Evaluation of Shear Bond Strength in the Repair of Additively and Subtractively Manufactured CAD/CAM Materials Using Bulk-Fill Composites
Abstract
1. Introduction
- 1:
- There is no difference between additively and subtractively manufactured CAD/CAM hybrid materials in terms of bond strength.
- 2:
- Bond strength is not affected by the type of bulk-fill resin composite used in repair procedures
- 3:
- Thermocycling has no effect on the bond strength of the tested materials.
2. Materials and Methods
2.1. Preparation of Samples
2.2. Shear Bond Strength Test
2.3. Failure Type Evaluation
2.4. Scanning Electron Microscopy (SEM) Evaluation
2.5. Statistical Analysis
3. Results
3.1. Shear Bond Strength (SBS)
3.2. Failure Type
3.3. Scanning Electron Microscopy (SEM)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Skorulska, A.; Piszko, P.; Rybak, Z.; Szymonowicz, M.; Dobrzyński, M. Review on Polymer, Ceramic and Composite Materials for CAD/CAM Indirect Restorations in Dentistry—Application, Mechanical Characteristics and Comparison. Materials 2021, 14, 1592. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Chen, C.; Xu, X.; Wang, J.; Hou, X.; Li, K.; Lu, X.; Shi, H.; Lee, E.S.; Jiang, H.B. A review of 3D printing in dentistry: Technologies, affecting factors, and applications. Scanning 2021, 2021, 9950131. [Google Scholar] [CrossRef] [PubMed]
- Siqueira, J.R.C.d.S.; Rodriguez, R.M.M.; Campos, T.M.B.; Ramos, N.C.; Bottino, M.A.; Tribst, J.P.M. Characterization of microstructure, optical properties, and mechanical behavior of a temporary 3D printing resin: Impact of post-curing time. Materials 2024, 17, 1496. [Google Scholar] [CrossRef] [PubMed]
- Coldea, A.; Swain, M.V.; Thiel, N. Mechanical properties of polymer-infiltrated-ceramic-network materials. Dent. Mater. 2013, 29, 419–426. [Google Scholar] [CrossRef]
- Güngör, M.B.; Nemli, S.K.; Bal, B.T.; Ünver, S.; Doğan, A. Effect of surface treatments on shear bond strength of resin composite bonded to CAD/CAM resin-ceramic hybrid materials. J. Adv. Prosthodont. 2016, 8, 259–266. [Google Scholar] [CrossRef]
- Mao, Z.; Schmidt, F.; Beuer, F.; Yassine, J.; Hey, J.; Prause, E. Effect of surface treatment strategies on bond strength of additively and subtractively manufactured hybrid materials for permanent crowns. Clin. Oral Investig. 2024, 28, 371. [Google Scholar] [CrossRef]
- BEGO. VarseoSmile® Crown Plus—Scientific Studies [Internet]. March 2023. Available online: https://www.bego.com/3d-printing/materials/varseosmile-crown-plus/scientific-studies/ (accessed on 21 April 2025).
