species, can establish a mutualistic symbiosis with the fungal endophyte Epichloë festucae var. lolii. Although the physiological and ecological impacts of endophyte infection on ryegrass have been extensively investigated, the response of [...] Read more.
Perennial ryegrass (Lolium perenne), an important forage and turfgrass species, can establish a mutualistic symbiosis with the fungal endophyte Epichloë festucae var. lolii. Although the physiological and ecological impacts of endophyte infection on ryegrass have been extensively investigated, the response of the soil microbial community and nitrogen-cycling gene to this relationship has received much less attention. The present study emphasized abundance and diversity variation in the AOB-amoA, nirK and nosZ functional genes in the rhizosphere soil of the endophyte–ryegrass symbiosis following litter addition. We sampled four times: at T0 (prior to first litter addition), T1 (post 120 d of 1st litter addition), T2 (post 120 d of 2nd litter addition) and T3 (post 120 d of 3rd litter addition) times. Real-time fluorescence quantitative PCR (qPCR) and PCR amplification and sequencing were used to characterize the abundance and diversity of the AOB-amoA, nirK and nosZ genes in rhizosphere soils of endophyte-infected (E+) plants and endophyte-free (E−) plants. A significant enhancement of total Phosphorus (P), Soil Organic Carbon (SOC), Ammonium ion (NH4+) and Nitrate ion (NO3) contents in the rhizosphere soil was recorded in endophyte-infected plants at different sampling times compared to endophyte-free plants (p ≤ 0.05). The absolute abundance of the AOB-amoA gene at T0 and T1 times was higher, as was the absolute abundance of the nosZ gene at T0, T1 and T3 times in the E+ plant rhizophere soils relative to E− plant rhizosphere soils. A significant change in relative abundance of the AOB-amoA and nosZ genes in the host rhizophere soils of endophyte-infected plants at T1 and T3 times was observed. The experiment failed to show any significant alteration in abundance and diversity of the nirK gene, and diversity of the AOB-amoA and nosZ genes. Analysis of the abundance and diversity of the nirK gene indicated that changes in soil properties accounted for approximately 70.38% of the variation along the first axis and 16.69% along the second axis, and soil NH4+ (p = 0.002, 50.4%) and soil C/P ratio (p = 0.012, 15.8%) had a strong effect. The changes in community abundance and diversity of the AOB-amoA and nosZ genes were mainly related to soil pH, N/P ratio and NH4+ content. The results demonstrate that the existence of tripartite interactions among the foliar endophyte E. festucae var. Lolii, L. perenne and soil nitrogen-cycling gene has important implications for reducing soil losses on N. Full article
(This article belongs to the Collection Plant Growth-Promoting Bacteria: Mechanisms and Applications)
Show Figures

Figure 1

31 pages, 2679 KiB  
Article
Gut Microbial Postbiotics as Potential Therapeutics for Lymphoma: Proteomics Insights of the Synergistic Effects of Nisin and Urolithin B Against Human Lymphoma Cells
by Ahmad K. Al-Khazaleh, Muhammad A. Alsherbiny, Gerald Münch, Dennis Chang and Deep Jyoti Bhuyan
Int. J. Mol. Sci. 2025, 26(14), 6829; https://doi.org/10.3390/ijms26146829 - 16 Jul 2025
Viewed by 498
Abstract
Lymphoma continues to pose a significant global health burden, highlighting the urgent need for novel therapeutic strategies. Recent advances in microbiome research have identified gut-microbiota-derived metabolites, or postbiotics, as promising candidates in cancer therapy. This study investigates the antiproliferative and mechanistic effects of [...] Read more.
Lymphoma continues to pose a significant global health burden, highlighting the urgent need for novel therapeutic strategies. Recent advances in microbiome research have identified gut-microbiota-derived metabolites, or postbiotics, as promising candidates in cancer therapy. This study investigates the antiproliferative and mechanistic effects of two postbiotics, Nisin (N) and Urolithin B (UB), individually and in combination, against the human lymphoma cell line HKB-11. Moreover, this study evaluated cytotoxic efficacy and underlying molecular pathways using a comprehensive experimental approach, including the Alamar Blue assay, combination index (CI) analysis, flow cytometry, reactive oxygen species (ROS) quantification, and bottom-up proteomics. N and UB displayed notable antiproliferative effects, with IC50 values of 1467 µM and 87.56 µM, respectively. Importantly, their combination at a 4:6 ratio demonstrated strong synergy (CI = 0.09 at IC95), significantly enhancing apoptosis (p ≤ 0.0001) and modulating oxidative stress. Proteomic profiling revealed significant regulation of key proteins related to lipid metabolism, mitochondrial function, cell cycle control, and apoptosis, including upregulation of COX6C (Log2FC = 2.07) and downregulation of CDK4 (Log2FC = −1.26). These findings provide mechanistic insights and underscore the translational potential of postbiotics in lymphoma treatment. Further preclinical and clinical investigations are warranted to explore their role in therapeutic regimens. Full article
Show Figures

