Trapped Ideal Bose Gas with a Few Heavy Impurities
Abstract
:1. Introduction
2. Formulation
2.1. One-Body Problem
2.2. Many-Body Consideration
3. Results
4. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rath, S.P.; Schmidt, R. Field-theoretical study of the Bose polaron. Phys. Rev. A 2013, 88, 053632. [Google Scholar] [CrossRef]
- Zinner, N.T. Efimov states of heavy impurities in a Bose-Einstein condensate. Euro. Phys. Lett. 2013, 101, 60009. [Google Scholar] [CrossRef]
- Grusdt, F.; Shchadilova, Y.E.; Rubtsov, A.N.; Demler, E. Renormalization group approach to the Fröhlich polaron model: Application to impurity-BEC problem. Sci. Rep. 2015, 5, 12124. [Google Scholar] [CrossRef] [PubMed]
- Pena Ardila, L.A.; Giorgini, S. Impurity in a Bose-Einstein condensate: Study of the attractive and repulsive branch using quantum Monte Carlo methods. Phys. Rev. A 2015, 92, 033612. [Google Scholar] [CrossRef]
- Volosniev, A.G.; Hammer, H.-W.; Zinner, N.T. Real-time dynamics of an impurity in an ideal Bose gas in a trap. Phys. Rev. A 2015, 92, 023623. [Google Scholar] [CrossRef]
- Levinsen, J.; Parish, M.M.; Bruun, G.M. Impurity in a Bose-Einstein Condensate and the Efimov Effect. Phys. Rev. Lett. 2015, 115, 125302. [Google Scholar] [CrossRef]
- Shchadilova, Y.E.; Schmidt, R.; Grusdt, F.; Demler, E. Quantum Dynamics of Ultracold Bose Polarons. Phys. Rev. Lett. 2016, 117, 113002. [Google Scholar] [CrossRef]
- Jorgensen, N.B.; Wacker, L.; Skalmstang, K.T.; Parish, M.M.; Levinsen, J.; Christensen, R.S.; Bruun, G.M.; Arlt, J.J. Observation of Attractive and Repulsive Polarons in a Bose-Einstein Condensate. Phys. Rev. Lett. 2016, 117, 055302. [Google Scholar] [CrossRef]
- Hu, M.-G.; de Graaff, M.J.V.; Kedar, D.; Corson, J.P.; Cornell, E.A.; Jin, D.S. Bose Polarons in the Strongly Interacting Regime. Phys. Rev. Lett. 2016, 117, 055301. [Google Scholar] [CrossRef]
- Sun, M.; Zhai, H.; Cui, X. Visualizing the Efimov Correlation in Bose Polarons. Phys. Rev. Lett. 2017, 119, 013401. [Google Scholar] [CrossRef]
- Yoshida, S.M.; Endo, S.; Levinsen, J.; Parish, M.M. Universality of an Impurity in a Bose-Einstein Condensate. Phys. Rev. X 2018, 8, 011024. [Google Scholar] [CrossRef]
- Guenther, N.E.; Massignan, P.; Lewenstein, M.; Bruun, G.M. Bose Polarons at Finite Temperature and Strong Coupling. Phys. Rev. Lett. 2018, 120, 050405. [Google Scholar] [CrossRef] [PubMed]
- Pastukhov, V. Polaron in the dilute critical Bose condensate. J. Phys. A Math. Theor. 2018, 51, 195003. [Google Scholar] [CrossRef]
- Mistakidis, S.I.; Katsimiga, G.C.; Koutentakis, G.M.; Busch, T.; Schmelcher, P. Quench Dynamics and Orthogonality Catastrophe of Bose Polarons. Phys. Rev. Lett. 2019, 122, 183001. [Google Scholar] [CrossRef] [PubMed]
- Ichmoukhamedov, T.; Tempere, J. Feynman path-integral treatment of the Bose polaron beyond the Fröhlich model. Phys. Rev. A 2019, 100, 043605. [Google Scholar] [CrossRef]
- Yan, Z.Z.; Ni, Y.; Robens, C.; Zwielein, M.W. Bose polarons near quantum criticality. Science 2020, 368, 190. [Google Scholar] [CrossRef]
