Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (60)

Search Parameters:
Keywords = Bose gas

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1641 KiB  
Article
Measurement-Induced Dynamical Quantum Thermalization
by Marvin Lenk, Sayak Biswas, Anna Posazhennikova and Johann Kroha
Entropy 2025, 27(6), 636; https://doi.org/10.3390/e27060636 - 14 Jun 2025
Viewed by 430
Abstract
One of the fundamental problems of quantum statistical physics is how an ideally isolated quantum system can ever reach thermal equilibrium behavior despite the unitary time evolution of quantum-mechanical systems. Here, we study, via explicit time evolution for the generic model system of [...] Read more.
One of the fundamental problems of quantum statistical physics is how an ideally isolated quantum system can ever reach thermal equilibrium behavior despite the unitary time evolution of quantum-mechanical systems. Here, we study, via explicit time evolution for the generic model system of an interacting, trapped Bose gas with discrete single-particle levels, how the measurement of one or more observables subdivides the system into observed and non-observed Hilbert subspaces and the tracing over the non-measured quantum numbers defines an effective, thermodynamic bath, induces the entanglement of the observed Hilbert subspace with the bath, and leads to a bi-exponential approach of the entanglement entropy and of the measured observables to thermal equilibrium behavior as a function of time. We find this to be more generally fulfilled than in the scenario of the eigenstate thermalization hypothesis (ETH), namely for both local particle occupation numbers and non-local density correlation functions, and independent of the specific initial quantum state of the time evolution. Full article
(This article belongs to the Special Issue Non-Equilibrium Dynamics in Ultra-Cold Quantum Gases)
Show Figures

Figure 1

12 pages, 1538 KiB  
Article
Properties of a Static Dipolar Impurity in a 2D Dipolar BEC
by Neelam Shukla and Jeremy R. Armstrong
Atoms 2025, 13(3), 24; https://doi.org/10.3390/atoms13030024 - 10 Mar 2025
Viewed by 1025
Abstract
We study a system of ultra-cold dipolar Bose gas atoms confined in a two-dimensional (2D) harmonic trap with a dipolar impurity implanted at the center of the trap. Due to recent experimental progress in dipolar condensates, we focused on calculating properties of dipolar [...] Read more.
We study a system of ultra-cold dipolar Bose gas atoms confined in a two-dimensional (2D) harmonic trap with a dipolar impurity implanted at the center of the trap. Due to recent experimental progress in dipolar condensates, we focused on calculating properties of dipolar impurity systems that might guide experimentalists if they choose to study impurities in dipolar gases. We used the Gross–Pitaevskii formalism solved numerically via the split-step Crank–Nicolson method. We chose parameters of the background gas to be consistent with dysprosium (Dy), one of the strongest magnetic dipoles and of current experimental interest, and used chromium (Cr), erbium (Er), terbium (Tb), and Dy for the impurity. The dipole moments were aligned by an external field along what was chosen to be the z-axis, and we studied 2D confinements that were perpendicular or parallel to the external field. We show density contour plots for the two confinements, 1D cross-sections of the densities, calculated self-energies of the impurities while varying both number of atoms in the condensate and the symmetry of the trap. We also calculated the time evolution of the density of an initially pure system where an impurity is introduced. Our results show that while the self-energy increases in magnitude with increasing number of particles, it is reduced when the trap anisotropy follows the natural anisotropy of the gas, i.e., elongated along the z-axis in the case of parallel confinement. This work builds upon work conducted in Bose gases with zero-range interactions and demonstrates some of the features that could be found when exploring dipolar impurities in 2D Bose gases. Full article
(This article belongs to the Section Cold Atoms, Quantum Gases and Bose-Einstein Condensation)
Show Figures

