Bose and Fermi Gases in Metric-Affine Gravity and Linear Generalized Uncertainty Principle
Abstract
:1. Introduction
2. Metric-Affine Gravity and Linear GUP Correspondence
3. Boltzmann Gas
4. Fermi Statistics
Non-Relativistic and Relativistic Degenerate Fermi Gas
5. Bose Statistics
5.1. Photon Gas
5.2. Phonon Gas
5.3. Bose–Einstein Condensate
6. More Physical Models
6.1. Fermi Gas with Finite Temperature Corrections
6.2. Liquid Helium He4
7. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kulikov, I.K.; Pronin, P.I. Low-temperature properties of a quantum Fermi gas in curved space-time. Int. J. Theor. Phys. 1995, 34, 1843–1854. [Google Scholar] [CrossRef]
- Kim, H.C. Physics at the surface of a star in Eddington-inspired Born-Infeld gravity. Phys. Rev. D 2014, 89, 064001. [Google Scholar] [CrossRef]
- Sakstein, J. Testing gravity using dwarf stars. Phys. Rev. D 2015, 92, 124045. [Google Scholar] [CrossRef]
- Wojnar, A.; Velten, H. Equilibrium and stability of relativistic stars in extended theories of gravity. Eur. Phys. J. C 2016, 76, 697. [Google Scholar] [CrossRef]
- Wojnar, A. On stability of a neutron star system in Palatini gravity. Eur. Phys. J. C 2018, 78, 421. [Google Scholar] [CrossRef]
- Sarmah, L.; Kalita, S.; Wojnar, A. Stability criterion for white dwarfs in Palatini f(R) gravity. Phys. Rev. D 2022, 105, 024028. [Google Scholar] [CrossRef]
- Wojnar, A. Fermi gas and modified gravity. Phys. Rev. D 2023, 107, 044025. [Google Scholar] [CrossRef]
- Sakstein, J. Hydrogen burning in low mass stars constrains scalar-tensor theories of gravity. Phys. Rev. Lett. 2015, 115, 201101. [Google Scholar] [CrossRef]
- Olmo, G.J.; Rubiera-Garcia, D.; Wojnar, A. Minimum main sequence mass in quadratic Palatini f(R) gravity. Phys. Rev. D 2019, 100, 044020. [Google Scholar] [CrossRef]
- Crisostomi, M.; Lewandowski, M.; Vernizzi, F. Vainshtein regime in scalar-tensor gravity: Constraints on degenerate higher-order scalar-tensor theories. Phys. Rev. D 2019, 100, 024025. [Google Scholar] [CrossRef]
- Rosyadi, A.; Sulaksono, A.; Kassim, H.A.; Yusof, N. Brown dwarfs in Eddington-inspired Born-Infeld and beyond Horndeski theories. Eur. Phys. J. C 2019, 79, 1–10. [Google Scholar] [CrossRef]
- Wojnar, A. Lithium abundance is a gravitational model dependent quantity. Phys. Rev. D 2021, 103, 044037. [Google Scholar] [CrossRef]
- Delhom-Latorre, A.; Olmo, G.J.; Ronco, M. Observable traces of non-metricity: New constraints on metric-affine gravity. Phys. Lett. B 2018, 780, 294–299. [Google Scholar] [CrossRef]
- Kalita, S.; Sarmah, L.; Wojnar, A. Metric-affine effects in crystallization processes of white dwarfs. Phys. Rev. D 2023, 107, 044072. [Google Scholar] [CrossRef]
- Wojnar, A.; Kalita, S.; Sarmah, L. Effects of modified gravity on microscopic properties and cooling timescale of white dwarfs. Phys. Lett. B 2024, 850, 138494. [Google Scholar] [CrossRef]
- Lecca, P. The effects of gravitational potential on chemical reaction rates. Proc. J. Physics Conf. Ser. 2021, 2090, 012034. Available online: https://iopscience.iop.org/article/10.1088/1742-6596/2090/1/012034/pdf (accessed on 3 May 2024). [CrossRef]
- Hossain, G.M.; Mandal, S. Equation of states in the curved spacetime of spherical degenerate stars. J. Cosmol. Astropart. Phys. 2021, 2021, 026. [Google Scholar] [CrossRef]
