Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (757)

Search Parameters:
Keywords = Blockchain optimization

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 5401 KB  
Article
A Novel Dual-Layer Quantum-Resilient Encryption Strategy for UAV–Cloud Communication Using Adaptive Lightweight Ciphers and Hybrid ECC–PQC
by Mahmoud Aljamal, Bashar S. Khassawneh, Ayoub Alsarhan, Saif Okour, Latifa Abdullah Almusfar, Bashair Faisal AlThani and Waad Aldossary
Computers 2026, 15(2), 101; https://doi.org/10.3390/computers15020101 - 2 Feb 2026
Abstract
Unmanned Aerial Vehicles (UAVs) are increasingly integrated into Internet of Things (IoT) ecosystems for applications such as surveillance, disaster response, environmental monitoring, and logistics. These missions demand reliable and secure communication between UAVs and cloud platforms for command, control, and data storage. However, [...] Read more.
Unmanned Aerial Vehicles (UAVs) are increasingly integrated into Internet of Things (IoT) ecosystems for applications such as surveillance, disaster response, environmental monitoring, and logistics. These missions demand reliable and secure communication between UAVs and cloud platforms for command, control, and data storage. However, UAV communication channels are highly vulnerable to eavesdropping, spoofing, and man-in-the-middle attacks due to their wireless and often long-range nature. Traditional cryptographic schemes either impose excessive computational overhead on resource-constrained UAVs or lack sufficient robustness for cloud-level security. To address this challenge, we propose a dual-layer encryption architecture that balances lightweight efficiency with strong cryptographic guarantees. Unlike prior dual-layer approaches, the proposed framework introduces a context-aware adaptive lightweight layer for UAV-to-gateway communication and a hybrid post-quantum layer for gateway-to-cloud security, enabling dynamic cipher selection, energy-aware key scheduling, and quantum-resilient key establishment. In the first layer, UAV-to-gateway communication employs a lightweight symmetric encryption scheme optimized for low latency and minimal energy consumption. In the second layer, gateway-to-cloud communication uses post-quantum asymmetric encryption to ensure resilience against emerging quantum threats. The architecture is further reinforced with optional multi-path hardening and blockchain-assisted key lifecycle management to enhance scalability and tamper-proof auditability. Experimental evaluation using a UAV testbed and cloud integration shows that the proposed framework achieves 99.85% confidentiality preservation, reduces computational overhead on UAVs by 42%, and improves end-to-end latency by 35% compared to conventional single-layer encryption schemes. These results confirm that the proposed adaptive and hybridized dual-layer design provides a scalable, secure, and resource-aware solution for UAV-to-cloud communication, offering both present-day practicality and future-proof cryptographic resilience. Full article
(This article belongs to the Special Issue Emerging Trends in Network Security and Applied Cryptography)
Show Figures

Figure 1

25 pages, 2737 KB  
Review
Integration of Artificial Intelligence in Food Processing Technologies
by Ali Ayoub
Processes 2026, 14(3), 513; https://doi.org/10.3390/pr14030513 - 2 Feb 2026
Abstract
The food processing industry is undergoing a profound transformation with the integration of Artificial Intelligence (AI), evolving from traditional automation to intelligent, adaptive systems aligned with Industry 5.0 principles. This review examines AI’s role across the food value chain, including supply chain management, [...] Read more.
The food processing industry is undergoing a profound transformation with the integration of Artificial Intelligence (AI), evolving from traditional automation to intelligent, adaptive systems aligned with Industry 5.0 principles. This review examines AI’s role across the food value chain, including supply chain management, quality control, process optimization in key unit operations, and emerging areas. Recent advancements in machine learning (ML), computer vision, and predictive analytics have significantly improved detection in food processing, achieving accuracy exceeding 98%. These technologies have also contributed to energy savings of 15–20% and reduced waste through real-time process optimization and predictive maintenance. The integration of blockchain and Internet of Things (IoT) technologies further strengthens traceability and sustainability across the supply chain, while generative AI accelerates the development of novel food products. Despite these benefits, several challenges persist, including substantial implementation costs, heterogeneous data sources, ethical considerations related to workforce displacement, and the opaque, “black box” nature of many AI models. Moreover, the effectiveness of AI solutions remains context-dependent; some studies report only marginal improvements in dynamic or data-poor environments. Looking ahead, the sector is expected to embrace autonomous manufacturing, edge computing, and bio-computing, with projections indicating that the AI market in food processing could approach $90 billion by 2030. Full article
Show Figures