- Field, B.; Levinsen, J.; Parish, M.M. Fate of the Bose polaron at finite temperature. Phys. Rev. A 2020, 101, 013623. [Google Scholar] [CrossRef]
- Drescher, M.; Salmhofer, M.; Enss, T. Theory of a resonantly interacting impurity in a Bose-Einstein condensate. Phys. Rev. Res. 2020, 2, 032011. [Google Scholar] [CrossRef]
- Skou, M.G.; Skov, T.G.; Jørgensen, N.B.; Nielsen, K.K.; Camacho-Guardian, A.; Pohl, T.; Bruun, G.M.; Arlt, J.J. Non-equilibrium quantum dynamics and formation of the Bose polaron. Nat. Phys. 2021, 17, 731–735. [Google Scholar] [CrossRef]
- Levinsen, J.; Ardila, L.A.P.; Yoshida, S.M.; Parish, M.M. Quantum Behavior of a Heavy Impurity Strongly Coupled to a Bose Gas. Phys. Rev. Lett. 2021, 127, 033401. [Google Scholar] [CrossRef]
- Brauneis, F.; Hammer, H.-W.; Lemeshko, M.; Volosniev, A.G. Impurities in a one-dimensional Bose gas: The flow equation approach. SciPost Phys. 2021, 11, 008. [Google Scholar] [CrossRef]
- Massignan, P.; Yegovtsev, N.; Gurarie, V. Universal Aspects of a Strongly Interacting Impurity in a Dilute Bose Condensate. Phys. Rev. Lett. 2021, 126, 123403. [Google Scholar] [CrossRef] [PubMed]
- Isaule, F.; Morera, I.; Massignan, P.; Julia-Diaz, B. Renormalization-group study of Bose polarons. Phys. Rev. A 2021, 104, 023317. [Google Scholar] [CrossRef]
- Pascual, G.; Boronat, J. Quasiparticle Nature of the Bose Polaron at Finite Temperature. Phys. Rev. Lett. 2021, 127, 205301. [Google Scholar] [CrossRef]
- Khan, M.M.; Tercas, H.; Mendonca, J.T.; Wehr, J.; Charalambous, C.; Lewenstein, M.; Garcia-March, M.A. Quantum dynamics of a Bose polaron in a d-dimensional Bose-Einstein condensate. Phys. Rev. A 2021, 103, 023303. [Google Scholar] [CrossRef]
- Christianen, A.; Cirac, J.I.; Schmidt, R. Chemistry of a Light Impurity in a Bose-Einstein Condensate. Phys. Rev. Lett. 2022, 128, 183401. [Google Scholar] [CrossRef]
- Christianen, A.; Cirac, J.I.; Schmidt, R. Bose polaron and the Efimov effect: A Gaussian-state approach. Phys. Rev. A 2022, 105, 053302. [Google Scholar] [CrossRef]
- Schmidt, R.; Enss, T. Self-stabilized Bose polarons. SciPost Phys. 2022, 13, 054. [Google Scholar] [CrossRef]
- Skou, M.G.; Nielsen, K.K.; Skov, T.G.; Morgen, A.M.; Jorgensen, N.B.; Camacho-Guardian, A.; Pohl, T.; Bruun, G.M.; Arlt, J.J. Life and death of the Bose polaron. Phys. Rev. Res. 2022, 4, 043093. [Google Scholar] [CrossRef]
- Grusdt, F.; Astrakharchik, G.E.; Demler, E. Bose polarons in ultracold atoms in one dimension: Beyond the Fröhlich paradigm. New J. Phys. 2017, 19, 103035. [Google Scholar] [CrossRef]
- Parisi, L.; Giorgini, S. Quantum Monte Carlo study of the Bose-polaron problem in a one-dimensional gas with contact interactions. Phys. Rev. A 2017, 95, 023619. [Google Scholar] [CrossRef]
- Pastukhov, V. Impurity states in the one-dimensional Bose gas. Phys. Rev. A 2017, 96, 043625. [Google Scholar] [CrossRef]
- Kain, B.; Ling, H.Y. Analytical study of static beyond-Fröhlich Bose polarons in one dimension. Phys. Rev. A 2018, 98, 033610. [Google Scholar] [CrossRef]