- Singer, L.; Fouda, A.; Bourauel, C. Biomimetic Approaches and Materials in Restorative and Regenerative Dentistry: Review Article. BMC Oral Health 2023, 23, 105. [Google Scholar] [CrossRef]
- Alnafaiy, S.; Labban, N.; Maawadh, A.; Alshehri, H.; Albaijan, R. Repair Bond Strength of Composite Resin to Aged Resin and Glass-Matrix CAD/CAM Ceramic Materials Using Two Different Repair Systems. Coatings 2021, 11, 1331. [Google Scholar] [CrossRef]
- Rekow, E.; Silva, N.; Coelho, P.; Zhang, Y.; Guess, P.; Thompson, V. Performance of dental ceramics: Challenges for improvements. J. Dent. Res. 2011, 90, 937–952. [Google Scholar] [CrossRef]
- Üstün, Ö.; Büyükhatipoğlu, I.K.; Seçilmiş, A. Shear bond strength of repair systems to new CAD/CAM restorative materials. J. Prosthodont. 2018, 27, 748–754. [Google Scholar] [CrossRef]
- Elsaka, S.E. Repair bond strength of resin composite to a novel CAD/CAM hybrid ceramic using different repair systems. Dent. Mater. J. 2015, 34, 161–167. [Google Scholar] [CrossRef] [PubMed]
- Boaro, L.C.C.; Lopes, D.P.; de Souza, A.S.C.; Nakano, E.L.; Perez, M.D.A.; Pfeifer, C.S.; Gonçalves, F. Clinical performance and chemical-physical properties of bulk fill composites resin—A systematic review and meta-analysis. Dent. Mater. 2019, 35, e249–e264. [Google Scholar] [CrossRef] [PubMed]
- Chesterman, J.; Jowett, A.; Gallacher, A.; Nixon, P. Bulk-fill resin-based composite restorative materials: A review. Br. Dent. J. 2017, 222, 337–344. [Google Scholar] [CrossRef] [PubMed]
- Kemaloglu, H.; Cay, O.; Devrimci, E.E.; Pamir, T. Repair bond strength of a new self-adhesive composite resin to three different resin-matrix ceramic CAD-CAM materials. Dent. Mater. J. 2024, 43, 137–145. [Google Scholar] [CrossRef]
- Aktu, A.; Ulusoy, N. Effect of polishing systems on the surface roughness and color stability of aged and stained bulk-fill resin composites. Materials 2024, 17, 3576. [Google Scholar] [CrossRef]
- Kulzer. Charisma Bulk Flow ONE [Internet]. 19 January 2024. Available online: https://www.kulzer.com/int2/en/products/charisma-bulk-flow-one.html (accessed on 21 April 2025).
- Loumprinis, N.; Maier, E.; Belli, R.; Petschelt, A.; Eliades, G.; Lohbauer, U. Viscosity and stickiness of dental resin composites at elevated temperatures. Dent. Mater. 2021, 37, 413–422. [Google Scholar] [CrossRef]
- Islam, M.S.; El Bahra, S.; Aryal, A.C.S.; Padmanabhan, V.; Al Tawil, A.; Saleh, I.; Rahman, M.M.; Guha, U. The Effect of Chemical Surface Modification on the Repair Bond Strength of Resin Composite: An In Vitro Study. Polymers 2025, 17, 513. [Google Scholar] [CrossRef]
- Turunç-Oğuzman, R.; Şişmanoğlu, S. Influence of Surface Treatments and Adhesive Protocols on Repair Bond Strength of Glass-Matrix and Resin-Matrix CAD/CAM Ceramics. J. Esthet. Restor. Dent. 2023, 35, 1322–1331. [Google Scholar] [CrossRef]
- Bourgi, R.; Kharouf, N.; Cuevas-Suárez, C.E.; Lukomska-Szymanska, M.; Haikel, Y.; Hardan, L. A Literature Review of Adhesive Systems in Dentistry: Key Components and Their Clinical Applications. Appl. Sci. 2024, 14, 8111. [Google Scholar] [CrossRef]
- Dionysopoulos, D.; Gerasimidou, O.; Papadopoulos, C. Current Modifications of Dental Adhesive Systems for Composite Resin Restorations: A Review in Literature. J. Adhes. Sci. Technol. 2021, 36, 453–468. [Google Scholar] [CrossRef]
- Sebold, M.; André, C.B.; Sahadi, B.O.; Breschi, L.; Giannini, M. Chronological History and Current Advancements of Dental Adhesive Systems Development: A Narrative Review. J. Adhes. Sci. Technol. 2020, 35, 1941–1967. [Google Scholar] [CrossRef]
- Stawarczyk, B.; Krawczuk, A.; Ilie, N. Tensile bond strength of resin composite repair in vitro using different surface preparation conditionings to an aged CAD/CAM resin nanoceramic. Clin. Oral Investig. 2015, 19, 299–308. [Google Scholar] [CrossRef] [PubMed]
- Jeong, K.W.; Kim, S.H. Influence of surface treatments and repair materials on the shear bond strength of CAD/CAM provisional restorations. J. Adv. Prosthodont. 2019, 11, 95–104. [Google Scholar] [CrossRef] [PubMed]
- Rinastiti, M.; Özcan, M.; Siswomihardjo, W.; Busscher, H.J. Effects of surface conditioning on repair bond strengths of non-aged and aged microhybrid, nanohybrid, and nanofilled composite resins. Clin. Oral Investig. 2011, 15, 625–633. [Google Scholar] [CrossRef]
- BEGO Bremer Goldschlägerei Wilh. Herbst GmbH & Co. KG. VarseoSmile Crown Plus Instruction Manual; BEGO: Bremen, Germany, 2020; Available online: https://www.bego.com (accessed on 9 June 2025).