Figure 1

39 pages, 1657 KB  
Systematic Review
Harnessing Artificial Intelligence and Digital Technologies for Sustainable Healthcare Delivery in Saudi Arabia: A Comprehensive Review, Issues, and Future Perspectives
by Fayez Nahedh Alsehani
Sustainability 2026, 18(3), 1461; https://doi.org/10.3390/su18031461 - 2 Feb 2026
Abstract
The incorporation of artificial intelligence (AI) and digital technology in healthcare has revolutionized service delivery, improving diagnostic precision, patient outcomes, and operational efficacy. Nonetheless, despite considerable progress, numerous problems persist that impede the realization of full potential. Current reviews predominantly emphasize the advantages [...] Read more.
The incorporation of artificial intelligence (AI) and digital technology in healthcare has revolutionized service delivery, improving diagnostic precision, patient outcomes, and operational efficacy. Nonetheless, despite considerable progress, numerous problems persist that impede the realization of full potential. Current reviews predominantly emphasize the advantages of AI in disease detection and health guidance, neglecting significant concerns such as social opposition, regulatory frameworks, and geographical discrepancies. This SLR, executed in accordance with PRISMA principles, examined 21 publications from 2020 to 2025 to assess the present condition of AI and digital technologies inside Saudi Arabia’s healthcare industry. Initially, 863 publications were obtained, from which 21 were chosen for comprehensive examination. Significant discoveries encompass the extensive utilization of telemedicine, data analytics, mobile health applications, Internet of Things, electronic health records, blockchain technology, online platforms, cloud computing, and encryption methods. These technologies augment diagnostic precision, boost patient outcomes, optimize administrative procedures, and foster preventative medicine, contributing to cost-effectiveness, environmental sustainability, and enduring service provision. Nonetheless, issues include data privacy concerns, elevated implementation expenses, opposition to change, interoperability challenge, and regulatory issues persist as substantial barriers. Subsequent investigations must concentrate on the development of culturally relevant AI algorithms, the enhancement of Arabic natural language processing, and the establishment of AI-driven mental health systems. By confronting these challenges and utilizing emerging technologies, Saudi Arabia has the potential to establish its status as a leading nation in medical services innovation, guaranteeing patient-centered, efficient, and accessible healthcare delivery. Recommendations must include augmenting data privacy and security, minimizing implementation expenses, surmounting resistance to change, enhancing interoperability, fortifying regulatory frameworks, addressing regional inequities, and investing in nascent technologies. Full article
Show Figures

Figure 1

28 pages, 3862 KB  
Review
A Review of Wireless Charging Solutions for FANETs in IoT-Enabled Smart Environments
by Nelofar Aslam, Hongyu Wang, Hamada Esmaiel, Naveed Ur Rehman Junejo and Adel Agamy
Sensors 2026, 26(3), 912; https://doi.org/10.3390/s26030912 - 30 Jan 2026
Viewed by 158
Abstract
Unmanned Aerial Vehicles (UAVs) are emerging as a fundamental part of Flying Ad Hoc Networks (FANETs). However, owing to the limited energy capacity of UAV batteries, wireless power transfer (WPT) technologies have recently gained interest from researchers, offering recharging possibilities for FANETs. Based [...] Read more.
Unmanned Aerial Vehicles (UAVs) are emerging as a fundamental part of Flying Ad Hoc Networks (FANETs). However, owing to the limited energy capacity of UAV batteries, wireless power transfer (WPT) technologies have recently gained interest from researchers, offering recharging possibilities for FANETs. Based on this background, this study highlights the need for wireless charging to enhance the operational endurance of FANETs in Internet-of-Things (IoT) environments. This review investigates WPT power replenishment to explore the dynamic usage of UAVs in two ways. The former is for using a UAV as a mobile charger to recharge the ground nodes, whereas the latter is for WPT applications in in-flight (UAV-to-UAV) charging. For the two research domains, we describe the different methods of WPT and its latest advancements through the academic and industrial research literature. We categorized the results based on the power transfer range, efficiency, wireless charger topology (ground or in-flight), coordination among multiple UAVs, and trajectory optimization formulation. A crucial finding is that in-flight UAV charging can extend the endurance by three times compared to using standalone batteries. Furthermore, the integration of IoT for the deployment of a clan of UAVs as a FANET is rigorously emphasized. Our data findings also indicate the present and future forecasting graphs of UAVs and IoT-integrating UAVs in the global market. Existing systems have scalability issues beyond 20 UAVs; therefore, future research requires edge computing for WPT scheduling and blockchains for energy trading. Full article
(This article belongs to the Special Issue Security and Privacy Challenges in IoT-Driven Smart Environments)
Show Figures