Figure 1

14 pages, 2436 KiB  
Article
Dependence of GaN Exciton Energy on Temperature
by Xiancheng Liu, Peng Chen, Zili Xie, Xiangqian Xiu, Dunjun Chen, Hong Zhao, Yi Shi, Rong Zhang and Youdou Zheng
Crystals 2025, 15(2), 137; https://doi.org/10.3390/cryst15020137 - 26 Jan 2025
Viewed by 722
Abstract
In this paper, we investigate the relationship between GaN exciton energy and temperature by using high-quality, strain-free GaN epilayers. Traditional models, such as Varshni’s model and the Bose–Einstein model, are primarily based on empirical fitting and give little or no consideration to electron–phonon [...] Read more.
In this paper, we investigate the relationship between GaN exciton energy and temperature by using high-quality, strain-free GaN epilayers. Traditional models, such as Varshni’s model and the Bose–Einstein model, are primarily based on empirical fitting and give little or no consideration to electron–phonon interactions, which prevents them from accurately calculating GaN exciton energy over a wide temperature range. Considering the interaction of electrons and phonons, we use singular functions, linear functions and power functions to express the phonon density of GaN, and then 2BE, singular-linear, power-law-delta, and power-law-v models are proposed. All of them provide results that are more consistent with actual measurements compared to traditional models. Among them, the singular-linear model summarizes the contributions of acoustic and optical phonons. The error associated with the singular-linear model is smaller than that of the 1BE and Varshni models across nearly the entire temperature range. Therefore, the singular-linear model is a better choice. Full article
Show Figures

Figure 1

12 pages, 252 KiB  
Article
The Geometric Proca–Weyl Field as a Candidate for Dark Matter
by Mauro Duarte, Fábio Dahia and Carlos Romero
Universe 2025, 11(2), 34; https://doi.org/10.3390/universe11020034 - 22 Jan 2025
Viewed by 816
Abstract
We consider the Weyl invariant theory of gravity as an alternative approach to the problem of the origin of dark matter. According to this theory, the geometric Weyl 1-form effectively behaves as a Proca field. In this work, our starting point is to [...] Read more.
We consider the Weyl invariant theory of gravity as an alternative approach to the problem of the origin of dark matter. According to this theory, the geometric Weyl 1-form effectively behaves as a Proca field. In this work, our starting point is to consider the existence of a gas of Weyl–Proca particles in a Bose–Einstein condensate and investigate its behavior in a cosmological context. The results obtained show that, for appropriate values of the free parameter of the model, the Weyl field behaves approximately as a dust fluid in the matter-dominated era as expected for a dark matter candidate. Full article
15 pages, 968 KiB  
Article
Axion Mass and the Ground State of Deconfining SU(2) Yang–Mills Thermodynamics
by Ralf Hofmann, Janning Meinert and Dmitry Antonov
Astronomy 2024, 3(4), 319-333; https://doi.org/10.3390/astronomy3040020 - 18 Dec 2024
Viewed by 1212
Abstract
For the deconfinement phase of an SU(2) Yang–Mills theory, we compute the axion mass mA by appealing to the Veneziano–Witten formula. The topological susceptibility χ arises (i) from a precisely computable thermal ground-state contribution due to a center of a relevant (anti)caloron, [...] Read more.
For the deconfinement phase of an SU(2) Yang–Mills theory, we compute the axion mass mA by appealing to the Veneziano–Witten formula. The topological susceptibility χ arises (i) from a precisely computable thermal ground-state contribution due to a center of a relevant (anti)caloron, and (ii) from contributions due to free thermal quasi-particles in the effective theory. Both (i) and (ii) are derived by using standard Euclidean thermal field theory techniques. While contribution (i) is positive and T4, contribution (ii) is negative, as demanded by reflection positivity, but negligible compared to contribution (i). As a consequence, practically from the critical temperature Tc onward, a real-valued axion mass mA(T)=23πT2MP emerges when the Peccei–Quinn scale is assumed to be the Planck mass MP, independently of the Yang–Mills scale that the axion associates with. We discuss why our results deviate from those found in the dilute instanton gas and interacting instanton liquid approximations, and from results obtained in lattice simulations. Assuming the universe is dark sector to be based on such ultralight axion species, which are nonrelativistic for TMP, we investigate the cosmological conditions for their global Bose condensation as the very early universe cooled to temperatures of the order of 109eV. Full article
Show Figures