- Gul, P.; Altınok-Uygun, L. Repair bond strength of resin composite to three aged CAD/CAM blocks using different repair systems. J. Adv. Prosthodont. 2020, 12, 131–137. [Google Scholar] [CrossRef]
- Faul, F.; Erdfelder, E.; Lang, A.-G.; Buchner, A. G*Power 3: A Flexible Statistical Power Analysis Program for the Social, Behavioral, and Biomedical Sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef]
- Baiomy, A.A.; Younis, J.F.; Khalil, A.H. Shear Bond Strength of Composite Repair System to Bilayered Zirconia Using Different Surface Treatments (In Vitro Study). Braz. Dent. Sci. 2020, 23, 11. [Google Scholar] [CrossRef]
- Özden, Y.E.; Doğu Kaya, B.; Yılmaz Atalı, P.; Ozer, F.; Ozkurt Kayahan, Z. Effect of Print Orientation and Thermal Aging on the Flexural Strength of Zirconia-Reinforced Three-Dimensional-Printed Restorative Resin Materials. Molecules 2025, 30, 2337. [Google Scholar] [CrossRef]
- Khanlar, L.N.; Revilla-León, M.; Barmak, A.B.; Ikeda, M.; Alsandi, Q.; Tagami, J.; Zandinejad, A. Surface Roughness and Shear Bond Strength to Composite Resin of Additively Manufactured Interim Restorative Material with Different Printing Orientations. J. Prosthet. Dent. 2023, 129, 788–795. [Google Scholar] [CrossRef]
- Keßler, A.; Hickel, R.; Ilie, N. In vitro investigation of the influence of printing direction on the flexural strength, flexural modulus and fractographic analysis of 3D-printed temporary materials. Dent. Mater. J. 2021, 40, 641–649. [Google Scholar] [CrossRef]
- Turksayar, A.A.D.; Donmez, M.B.; Olcay, E.O.; Demirel, M.; Demir, E. Effect of Printing Orientation on the Fracture Strength of Additively Manufactured 3-Unit Interim Fixed Dental Prostheses after Aging. J. Dent. 2022, 124, 104155. [Google Scholar] [CrossRef] [PubMed]
- Şenol, A.A.; Gençer, B.K.; Kaya, B.D.; Kahramanoğlu, E.; Atalı, P.Y.; Tarçın, B. Evaluation of the shear bond strength between CAD/CAM blocks and sonic/thermoviscous bulk-fill composites with different surface treatments. Int. J. Adhes. Adhes. 2024, 134, 103805. [Google Scholar] [CrossRef]
- Girish, P.; Dinesh, U.; Bhat, C.; Shetty, P.C. Comparison of shear bond strength of metal brackets bonded to porcelain surface using different surface conditioning methods: An in vitro study. J. Contemp. Dent. Pract. 2012, 13, 487–493. [Google Scholar] [CrossRef] [PubMed]
- Çulhaoğlu, A.K.; Özkır, S.E.; Şahin, V.; Yılmaz, B.; Kılıçarslan, M.A. Effect of various treatment modalities on surface characteristics and shear bond strengths of polyetheretherketone-based core materials. J. Prosthodont. 2017, 26, 718–726. [Google Scholar] [CrossRef]
- ISO 10477:2020; Dentistry—Polymer-Based Crown and Bridge Materials. International Organization for Standardization (ISO): Geneva, Switzerland, 2020. Available online: https://www.iso.org/standard/74216.html (accessed on 21 April 2025).