Figure 1

30 pages, 1498 KiB  
Article
Determination of Differential miRNA Expression Profile in People with Noise-Induced Hearing Loss
by Gözde Öztan, Halim İşsever, Özlem Kar Kurt, Sevgi Canbaz, Fatma Oğuz, Tuğçe İşsever and Özmen Öztürk
Int. J. Mol. Sci. 2025, 26(14), 6623; https://doi.org/10.3390/ijms26146623 - 10 Jul 2025
Viewed by 415
Abstract
Noise-induced hearing loss (NIHL) is a significant occupational health issue, characterized by permanent damage to the cochlea due to prolonged exposure to high-intensity noise. Circulating microRNAs (c-miRNAs) have emerged as promising non-invasive indicators of inner ear pathology and potential modulators of cellular stress [...] Read more.
Noise-induced hearing loss (NIHL) is a significant occupational health issue, characterized by permanent damage to the cochlea due to prolonged exposure to high-intensity noise. Circulating microRNAs (c-miRNAs) have emerged as promising non-invasive indicators of inner ear pathology and potential modulators of cellular stress responses. Nevertheless, their specific roles in NIHL remain inadequately characterized. This study evaluated miRNA expression in the peripheral blood of individuals with bilateral NIHL (n = 12) and matched healthy controls (n = 6) using GeneChip® miRNA 4.0 arrays. The Transcriptome Analysis Console software was used for differential expression analysis, and bioinformatic predictions of gene targets and pathway enrichment were performed using TargetScan (version 8.0) and the Enrichr tool. Among the 72 differentially expressed miRNAs (FDR < 0.05), hsa-miR-486-2, hsa-miR-664b-3p, hsa-miR-4485, hsa-miR-501, and hsa-miR-663b were notably upregulated, while hsa-miR-6723, hsa-miR-194-2, hsa-miR-668-5p, hsa-miR-4722-3p, and hsa-miR-4716 showed significant downregulation. Enrichment analyses indicated involvement in apoptosis regulation, mitochondrial stability, and cell cycle control. Principal component analysis (PCA) and clustering methods revealed clear molecular distinctions between the patient and control groups. The observed alterations in c-miRNA profiles highlight their relevance to NIHL-related cellular stress and degeneration. These findings support their utility as candidate biomarkers for diagnosis and prognosis, warranting further validation in functional and longitudinal studies. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Figure 1