- Hossain, G.M.; Mandal, S. Higher mass limits of neutron stars from the equation of states in curved spacetime. Phys. Rev. D 2021, 104, 123005. [Google Scholar] [CrossRef]
- Li, J.; Guo, T.; Zhao, J.; He, L. Do we need equation of state in curved spacetime for neutron stars? arXiv 2022, arXiv:2206.02106. [Google Scholar]
- Chavanis, P.H. Statistical mechanics and thermodynamic limit of self-gravitating fermions in D dimensions. Phys. Rev. E 2004, 69, 066126. [Google Scholar] [CrossRef]
- Sakstein, J.; Croon, D.; McDermott, S.D. Axion instability supernovae. Phys. Rev. D 2022, 105, 095038. [Google Scholar] [CrossRef]
- Wojnar, A. Unveiling phase space modifications: A clash of modified gravity and the generalized uncertainty principle. Phys. Rev. D 2024, 109, 024011. [Google Scholar] [CrossRef]
- Ali, A.F.; Wojnar, A. A covariant tapestry of linear GUP, metric-affine gravity, their Poincaré algebra and entropy bound. arXiv 2024, arXiv:2401.05941. [Google Scholar]
- Wojnar, A. Bose–Einstein Condensate and Liquid Helium He4: Implications of GUP and Modified Gravity Correspondence. arXiv 2024, arXiv:2401.01159. [Google Scholar]
- Pachoł, A.; Wojnar, A. Constraining Snyder and GUP models with low-mass stars. arXiv 2023, arXiv:2307.03520. [Google Scholar] [CrossRef]
- Pachoł, A.; Wojnar, A. Fermi equation of state with finite temperature corrections in quantum space-times approach: Snyder model vs. GUP case. Class. Quant. Grav. 2023, 40, 195021. [Google Scholar] [CrossRef]
- Kozak, A.; Pachoł, A.; Wojnar, A. Refining Bounds for Snyder and GUP Models through Seismic Wave Analysis. arXiv 2023, arXiv:2310.00913. [Google Scholar]
- Kempf, A.; Mangano, G.; Mann, R.B. Hilbert space representation of the minimal length uncertainty relation. Phys. Rev. D 1995, 52, 1108. [Google Scholar] [CrossRef] [PubMed]
- Maggiore, M. A generalized uncertainty principle in quantum gravity. Phys. Lett. B 1993, 304, 65–69. [Google Scholar] [CrossRef]
- Maggiore, M. Quantum groups, gravity, and the generalized uncertainty principle. Phys. Rev. D 1994, 49, 5182. [Google Scholar] [CrossRef]
- Chang, L.N.; Minic, D.; Okamura, N.; Takeuchi, T. Exact solution of the harmonic oscillator in arbitrary dimensions with minimal length uncertainty relations. Phys. Rev. D 2002, 65, 125027. [Google Scholar] [CrossRef]
- Chang, L.N.; Minic, D.; Okamura, N.; Takeuchi, T. Effect of the minimal length uncertainty relation on the density of states and the cosmological constant problem. Phys. Rev. D 2002, 65, 125028. [Google Scholar] [CrossRef]
- Moussa, M. Effect of generalized uncertainty principle on main-sequence stars and white dwarfs. Adv. High Energy Phys. 2015, 2015, 343284. [Google Scholar] [CrossRef]
- Bishop, M.; Lee, J.; Singleton, D. Modified commutators are not sufficient to determine a quantum gravity minimal length scale. Phys. Lett. B 2020, 802, 135209. [Google Scholar] [CrossRef]
- Bishop, M.; Contreras, J.; Singleton, D. A subtle aspect of minimal lengths in the generalized uncertainty principle. Universe 2022, 8, 192. [Google Scholar] [CrossRef]
- Segreto, S.; Montani, G. Extended GUP formulation and the role of momentum cut-off. Eur. Phys. J. C 2023, 83, 385. [Google Scholar] [CrossRef]