- Demirel, G.; Orhan, A.I.; Irmak, Ö.; Malkoç, M.A.; Atalayin, C. Micro-computed tomographic evaluation of the effects of pre-heating and sonic delivery on the internal void formation of bulk-fill composites. Dent. Mater. J. 2021, 40, 525–531. [Google Scholar] [CrossRef]
- Fornazari, I.A.; Wille, I.; Meda, E.; Brum, R.; Souza, E. Effect of surface treatment, silane, and universal adhesive on microshear bond strength of nanofilled composite repairs. Oper. Dent. 2017, 42, 367–374. [Google Scholar] [CrossRef]
- Reymus, M.; Roos, M.; Eichberger, M.; Edelhoff, D.; Hickel, R.; Stawarczyk, B. Bonding to new CAD/CAM resin composites: Influence of air abrasion and conditioning agents as pretreatment strategy. Clin. Oral Investig. 2019, 23, 529–538. [Google Scholar] [CrossRef]
- Vinagre, A.; Delgado, C.; Almeida, G.; Messias, A.; Ramos, J.C. Effect of Different Luting Methods on the Microtensile Bond Strength of CAD/CAM Resin Blocks. Biomimetics 2025, 10, 123. [Google Scholar] [CrossRef]
- Bourgi, R.; Etienne, O.; Holiel, A.A.; Cuevas-Suárez, C.E.; Hardan, L.; Roman, T.; Flores-Ledesma, A.; Qaddomi, M.; Haikel, Y.; Kharouf, N. Effectiveness of Surface Treatments on the Bond Strength to 3D-Printed Resins: A Systematic Review and Meta-Analysis. Prosthesis 2025, 7, 56. [Google Scholar] [CrossRef]
- Cho, S.; Rajitrangson, P.; Matis, B.; Platt, J. Effect of Er, Cr: YSGG laser, air abrasion, and silane application on repaired shear bond strength of composites. Oper. Dent. 2013, 38, E58–E66. [Google Scholar] [CrossRef]
- Graf, T.; Erdelt, K.J.; Güth, J.F.; Edelhoff, D.; Schubert, O.; Schweiger, J. Influence of pre-treatment and artificial aging on the retention of 3D-printed permanent composite crowns. Biomedicines 2022, 10, 2186. [Google Scholar] [CrossRef] [PubMed]
- Altinci, P.; Mutluay, M.; Tezvergil-Mutluay, A. Repair bond strength of nanohybrid composite resins with a universal adhesive. Acta Biomater. Odontol. Scand. 2018, 4, 10–19. [Google Scholar] [CrossRef] [PubMed]
- Gençer, B.K.; Şenol, A.A.; Acar, E.; Atalı, P.Y.; Tarçın, B.; Özcan, M. Effect of Surface Conditioning Protocols on the Repair Bond Strength of Resin Composite to CAD/CAM Blocks: Bioactive-Glass, Silica-Coated Alumina, or Aluminum Oxide? Eur. J. Oral Sci. 2025. ahead of print. [Google Scholar] [CrossRef]
- Ismail, A.M.; Bourauel, C.; ElBanna, A.; Salah Eldin, T. Micro versus macro shear bond strength testing of dentin-composite interface using chisel and wireloop loading techniques. Dent. J. 2021, 9, 140. [Google Scholar] [CrossRef] [PubMed]
Types of Materials | Material Name | Code | Manufacturer | Contents |
---|---|---|---|---|