17 pages, 3983 KiB  
Article
Reduced Precipitation Alters Soil Nutrient Dynamics by Regulating the Chemical Properties of Deadwood Substrates
by Laicong Luo, Xi Yuan, Chunsheng Wu, Dehuan Zong, Xueying Zhong, Kang Lin, Long Li, Bingxu Yang, Xuejiao Han, Chao Luo, Wenping Deng, Shijie Li and Yuanqiu Liu
Forests 2025, 16(7), 1112; https://doi.org/10.3390/f16071112 - 4 Jul 2025
Viewed by 242
Abstract
Global climate change has intensified the heterogeneity of precipitation regimes in subtropical regions, and the increasing frequency of extreme drought events poses a significant threat to biogeochemical cycling in forest ecosystems. Yet, the pathways by which reduced precipitation regulates deadwood decomposition and thereby [...] Read more.
Global climate change has intensified the heterogeneity of precipitation regimes in subtropical regions, and the increasing frequency of extreme drought events poses a significant threat to biogeochemical cycling in forest ecosystems. Yet, the pathways by which reduced precipitation regulates deadwood decomposition and thereby influences soil nutrient pools remain poorly resolved. Here, we investigated a Cunninghamia lanceolata (Lamb.) Hook. plantation in subtropical China under ambient precipitation (CK) and precipitation reduction treatments of 30%, 50%, and 80%, systematically examining how reduced precipitation alters the chemical properties of deadwood substrates and, in turn, soil nutrient status. Our findings reveal that (1) as precipitation declined, soil water content decreased significantly (p < 0.01), while deadwood pH declined and total organic carbon (TOC), nonstructural carbohydrates (NSCs), and lignin content markedly accumulated (p < 0.01); (2) these shifts in deadwood chemistry affected feedback mechanisms, leading to the suppression of soil nutrient pools: extreme drought (80% reduction) significantly reduced soil TOC, dissolved organic carbon (DOC), total nitrogen (TN), and total phosphorus (TP) (p < 0.01) and inhibited N and P mineralization, whereas the 30% reduction treatment elicited a transient increase in soil microbial biomass carbon (MBC), indicative of microbial acclimation to mild water stress; and (3) principal component analysis (PCA) showed that the 80% reduction treatment drove lignin accumulation in deadwood, while the 30% reduction treatment exerted the greatest influence on soil DOC, TOC, and MBC; partial least squares path modeling (PLS-PM) further demonstrated that soil water content and deadwood substrate properties (pH, lignin, soluble sugars, TOC, C/N, and lignin/N) were strongly negatively correlated (r = −0.9051, p < 0.01), and that deadwood chemistry was, in turn, negatively correlated with soil nutrient variables (pH, TOC, DOC, MBC, TP, TN, and dissolved organic nitrogen [DON]; r = −0.8056, p < 0.01). Together, these results indicate that precipitation reduction—by drying soils—profoundly modifies deadwood chemical composition (lignin accumulation and NSC retention) and thereby, via slowed organic-matter mineralization, constrains soil nutrient release and accumulation. This work provides a mechanistic framework for understanding forest carbon–nitrogen cycling under climate change. Full article
(This article belongs to the Special Issue Deadwood Decomposition and Its Impact on Forest Soil)
Show Figures

Figure 1

17 pages, 679 KiB  
Article
Impact of Hypocaloric Dietary Intervention on Phenotypic Presentations of Polycystic Ovary Syndrome (PCOS)
by Faith E. Carter, Brittany Y. Jarrett, Alexis L. Oldfield, Heidi Vanden Brink, Joy Y. Kim and Marla E. Lujan
Nutrients 2025, 17(13), 2223; https://doi.org/10.3390/nu17132223 - 4 Jul 2025
Viewed by 571
Abstract
Background/Objective: Lifestyle intervention is recommended as first-line treatment for polycystic ovary syndrome (PCOS). This pilot study aimed to determine if a short-term hypocaloric dietary intervention induced changes in the phenotypic presentation of PCOS. Methods: Twenty women with PCOS and overweight/obesity participated in a [...] Read more.
Background/Objective: Lifestyle intervention is recommended as first-line treatment for polycystic ovary syndrome (PCOS). This pilot study aimed to determine if a short-term hypocaloric dietary intervention induced changes in the phenotypic presentation of PCOS. Methods: Twenty women with PCOS and overweight/obesity participated in a 3-month hypocaloric dietary intervention with a 6-month follow-up. At pre-intervention, post-intervention, and follow-up, assessments of menstrual cycle status, hyperandrogenism, and polycystic ovarian morphology were performed, and PCOS phenotype status was determined using the following scale of decreasing severity: Phenotype A (ovulatory dysfunction, hyperandrogenism, and polycystic ovaries), Phenotype B (ovulatory dysfunction and hyperandrogenism), Phenotype C (hyperandrogenism and polycystic ovaries), or Phenotype D (ovulatory dysfunction and polycystic ovaries). Results: The participants lost 8 ± 3% of their initial body weight with the intervention (p < 0.001). Eight (40%) participants experienced a favorable shift in PCOS phenotype, while the remaining 12 (60%) participants had an unfavorable shift or no change. Changes in PCOS phenotype were primarily driven by reductions in menstrual cycle length (p = 0.010) and follicle number per ovary (p = 0.017), albeit no baseline clinical variable predicted a favorable-change PCOS presentation. At the 6-month follow-up (N = 12), weight was increased (p < 0.05), and seven participants (58%) had reverted to a more severe phenotype. Conclusions: Weight loss may provide temporary improvement in the phenotypic presentation of PCOS, yet sustained lifestyle change may be required to maintain these benefits. Full article
(This article belongs to the Special Issue Nutritional Effects on Women’s Reproductive Health and Disease)
Show Figures