- Rashidi, R. Generalized uncertainty principle and the maximum mass of ideal white dwarfs. Ann. Phys. 2016, 374, 434–443. [Google Scholar] [CrossRef]
- Belfaqih, I.H.; Maulana, H.; Sulaksono, A. White dwarfs and generalized uncertainty principle. Int. J. Mod. Phys. D 2021, 30, 2150064. [Google Scholar] [CrossRef]
- Mathew, A.; Nandy, M.K. Existence of Chandrasekhar’s limit in generalized uncertainty white dwarfs. R. Soc. Open Sci. 2021, 8, 210301. [Google Scholar] [CrossRef]
- Hamil, B.; Lütfüoğlu, B. New higher-order generalized uncertainty principle: Applications. Int. J. Theor. Phys. 2021, 60, 2790–2803. [Google Scholar] [CrossRef]
- Gregoris, D.; Ong, Y.C. On the Chadrasekhar Limit in Generalized Uncertainty Principles. arXiv 2022, arXiv:2202.13904. [Google Scholar]
- Alfonso, V.I.; Bejarano, C.; Jimenez, J.B.; Olmo, G.J.; Orazi, E. The trivial role of torsion in projective invariant theories of gravity with non-minimally coupled matter fields. Class. Quantum Gravity 2017, 34, 235003. [Google Scholar] [CrossRef]
- Borowiec, A.; Ferraris, M.; Francaviglia, M.; Volovich, I. Universality of Einstein equations for the Ricci squared Lagrangians. Class. Quant. Grav. 1998, 15, 43–55. [Google Scholar] [CrossRef]
- Allemandi, G.; Borowiec, A.; Francaviglia, M. Accelerated cosmological models in Ricci squared gravity. Phys. Rev. D 2004, 70, 103503. [Google Scholar] [CrossRef]
- Beltrán Jiménez, J.; Delhom, A. Ghosts in metric-affine higher order curvature gravity. Eur. Phys. J. C 2019, 79, 656. [Google Scholar] [CrossRef]
- Jiménez, J.B.; Delhom, A. Instabilities in metric-affine theories of gravity with higher order curvature terms. Eur. Phys. J. C 2020, 80, 585. [Google Scholar] [CrossRef]
- Vollick, D.N. Palatini approach to Born-Infeld–Einstein theory and a geometric description of electrodynamics. Phys. Rev. D 2004, 69, 064030. [Google Scholar] [CrossRef]
- Jiménez, J.B.; Heisenberg, L.; Olmo, G.J.; Rubiera-Garcia, D. Born–Infeld inspired modifications of gravity. Phys. Rep. 2018, 727, 1–129. [Google Scholar] [CrossRef]
- Toniato, J.D.; Rodrigues, D.C.; Wojnar, A. Palatini f(R) gravity in the solar system: Post–Newtonian equations of motion and complete PPN parameters. Phys. Rev. D 2020, 101, 064050. [Google Scholar] [CrossRef]
- Banados, M.; Ferreira, P.G. Eddington’s theory of gravity and its progeny. Phys. Rev. Lett. 2010, 105, 011101. [Google Scholar] [CrossRef]
- Pani, P.; Cardoso, V.; Delsate, T. Compact stars in Eddington inspired gravity. Phys. Rev. Lett. 2011, 107, 031101. [Google Scholar] [CrossRef]
- Pani, P.; Sotiriou, T.P. Surface singularities in Eddington-inspired Born-Infeld gravity. Phys. Rev. Lett. 2012, 109, 251102. [Google Scholar] [CrossRef]
- Cortes, J.L.; Gamboa, J. Deformed classical-quantum mechanics transition. Phys. Rev. D 2020, 102, 036015. [Google Scholar] [CrossRef]
- Ali, A.F.; Das, S.; Vagenas, E.C. Discreteness of space from the generalized uncertainty principle. Phys. Lett. B 2009, 678, 497–499. [Google Scholar] [CrossRef]
- Ali, A.F. Minimal length in quantum gravity, equivalence principle and holographic entropy bound. Class. Quantum Gravity 2011, 28, 065013. [Google Scholar] [CrossRef]
- Abac, A.G.; Esguerra, J.P.H.; Otadoy, R.E.S. Modified structure equations and mass–radius relations of white dwarfs arising from the linear generalized uncertainty principle. Int. J. Mod. Phys. D 2021, 30, 2150005. [Google Scholar] [CrossRef]