Figure 1

11 pages, 295 KiB  
Article
Hybrid Boson Sampling
by Vitaly Kocharovsky
Entropy 2024, 26(11), 926; https://doi.org/10.3390/e26110926 - 30 Oct 2024
Viewed by 893
Abstract
We propose boson sampling from a system of coupled photons and Bose–Einstein condensed atoms placed inside a multi-mode cavity as a simulation process testing the quantum advantage of quantum systems over classical computers. Consider a two-level atomic transition far-detuned from photon frequency. An [...] Read more.
We propose boson sampling from a system of coupled photons and Bose–Einstein condensed atoms placed inside a multi-mode cavity as a simulation process testing the quantum advantage of quantum systems over classical computers. Consider a two-level atomic transition far-detuned from photon frequency. An atom–photon scattering and interatomic collisions provide interactions that create quasiparticles and excite atoms and photons into squeezed entangled states, orthogonal to the atomic condensate and classical field driving the two-level transition, respectively. We find a joint probability distribution of atom and photon numbers within a quasi-equilibrium model via a hafnian of an extended covariance matrix. It shows a sampling statistics that is ♯P-hard for computing, even if only photon numbers are sampled. Merging cavity-QED and quantum-gas technologies into a hybrid boson sampling setup has the potential to overcome the limitations of separate, photon or atom, sampling schemes and reveal quantum advantage. Full article
(This article belongs to the Special Issue Quantum Computing in the NISQ Era)
11 pages, 728 KiB  
Article
The Entropy and Energy for Non-Mechanical Work at the Bose–Einstein Transition of a Harmonically Trapped Gas Using an Empirical Global-Variable Method
by Marcos Miotti, Edmur Braga Martins, Michał Hemmerling and Vanderlei Salvador Bagnato
Entropy 2024, 26(8), 658; https://doi.org/10.3390/e26080658 - 31 Jul 2024
Viewed by 1348
Abstract
Quantum thermal engines have received much attention in recent years due to their potential applications. For a candidate group, harmonically trapped gases under Bose–Einstein condensation (BEC), we see little investigation on the energy transference around that transition. Therefore, we present an empirical study [...] Read more.
Quantum thermal engines have received much attention in recent years due to their potential applications. For a candidate group, harmonically trapped gases under Bose–Einstein condensation (BEC), we see little investigation on the energy transference around that transition. Therefore, we present an empirical study with rubidium-87 gas samples in a magnetic harmonic trap. We developed an empirical equation of state model to fit to our experimental dataset, expressing the pressure parameter in terms of temperature, and six technical coefficients, functions of the volume parameter and the number of atoms. By using standard thermodynamic relations, we determine the system’s entropy, shown to be constant at the BEC transition, as expected. Being isentropic makes the BEC transition an energy source for non-mechanical work. Hence, we observed that the enthalpy at the BEC transition, at fixed values of the volume parameter, grows fairly linearly with the number of atoms. We fitted a linear function to that data, finding the specific enthalpy of the BEC transformation and the intrinsic enthalpic loss for BEC. We deem this study to be a step closer to practical quantum-based engines. Full article
(This article belongs to the Section Thermodynamics)
Show Figures