Indirect Restorative Materials | Grandio Blocs | GB | VOCO GmbH, Cuxhaven, Germany | Nanohybrid composite CAD/CAM block Fillers: Barium aluminum borosilicate glass, SiO2, filler loading 86 wt% |
Matrix: polymethacrylate, stabilizers, pigments | ||||
VarseoSmile Crownplus | VS | BEGO, Bremen, Germany | Hybrid 3D-Printed material Fillers: Ceramic-filled (30–50 wt% inorganic fillers; silanized dental glass), | |
Matrix: Methylbenzoylformate, diphenyl (2,4,6-trimethylbenzoyl), Phosphine oxide hybrid material | ||||
Bulk-fill Resin Composites | VisCalor Bulk | VCB | VOCO GmbH, Cuxhaven, Germany | Nanohybrid Resin Composite Fillers: Barium aluminum borosilicate glass, SiO2, filler loading 83 wt% |
Matrix: BisGMA, TCDDMA, initiators, stabilizers, color pigments, | ||||
Charisma Bulk Flow One | CBO | Kulzer, Hanau, Germany | Nanohybrid Resin Composite Fillers: Barium aluminum fluorosilicate glass, SiO2, ytterbium fluoride, filler loading 65 wt% | |
Matrix: UDMA, EBADMA, photoinitiators | ||||
Universal Adhesives | Gluma Universal Bond | GU | Kulzer, Hanau, Germany | Eighth Generation Adhesive Resin Fillers |
Matrix: MDP phosphate monomers, 4-META, dimethacrylate resins, acetone, initiators | ||||
Silane | ||||
FuturaBond U | FU | VOCO GmbH, Cuxhaven, Germany | Eighth Generation Adhesive Resin Fillers: Functionalized SiO2 | |
Matrix: Ethanol, Bis-GMA, HEMA, H2O, HEDMA, methacrylate phosphoric acid ester, methacrylate-modified polyacid, UDMA, initiators, stabilizers | ||||
Silane |
F | p-Value | Partial Eta-Squared | |
---|---|---|---|
Resin Composite | 0.24 | 0.628 | 0.007 |
Indirect Material | 2.806 | 0.104 | 0.081 |
Aging | 0.668 | 0.42 | 0.02 |
Resin Composite * Indirect Material | 1.012 | 0.322 | 0.031 |
Resin Composite * Aging Procedure | 0.312 | 0.58 | 0.01 |
Indirect Material * Aging Procedure | 2.186 | 0.149 | 0.064 |
Resin Composite * Indirect Material * Aging Procedure | 0.25 | 0.621 | 0.008 |
Indirect Material | Aging Procedure | Resin Composite | Total | |
---|---|---|---|---|
Charisma Bulk Flow One | VisCalor Bulk | |||
VarseoSmile Crownplus | Immediate | 12.17 ± 2.68 | 9.86 ± 1.72 | 11.02 ± 2.45 |
TC | 15.50 ± 6.31 | 13.36 ± 8.44 | 14.43 ± 7.12 | |
Main effect 1 | 13.84 ± 4.90 | 11.61 ± 6.03 | 12.73 ± 5.47 | |
Grandio Blocs | Immediate | 11.13 ± 5.55 | 10.32 ± 3.71 | 10.73 ± 4.47 |
TC | 8.57 ± 2.97 | 10.91 ± 1.43 | 9.74 ± 2.52 | |
Main effect 1 | 9.85 ± 4.41 | 10.62 ± 2.67 | 10.24 ± 3.57 | |
Total | Immediate | 11.65 ± 4.15 | 10.09 ± 2.74 | 10.87 ± 3.51 |
TC | 12.04 ± 5.91 | 12.14 ± 5.85 | 12.09 ± 5.73 | |
Main effect 1 | 11.84 ± 4.97 | 11.12 ± 4.57 | 11.48 ± 4.73 |
Indirect Material | Resin Composite | Failure Type | Aging Procedure | Total | p-Value | |
---|---|---|---|---|---|---|
Immediate | TC | |||||