Figure 1

24 pages, 2311 KB  
Article
Performance Evaluation of Cross-Chain Systems Based on Notary Mechanism
by Xingshuo Song, Peng Chen and Chengguo E
Sustainability 2026, 18(3), 1389; https://doi.org/10.3390/su18031389 - 30 Jan 2026
Viewed by 78
Abstract
The application of blockchain technology in large-scale sustainable scenarios requires advancement. Therefore, high-performance cross-chain infrastructure is essential for domains like green supply chain management and peer-to-peer renewable energy trading. This study proposes an integrated modeling framework, whose core innovation is the combination of [...] Read more.
The application of blockchain technology in large-scale sustainable scenarios requires advancement. Therefore, high-performance cross-chain infrastructure is essential for domains like green supply chain management and peer-to-peer renewable energy trading. This study proposes an integrated modeling framework, whose core innovation is the combination of Phase-Type (PH) distribution, the GI/PH/1 queuing model, and quasi-birth-and-death (QBD) process theory to systematically describe the multi-stage service and dynamic interactions in a notary-based cross-chain system. This framework overcomes the limitations of traditional models that rely on oversimplified service assumptions. By utilizing matrix-analytic methods, it enables the precise quantification of key performance metrics, such as system throughput, response time, and rejection rate. This research provides a unified, scalable theoretical tool for cross-chain performance evaluation and establishes a methodological foundation for optimizing system resource allocation and sustainable infrastructure design. Full article
Show Figures

Figure 1

41 pages, 4245 KB  
Article
Blockchain-Integrated Stackelberg Model for Real-Time Price Regulation and Demand-Side Optimization in Microgrids
by Abdullah Umar, Prashant Kumar Jamwal, Deepak Kumar, Nitin Gupta, Vijayakumar Gali and Ajay Kumar
Energies 2026, 19(3), 643; https://doi.org/10.3390/en19030643 - 26 Jan 2026
Viewed by 162
Abstract
Renewable-driven microgrids require transparent and adaptive coordination mechanisms to manage variability in distributed generation and flexible demand. Conventional pricing schemes and centralized demand-side programs are often insufficient to regulate real-time imbalances, leading to inefficient renewable utilization and limited prosumer participation. This work proposes [...] Read more.
Renewable-driven microgrids require transparent and adaptive coordination mechanisms to manage variability in distributed generation and flexible demand. Conventional pricing schemes and centralized demand-side programs are often insufficient to regulate real-time imbalances, leading to inefficient renewable utilization and limited prosumer participation. This work proposes a blockchain-integrated Stackelberg pricing model that combines real-time price regulation, optimal demand-side management, and peer-to-peer energy exchange within a unified operational framework. The Microgrid Energy Management System (MEMS) acts as the Stackelberg leader, setting hourly prices and demand response incentives, while prosumers and consumers respond through optimal export and load-shifting decisions derived from quadratic cost models. A distributed supply–demand balancing algorithm iteratively updates prices to reach the Stackelberg equilibrium, ensuring system-level feasibility. To enable trust and tamper-proof execution, smart-contract architecture is deployed on the Polygon Proof-of-Stake network, supporting participant registration, day-ahead commitments, real-time measurement logging, demand-response validation, and automated settlement with negligible transaction fees. Experimental evaluation using real-world demand and PV profiles shows improved peak-load reduction, higher renewable utilization, and increased user participation. Results demonstrate that the proposed framework enhances operational reliability while enabling transparent and verifiable microgrid energy transactions. Full article
(This article belongs to the Section A1: Smart Grids and Microgrids)
Show Figures