Figure 1

12 pages, 8570 KiB  
Article
Quantized Microcavity Polariton Lasing Based on InGaN Localized Excitons
by Huying Zheng, Runchen Wang, Xuebing Gong, Junxing Dong, Lisheng Wang, Jingzhuo Wang, Yifan Zhang, Yan Shen, Huanjun Chen, Baijun Zhang and Hai Zhu
Nanomaterials 2024, 14(14), 1197; https://doi.org/10.3390/nano14141197 - 14 Jul 2024
Viewed by 1588
Abstract
Exciton–polaritons, which are bosonic quasiparticles with an extremely low mass, play a key role in understanding macroscopic quantum effects related to Bose–Einstein condensation (BEC) in solid-state systems. The study of trapped polaritons in a potential well provides an ideal platform for manipulating polariton [...] Read more.
Exciton–polaritons, which are bosonic quasiparticles with an extremely low mass, play a key role in understanding macroscopic quantum effects related to Bose–Einstein condensation (BEC) in solid-state systems. The study of trapped polaritons in a potential well provides an ideal platform for manipulating polariton condensates, enabling polariton lasing with specific formation in k-space. Here, we realize quantized microcavity polariton lasing in simple harmonic oscillator (SHO) states based on spatial localized excitons in InGaN/GaN quantum wells (QWs). Benefiting from the high exciton binding energy (90 meV) and large oscillator strength of the localized exciton, room-temperature (RT) polaritons with large Rabi splitting (61 meV) are obtained in a strongly coupled microcavity. The manipulation of polariton condensates is performed through a parabolic potential well created by optical pump control. Under the confinement situation, trapped polaritons are controlled to be distributed in the selected quantized energy sublevels of the SHO state. The maximum energy spacing of 11.3 meV is observed in the SHO sublevels, indicating the robust polariton trapping of the parabolic potential well. Coherent quantized polariton lasing is achieved in the ground state of the SHO state and the coherence property of the lasing is analyzed through the measurements of spatial interference patterns and g(2)(τ). Our results offer a feasible route to explore the manipulation of macroscopic quantum coherent states and to fabricate novel polariton devices towards room-temperature operations. Full article
(This article belongs to the Special Issue Nanoscale Materials and Their Photonic Devices)
Show Figures

Figure 1

14 pages, 295 KiB  
Article
Bose and Fermi Gases in Metric-Affine Gravity and Linear Generalized Uncertainty Principle
by Aneta Wojnar and Débora Aguiar Gomes
Universe 2024, 10(5), 217; https://doi.org/10.3390/universe10050217 - 14 May 2024
Cited by 2 | Viewed by 1049
Abstract
Palatini-like theories of gravity have a remarkable connection to models incorporating linear generalized uncertainty principles. Considering this, we delve into the thermodynamics of systems comprising both Bose and Fermi gases. Our analysis encompasses the equations of state for various systems, including general Fermi [...] Read more.
Palatini-like theories of gravity have a remarkable connection to models incorporating linear generalized uncertainty principles. Considering this, we delve into the thermodynamics of systems comprising both Bose and Fermi gases. Our analysis encompasses the equations of state for various systems, including general Fermi gases, degenerate Fermi gases, Boltzmann gases, and Bose gases such as phonons and photons, as well as Bose–Einstein condensates and liquid helium. Full article
(This article belongs to the Collection Modified Theories of Gravity and Cosmological Applications)
12 pages, 2896 KiB  
Article
A Systematic Study of the Temperature Dependence of the Dielectric Function of GaSe Uniaxial Crystals from 27 to 300 K
by Long V. Le, Tien-Thanh Nguyen, Xuan Au Nguyen, Do Duc Cuong, Thi Huong Nguyen, Van Quang Nguyen, Sunglae Cho, Young Dong Kim and Tae Jung Kim
Nanomaterials 2024, 14(10), 839; https://doi.org/10.3390/nano14100839 - 10 May 2024
Cited by 2 | Viewed by 1843
Abstract
We report the temperature dependences of the dielectric function ε = ε1 + iε2 and critical point (CP) energies of the uniaxial crystal GaSe in the spectral energy region from 0.74 to 6.42 eV and at temperatures from 27 to [...] Read more.
We report the temperature dependences of the dielectric function ε = ε1 + iε2 and critical point (CP) energies of the uniaxial crystal GaSe in the spectral energy region from 0.74 to 6.42 eV and at temperatures from 27 to 300 K using spectroscopic ellipsometry. The fundamental bandgap and strong exciton effect near 2.1 eV are detected only in the c-direction, which is perpendicular to the cleavage plane of the crystal. The temperature dependences of the CP energies were determined by fitting the data to the phenomenological expression that incorporates the Bose–Einstein statistical factor and the temperature coefficient to describe the electron–phonon interaction. To determine the origin of this anisotropy, we perform first-principles calculations using the mBJ method for bandgap correction. The results clearly demonstrate that the anisotropic dielectric characteristics can be directly attributed to the inherent anisotropy of p orbitals. More specifically, this prominent excitonic feature and fundamental bandgap are derived from the band-to-band transition between s and pz orbitals at the Γ-point. Full article
Show Figures