- Mistakidis, S.I.; Volosniev, A.G.; Zinner, N.T.; Schmelcher, P. Effective approach to impurity dynamics in one-dimensional trapped Bose gases. Phys. Rev. A 2019, 100, 013619. [Google Scholar] [CrossRef]
- Jager, J.; Barnett, R.; Will, M.; Fleischhauer, M. Strong-coupling Bose polarons in one dimension: Condensate deformation and modified Bogoliubov phonons. Phys. Rev. Res. 2020, 2, 033142. [Google Scholar] [CrossRef]
- Ristivojevic, Z. Exact result for the polaron mass in a one-dimensional Bose gas. Phys. Rev. A 2021, 104, 052218. [Google Scholar] [CrossRef]
- Pastukhov, V. Polaron in dilute 2D Bose gas at low temperatures. J. Phys. B At. Mol. Opt. Phys. 2018, 51, 155203. [Google Scholar] [CrossRef]
- Akaturk, E.; Tanatar, B. Two-dimensional Bose polaron using diffusion Monte Carlo method. Int. J. Mod. Phys. B 2019, 33, 1950238. [Google Scholar] [CrossRef]
- Ardila, L.A.P.; Astrakharchik, G.E.; Giorgini, S. Strong coupling Bose polarons in a two-dimensional gas. Phys. Rev. Res. 2020, 2, 023405. [Google Scholar] [CrossRef]
- Dehkharghani, A.S.; Volosniev, A.G.; Zinner, N.T. Coalescence of Two Impurities in a Trapped One-dimensional Bose Gas. Phys. Rev. Lett. 2018, 121, 080405. [Google Scholar] [CrossRef]
- Camacho-Guardian, A.; Ardila, L.A.P.; Pohl, T.; Bruun, G.M. Bipolarons in a Bose-Einstein Condensate. Phys. Rev. Lett. 2018, 121, 013401. [Google Scholar] [CrossRef]
- Pasek, M.; Orso, G. Induced pairing of fermionic impurities in a one-dimensional strongly correlated Bose gas. Phys. Rev. B 2019, 100, 245419. [Google Scholar] [CrossRef]
- Mistakidis, S.I.; Volosniev, A.G.; Schmelcher, P. Induced correlations between impurities in a one-dimensional quenched Bose gas. Phys. Rev. Res. 2020, 2, 023154. [Google Scholar] [CrossRef]
- Will, M.; Astrakharchik, G.E.; Fleischhauer, M. Polaron Interactions and Bipolarons in One-Dimensional Bose Gases in the Strong Coupling Regime. Phys. Rev. Lett. 2021, 127, 103401. [Google Scholar] [CrossRef]
- Jager, J.; Barnett, R. The effect of boson–boson interaction on the bipolaron formation. New J. Phys. 2022, 24, 103032. [Google Scholar] [CrossRef]
- Yordanov, V.R.; Isaule, F. Mobile impurities interacting with a few one-dimensional lattice bosons. J. Phys. B At. Mol. Opt. Phys. 2023, 56, 045301. [Google Scholar] [CrossRef]
- Schecter, M.; Kamenev, A. Phonon-Mediated Casimir Interaction between Mobile Impurities in One-Dimensional Quantum Liquids. Phys. Rev. Lett. 2014, 112, 155301. [Google Scholar] [CrossRef]
- Naidon, P. Two Impurities in a Bose–Einstein Condensate: From Yukawa to Efimov Attracted Polarons. J. Phys. Soc. JPN 2018, 87, 043002. [Google Scholar] [CrossRef]
- Camacho-Guardian, A.; Bruun, G.M. Landau Effective Interaction between Quasiparticles in a Bose-Einstein Condensate. Phys. Rev. X. 2018, 8, 031042. [Google Scholar] [CrossRef]
- Reichert, B.; Ristivojevic, Z.; Petkovic, A. The Casimir-like effect in a one-dimensional Bose gas. New J. Phys. 2019, 21, 053024. [Google Scholar] [CrossRef]
- Panochko, G.; Pastukhov, V. Static Impurities in a Weakly Interacting Bose Gas. Atoms 2022, 10, 19. [Google Scholar] [CrossRef]