- Vagenas, E.C.; Farag Ali, A.; Alshal, H. GUP and the no-cloning theorem. Eur. Phys. J. C 2019, 79, 276. [Google Scholar] [CrossRef]
- Tawfik, A.; Diab, A. Generalized uncertainty principle: Approaches and applications. Int. J. Mod. Phys. D 2014, 23, 1430025. [Google Scholar] [CrossRef]
- Vagenas, E.C.; Ali, A.F.; Hemeda, M.; Alshal, H. Linear and quadratic GUP, Liouville theorem, cosmological constant, and Brick Wall entropy. Eur. Phys. J. C 2019, 79, 398. [Google Scholar] [CrossRef]
- Barausse, E.; Sotiriou, T.P.; Miller, J.C. Curvature singularities, tidal forces and the viability of Palatini f (R) gravity. Class. Quantum Gravity 2008, 25, 105008. [Google Scholar] [CrossRef]
- Barausse, E.; Sotiriou, T.P.; Miller, J.C. A no-go theorem for polytropic spheres in Palatini f (R) gravity. Class. Quantum Gravity 2008, 25, 062001. [Google Scholar] [CrossRef]
- Casado-Turrión, A.; de la Cruz-Dombriz, A.; Dobado, A. Is gravitational collapse possible in f(R) gravity? Phys. Rev. D 2022, 105, 084060. [Google Scholar] [CrossRef]
- Olmo, G.J. Reexamination of polytropic spheres in Palatini f (R) gravity. Phys. Rev. D 2008, 78, 104026. [Google Scholar] [CrossRef]
- Olmo, G.J.; Rubiera-Garcia, D. Junction conditions in Palatini f(R) gravity. Class. Quantum Gravity 2020, 37, 215002. [Google Scholar] [CrossRef]
- Auddy, S.; Basu, S.; Valluri, S. Analytic models of brown dwarfs and the substellar mass limit. Adv. Astron. 2016, 2016, 5743272. [Google Scholar] [CrossRef]
- Benito, M.; Wojnar, A. Cooling process of brown dwarfs in Palatini f(R) gravity. Phys. Rev. D 2021, 103, 064032. [Google Scholar] [CrossRef]
- Kozak, A.; Soieva, K.; Wojnar, A. Cooling process of substellar objects in scalar-tensor gravity. Phys. Rev. D 2023, 108, 024016. [Google Scholar] [CrossRef]
- Landau, L. The theory of superfluidity of helium II. In An Introduction to the Theory of Superfluidity; CRC Press: Boca Raton, FL, USA, 2018; pp. 185–204. [Google Scholar]
- Tisza, L. The theory of liquid helium. Phys. Rev. 1947, 72, 838. [Google Scholar] [CrossRef]
- Yarnell, J.; Arnold, G.; Bendt, P.; Kerr, E. Excitations in liquid helium: Neutron scattering measurements. Phys. Rev. 1959, 113, 1379. [Google Scholar] [CrossRef]
- Cohen, M.; Feynman, R.P. Theory of inelastic scattering of cold neutrons from liquid helium. Phys. Rev. 1957, 107, 13. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wojnar, A.; Gomes, D.A. Bose and Fermi Gases in Metric-Affine Gravity and Linear Generalized Uncertainty Principle. Universe 2024, 10, 217. https://doi.org/10.3390/universe10050217
Wojnar A, Gomes DA. Bose and Fermi Gases in Metric-Affine Gravity and Linear Generalized Uncertainty Principle. Universe. 2024; 10(5):217. https://doi.org/10.3390/universe10050217
Chicago/Turabian StyleWojnar, Aneta, and Débora Aguiar Gomes. 2024. "Bose and Fermi Gases in Metric-Affine Gravity and Linear Generalized Uncertainty Principle" Universe 10, no. 5: 217. https://doi.org/10.3390/universe10050217
APA StyleWojnar, A., & Gomes, D. A. (2024). Bose and Fermi Gases in Metric-Affine Gravity and Linear Generalized Uncertainty Principle. Universe, 10(5), 217. https://doi.org/10.3390/universe10050217