Figure 1

11 pages, 1687 KiB  
Article
Dynamic Correlations in Disordered Systems: Implications for High-Temperature Superconductivity
by Takeshi Egami
Condens. Matter 2024, 9(1), 12; https://doi.org/10.3390/condmat9010012 - 3 Feb 2024
Viewed by 2273
Abstract
Liquids and gases are distinct in their extent of dynamic atomic correlations; in gases, atoms are almost uncorrelated, whereas they are strongly correlated in liquids. This distinction applies also to electronic systems. Fermi liquids are actually gas-like, whereas strongly correlated electrons are liquid-like. [...] Read more.
Liquids and gases are distinct in their extent of dynamic atomic correlations; in gases, atoms are almost uncorrelated, whereas they are strongly correlated in liquids. This distinction applies also to electronic systems. Fermi liquids are actually gas-like, whereas strongly correlated electrons are liquid-like. Doped Mott insulators share characteristics with supercooled liquids. Such distinctions have important implications for superconductivity. We discuss the nature of dynamic atomic correlations in liquids and a possible effect of strong electron correlations and Bose–Einstein condensation on the high-temperature superconductivity of the cuprates. Full article
(This article belongs to the Special Issue Superstripes Physics, 2nd Edition)
Show Figures

Figure 1

34 pages, 1758 KiB  
Article
Towards the Simplest Model of Quantum Supremacy: Atomic Boson Sampling in a Box Trap
by Vitaly V. Kocharovsky, Vladimir V. Kocharovsky, William D. Shannon and Sergey V. Tarasov
Entropy 2023, 25(12), 1584; https://doi.org/10.3390/e25121584 - 25 Nov 2023
Cited by 2 | Viewed by 1416
Abstract
We describe boson sampling of interacting atoms from the noncondensed fraction of Bose–Einstein-condensed (BEC) gas confined in a box trap as a new platform for studying computational ♯P-hardness and quantum supremacy of many-body systems. We calculate the characteristic function and statistics of atom [...] Read more.
We describe boson sampling of interacting atoms from the noncondensed fraction of Bose–Einstein-condensed (BEC) gas confined in a box trap as a new platform for studying computational ♯P-hardness and quantum supremacy of many-body systems. We calculate the characteristic function and statistics of atom numbers via the newly found Hafnian master theorem. Using Bloch–Messiah reduction, we find that interatomic interactions give rise to two equally important entities—eigen-squeeze modes and eigen-energy quasiparticles—whose interplay with sampling atom states determines the behavior of the BEC gas. We infer that two necessary ingredients of ♯P-hardness, squeezing and interference, are self-generated in the gas and, contrary to Gaussian boson sampling in linear interferometers, external sources of squeezed bosons are not required. Full article
(This article belongs to the Special Issue Selected Featured Papers from Entropy Editorial Board Members)
Show Figures