Figure 1

13 pages, 1653 KiB  
Article
Evaluation of Shear Bond Strength in the Repair of Additively and Subtractively Manufactured CAD/CAM Materials Using Bulk-Fill Composites
by Selinsu Öztürk, Ezgi Altuntaş, Ayşe Aslı Şenol, Erkut Kahramanoğlu, Pınar Yılmaz Atalı, Bilge Tarçın and Cafer Türkmen
Biomimetics 2025, 10(7), 433; https://doi.org/10.3390/biomimetics10070433 - 1 Jul 2025
Viewed by 368
Abstract
Biomimetic restorative protocols aim to preserve natural tooth structure while enhancing restoration longevity. This in vitro study aimed to evaluate the shear bond strength (SBS) in the repair of additively and subtractively manufactured CAD/CAM materials using bulk-fill resin composites and to assess the [...] Read more.
Biomimetic restorative protocols aim to preserve natural tooth structure while enhancing restoration longevity. This in vitro study aimed to evaluate the shear bond strength (SBS) in the repair of additively and subtractively manufactured CAD/CAM materials using bulk-fill resin composites and to assess the effect of thermocycling. Forty rectangular specimens (14.5 × 7 × 3 mm) were prepared from Grandio Blocs (GB, VOCO) and VarseoSmile CrownPlus (VS, BEGO), and thermocycled (5000 cycles, 5–55 °C, 20 s dwell time). All surfaces were roughened with 50 μm Al2O3. Samples were repaired using VisCalor (VCB, VOCO) and Charisma Bulk Flow One (CBO, Kulzer) composites (n = 10 per group) with their respective adhesives. Each group was further divided into immediate and post-thermocycling subgroups. All specimens were tested under shear force until failure, and failure types were examined under a stereomicroscope. Representative samples were examined by SEM to evaluate filler morphology. Statistical analysis was performed with SPSS v23 (p < 0.05). No statistically significant differences in SBS were found between groups (p > 0.05). Mean SBS values were highest in VS-CBO and lowest in GB-CBO. Cohesive failures were more frequent in immediate groups, while adhesive failures predominated after thermocycling. Bulk-fill composites did not influence the repair bond strength of indirect materials. Thermocycling affected the failure type, though not the SBS values. Full article
(This article belongs to the Special Issue Biomimetic Bonded Restorations for Dental Applications: 2nd Edition)
Show Figures

Figure 1

15 pages, 1519 KiB  
Article
Comparative Evaluation of Color Stability in Bioactive and Conventional Resin Cements Under Thermal Stress Conditions
by Alaa Turkistani and Hanin E. Yeslam
Biomimetics 2025, 10(7), 432; https://doi.org/10.3390/biomimetics10070432 - 1 Jul 2025
Viewed by 343
Abstract
Bioactive resin-based cements (RBCs) were recently introduced, but data on their color stability remain limited. This study analyzed the impact of thermal cycling on the color and whiteness of bioactive RBCs. Specimens (n = 10) were fabricated from Panavia SA Universal (PN), Predicta [...] Read more.
Bioactive resin-based cements (RBCs) were recently introduced, but data on their color stability remain limited. This study analyzed the impact of thermal cycling on the color and whiteness of bioactive RBCs. Specimens (n = 10) were fabricated from Panavia SA Universal (PN), Predicta Bioactive Cement (PR), and ACTIVA BioACTIVE cement (AC). CIE Lab* values were registered at baseline and after 5000, 10,000, and 15,000 thermal cycles (5–55 °C). Changes in color (ΔE00) and whiteness index (ΔWID) were calculated and compared. Material type and thermal cycling significantly affected ΔE00 and ΔWID (p < 0.001). AC showed the highest ΔE00 values at all stages (p < 0.001), with a progressive increase over time. PN differed significantly between early and later cycles (p < 0.05), while PR remained stable (p > 0.05). Analysis of color parameters indicated that AC underwent the most pronounced changes, particularly in Δa and Δb, while PN exhibited the greatest shift in Δb. For ΔWID, PR had significantly lower values than PN (p < 0.05) and AC (p < 0.001), with no difference between PN and AC (p > 0.05), and thermal cycling significantly affected all groups, with PR and AC differing across all stages (p < 0.05). Thermal cycling significantly influenced the color stability and whiteness of bioactive RBCs, with AC exhibiting the greatest changes over time, while PR demonstrated superior stability. Full article
(This article belongs to the Special Issue Biomimetic Bonded Restorations for Dental Applications: 2nd Edition)
Show Figures

Figure 1

Back to TopTop