- Petkovic, A.; Ristivojevic, Z. Mediated interaction between polarons in a one-dimensional Bose gas. Phys. Rev. A 2022, 105, L021303. [Google Scholar] [CrossRef]
- Fujii, K.; Hongo, M.; Enss, T. Universal van der Waals Force between Heavy Polarons in Superfluids. Phys. Rev. Lett. 2022, 129, 233401. [Google Scholar] [CrossRef] [PubMed]
- Panochko, G.; Pastukhov, V. Two- And three-body effective potentials between impurities in ideal BEC. J. Phys. A Math. Theor. 2021, 54, 085001. [Google Scholar] [CrossRef]
- Volosniev, A.G.; Hammer, H.W. Analytical approach to the Bose-polaron problem in one dimension. Phys. Rev. A 2017, 96, 031601. [Google Scholar] [CrossRef]
- Panochko, G.; Pastukhov, V. Mean-field construction for spectrum of one-dimensional Bose polaron. Ann. Phys. 2019, 409, 167933. [Google Scholar] [CrossRef]
- Hryhorchak, O.; Panochko, G.; Pastukhov, V. Mean-field study of repulsive 2D and 3D Bose polarons. J. Phys. B At. Mol. Opt. Phys. 2020, 53, 205302. [Google Scholar] [CrossRef]
- Hryhorchak, O.; Panochko, G.; Pastukhov, V. Impurity in a three-dimensional unitary Bose gas. Phys. Lett. A 2020, 384, 126934. [Google Scholar] [CrossRef]
- Guenther, N.-E.; Schmidt, R.; Bruun, G.M.; Gurarie, V.; Massignan, P. Mobile impurity in a Bose-Einstein condensate and the orthogonality catastrophe. Phys. Rev. A 2021, 103, 013317. [Google Scholar] [CrossRef]
- Shvaika, Z.; Sapriianchuk, P.; Rovenchak, A. Bose systems in linear traps: Exact calculations versus effective space dimensionality. Low Temp. Phys. 2021, 47, 577. [Google Scholar] [CrossRef]
- Nishida, Y. Casimir interaction among heavy fermions in the BCS-BEC crossover. Phys. Rev. A 2009, 79, 013629. [Google Scholar] [CrossRef]
- Lüscher, M. Volume dependence of the energy spectrum in massive quantum field theories. II. Scattering states. Commun. Math. Phys. 1986, 105, 153–188. [Google Scholar] [CrossRef]
- Olshanii, M. Atomic Scattering in the Presence of an External Confinement and a Gas of Impenetrable Bosons. Phys. Rev. Lett. 1998, 81, 938. [Google Scholar] [CrossRef]
- Petrov, D.S.; Shlyapnikov, G.V. Interatomic collisions in a tightly confined Bose gas. Phys. Rev. A 2001, 64, 012706. [Google Scholar] [CrossRef]
- Drescher, M.; Salmhofer, M.; Enss, T. Medium-induced Interaction Between Impurities in a Bose-Einstein Condensate. arXiv 2023, arXiv:2303.01916. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hryhorchak, O.; Pastukhov, V. Trapped Ideal Bose Gas with a Few Heavy Impurities. Atoms 2023, 11, 77. https://doi.org/10.3390/atoms11050077
Hryhorchak O, Pastukhov V. Trapped Ideal Bose Gas with a Few Heavy Impurities. Atoms. 2023; 11(5):77. https://doi.org/10.3390/atoms11050077
Chicago/Turabian StyleHryhorchak, Orest, and Volodymyr Pastukhov. 2023. "Trapped Ideal Bose Gas with a Few Heavy Impurities" Atoms 11, no. 5: 77. https://doi.org/10.3390/atoms11050077
APA StyleHryhorchak, O., & Pastukhov, V. (2023). Trapped Ideal Bose Gas with a Few Heavy Impurities. Atoms, 11(5), 77. https://doi.org/10.3390/atoms11050077