Figure 1

32 pages, 1215 KiB  
Article
Rapidity and Energy Dependencies of Temperatures and Volume Extracted from Identified Charged Hadron Spectra in Proton–Proton Collisions at a Super Proton Synchrotron (SPS)
by Pei-Pin Yang, Fu-Hu Liu and Khusniddin K. Olimov
Entropy 2023, 25(12), 1571; https://doi.org/10.3390/e25121571 - 22 Nov 2023
Cited by 6 | Viewed by 1431
Abstract
The standard (Bose–Einstein/Fermi–Dirac, or Maxwell–Boltzmann) distribution from the relativistic ideal gas model is used to study the transverse momentum (pT) spectra of identified charged hadrons (π, π+, K, K+, p¯ [...] Read more.
The standard (Bose–Einstein/Fermi–Dirac, or Maxwell–Boltzmann) distribution from the relativistic ideal gas model is used to study the transverse momentum (pT) spectra of identified charged hadrons (π, π+, K, K+, p¯, and p) with different rapidities produced in inelastic proton–proton (pp) collisions at a Super Proton Synchrotron (SPS). The experimental data measured using the NA61/SHINE Collaboration at the center-of-mass (c.m.) energies s=6.3, 7.7, 8.8, 12.3, and 17.3 GeV are fitted well with the distribution. It is shown that the effective temperature (Teff or T), kinetic freeze-out temperature (T0), and initial temperature (Ti) decrease with the increase in rapidity and increase with the increase in c.m. energy. The kinetic freeze-out volume (V) extracted from the π, π+, K, K+, and p¯ spectra decreases with the rapidity and increase with the c.m. energy. The opposite tendency of V, extracted from the p spectra, is observed to be increasing with the rapidity and decreasing with the c.m. energy due to the effect of leading protons. Full article
Show Figures

Figure 1

16 pages, 1358 KiB  
Article
Possibility of Exciton Bose–Einstein Condensation in CdSe Nanoplatelets
by Davit A. Baghdasaryan, Volodya A. Harutyunyan, Eduard M. Kazaryan, Hayk A. Sarkisyan, Lyudvig S. Petrosyan and Tigran V. Shahbazyan
Nanomaterials 2023, 13(19), 2734; https://doi.org/10.3390/nano13192734 - 9 Oct 2023
Cited by 1 | Viewed by 1486
Abstract
The quasi-two-dimensional exciton subsystem in CdSe nanoplatelets is considered. It is theoretically shown that Bose–Einstein condensation (BEC) of excitons is possible at a nonzero temperature in the approximation of an ideal Bose gas and in the presence of an “energy gap” between the [...] Read more.
The quasi-two-dimensional exciton subsystem in CdSe nanoplatelets is considered. It is theoretically shown that Bose–Einstein condensation (BEC) of excitons is possible at a nonzero temperature in the approximation of an ideal Bose gas and in the presence of an “energy gap” between the ground and the first excited states of the two-dimensional exciton center of inertia of the translational motion. The condensation temperature (Tc) increases with the width of the “gap” between the ground and the first excited levels of size quantization. It is shown that when the screening effect of free electrons and holes on bound excitons is considered, the BEC temperature of the exciton subsystem increases as compared to the case where this effect is absent. The energy spectrum of the exciton condensate in a CdSe nanoplate is calculated within the framework of the weakly nonideal Bose gas approximation, considering the specifics of two-dimensional Born scattering. Full article
Show Figures

Figure 1

11 pages, 736 KiB  
Article
Trapped Ideal Bose Gas with a Few Heavy Impurities
by Orest Hryhorchak and Volodymyr Pastukhov
Atoms 2023, 11(5), 77; https://doi.org/10.3390/atoms11050077 - 28 Apr 2023
Cited by 1 | Viewed by 1475
Abstract
In this article, we formulate a general scheme for the calculation of the thermodynamic properties of an ideal Bose gas with one or two immersed static impurities, when the bosonic particles are trapped in a harmonic potential with either a quasi-1D or quasi-2D [...] Read more.
In this article, we formulate a general scheme for the calculation of the thermodynamic properties of an ideal Bose gas with one or two immersed static impurities, when the bosonic particles are trapped in a harmonic potential with either a quasi-1D or quasi-2D configuration. The binding energy of a single impurity and the medium-induced Casimir-like forces between the two impurities are numerically calculated for a wide range of temperatures and boson–impurity interaction strengths. Full article
(This article belongs to the Special Issue Recent Trends on Quantum Fluctuations in Ultra-Cold Quantum Gases)
Show Figures

Figure 1

Back to TopTop