Varseosmile CrownPlus | Charisma Bulk Flow One | Adhesive | 0 (0) | 2 (40) | 2 (20) | 0.167 ** |
Cohesive | 3 (60) | 0 (0) | 3 (30) | |||
Mixed | 2 (40) | 3 (60) | 5 (50) | |||
VisCalor Bulk | Adhesive | 0 (0) a | 5 (100) b | 5 (50) | 0.008 ** | |
Cohesive | 4 (80) a | 0 (0) b | 4 (40) | |||
Mixed | 1 (20) | 0 (0) | 1 (10) | |||
Main effect 2 | Adhesive | 0 (0) a | 7 (70) b | 7 (35) | <0.001 ** | |
Cohesive | 7 (70) a | 0 (0) b | 7 (35) | |||
Mixed | 3 (30) | 3 (30) | 6 (30) | |||
Grandio Blocs | Charisma Bulk Flow One | Adhesive | 0 (0) a | 4 (80) b | 4 (40) | 0.016 ** |
Cohesive | 4 (80) a | 0 (0) b | 4 (40) | |||
Mixed | 1 (20) | 1 (20) | 2 (20) | |||
VisCalor Bulk | Adhesive | 1 (20) a | 5 (100) b | 6 (60) | 0.048 * | |
Cohesive | 4 (80) a | 0 (0) b | 4 (40) | |||
Main effect 2 | Adhesive | 1 (10) a | 9 (90) b | 10 (50) | <0.001 ** | |
Cohesive | 8 (80) a | 0 (0) b | 8 (40) | |||
Mixed | 1 (10) | 1 (10) | 2 (10) | |||
Total | Charisma Bulk Flow One | Adhesive | 0 (0) a | 6 (60) b | 6 (30) | 0.001 ** |
Cohesive | 7 (70) a | 0 (0) b | 7 (35) | |||
Mixed | 3 (30) | 4 (40) | 7 (35) | |||
VisCalor Bulk | Adhesive | 1 (10) a | 10 (100) b | 11 (55) | <0.001 ** | |
Cohesive | 8 (80) a | 0 (0) b | 8 (40) | |||
Mixed | 1 (10) | 0 (0) | 1 (5) | |||
Main effect 2 | Adhesive | 1 (5) a | 16 (80) b | 17 (42,5) | <0.001 ** | |
Cohesive | 15 (75) a | 0 (0) b | 15 (37,5) | |||
Mixed | 4 (20) | 4 (20) | 8 (20) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Öztürk, S.; Altuntaş, E.; Şenol, A.A.; Kahramanoğlu, E.; Yılmaz Atalı, P.; Tarçın, B.; Türkmen, C. Evaluation of Shear Bond Strength in the Repair of Additively and Subtractively Manufactured CAD/CAM Materials Using Bulk-Fill Composites. Biomimetics 2025, 10, 433. https://doi.org/10.3390/biomimetics10070433
Öztürk S, Altuntaş E, Şenol AA, Kahramanoğlu E, Yılmaz Atalı P, Tarçın B, Türkmen C. Evaluation of Shear Bond Strength in the Repair of Additively and Subtractively Manufactured CAD/CAM Materials Using Bulk-Fill Composites. Biomimetics. 2025; 10(7):433. https://doi.org/10.3390/biomimetics10070433
Chicago/Turabian StyleÖztürk, Selinsu, Ezgi Altuntaş, Ayşe Aslı Şenol, Erkut Kahramanoğlu, Pınar Yılmaz Atalı, Bilge Tarçın, and Cafer Türkmen. 2025. "Evaluation of Shear Bond Strength in the Repair of Additively and Subtractively Manufactured CAD/CAM Materials Using Bulk-Fill Composites" Biomimetics 10, no. 7: 433. https://doi.org/10.3390/biomimetics10070433
APA StyleÖztürk, S., Altuntaş, E., Şenol, A. A., Kahramanoğlu, E., Yılmaz Atalı, P., Tarçın, B., & Türkmen, C. (2025). Evaluation of Shear Bond Strength in the Repair of Additively and Subtractively Manufactured CAD/CAM Materials Using Bulk-Fill Composites. Biomimetics, 10(7), 433. https://doi.org/10.3390/biomimetics10070433