Figure 1

22 pages, 3180 KB  
Article
Integrating Blockchain Traceability and Deep Learning for Risk Prediction in Grain and Oil Food Safety
by Hongyi Ge, Kairui Fan, Yuan Zhang, Yuying Jiang, Shun Wang and Zhikun Chen
Foods 2026, 15(2), 407; https://doi.org/10.3390/foods15020407 - 22 Jan 2026
Viewed by 102
Abstract
The quality and safety of grain and oil food are paramount to sustainable societal development and public health. Implementing early warning analysis and risk control is critical for the comprehensive identification and management of grain and oil food safety risks. However, traditional risk [...] Read more.
The quality and safety of grain and oil food are paramount to sustainable societal development and public health. Implementing early warning analysis and risk control is critical for the comprehensive identification and management of grain and oil food safety risks. However, traditional risk prediction models are limited by their inability to accurately analyze complex nonlinear data, while their reliance on centralized storage further undermines prediction credibility and traceability. This study proposes a deep learning risk prediction model integrated with a blockchain-based traceability mechanism. Firstly, a risk prediction model combining Grey Relational Analysis (GRA) and Bayesian-optimized Tabular Neural Network (TabNet-BO) is proposed, enabling precise and rapid fine-grained risk prediction of the data; Secondly, a risk prediction method combining blockchain and deep learning is proposed. This method first completes the prediction interaction with the deep learning model through a smart contract and then records the exceeding data and prediction results on the blockchain to ensure the authenticity and traceability of the data. At the same time, a storage optimization method is employed, where only the exceeding data is uploaded to the blockchain, while the non-exceeding data is encrypted and stored in the local database. Compared with existing models, the proposed model not only effectively enhances the prediction capability for grain and oil food quality and safety but also improves the transparency and credibility of data management. Full article
(This article belongs to the Section Food Quality and Safety)
Show Figures

Figure 1

19 pages, 932 KB  
Article
Harnessing AI to Unlock Logistics and Port Efficiency in the Sultanate of Oman
by Abebe Ejigu Alemu, Amer H. Alhabsi, Faiza Kiran, Khalid Salim Said Al Kalbani, Hoorya Yaqoob AlRashdi and Shuhd Ali Nasser Al-Rasbi
Adm. Sci. 2026, 16(1), 54; https://doi.org/10.3390/admsci16010054 - 21 Jan 2026
Viewed by 231
Abstract
The global maritime and logistics sectors are undergoing rapid digital transformation driven by emerging technologies such as automation, the Internet of Things (IoT), and blockchain. Artificial Intelligence (AI), with its ability to analyze complex datasets, predict operational patterns, and optimize resource allocation, offers [...] Read more.
The global maritime and logistics sectors are undergoing rapid digital transformation driven by emerging technologies such as automation, the Internet of Things (IoT), and blockchain. Artificial Intelligence (AI), with its ability to analyze complex datasets, predict operational patterns, and optimize resource allocation, offers a transformative potential beyond the capabilities of conventional technologies. However, mixed results are shown in its implementation. This study examines the current state of AI applications to unlock higher levels of efficiency and competitiveness in logistics firms. A mixed-methods approach was employed, combining surveys from logistics companies with in-depth interviews from key stakeholders in ports and logistics firms to triangulate insights and enhance the validity of the findings. Our results reveal that while technologies such as automation and digital tracking are increasingly utilized to improve operational transparency and cargo management, AI applications remain limited and largely experimental. Where implemented, AI contributes to strategic decision-making, predictive maintenance, customer service enhancement, and cargo flow optimization. Nonetheless, financial conditions, data integration challenges, and a shortage of AI-skilled professionals continue to impede its wider adoption. To overcome these challenges, this study recommends targeted investments in AI infrastructure, the establishment of collaborative frameworks between public authorities, financial institutions, and technology-driven Higher Education Institutions (HEIs), and the development of human capital capable of sustaining AI-enabled transformation. By strategically leveraging AI, Oman can position its ports and logistics sector as a regional leader in efficiency, innovation, and sustainable growth. Full article
Show Figures

Figure 1

28 pages, 3029 KB  
Review
Graph Combinatorial Optimization Problems for Blockchain Transaction Network Analysis
by Michael Palk and Stefan Voß
Mathematics 2026, 14(2), 345; https://doi.org/10.3390/math14020345 - 20 Jan 2026
Viewed by 251
Abstract
Open data makes it possible to gain insights into the transaction patterns of blockchain projects. These patterns can be modeled as transaction networks, which support a wide range of analytical techniques. Depending on the trade-off between information preservation and complexity reduction, various graph [...] Read more.
Open data makes it possible to gain insights into the transaction patterns of blockchain projects. These patterns can be modeled as transaction networks, which support a wide range of analytical techniques. Depending on the trade-off between information preservation and complexity reduction, various graph representations can be used to capture additional features, temporal changes, and interoperability between protocols. Different analytical approaches, including calculating graph metrics or applying graph neural networks, can reveal hidden structures, uncover unusual activities, detect anomalies, and provide a clearer picture of the dynamics of blockchain projects. While network science metrics and machine learning methods have been extensively applied to transaction networks, graph combinatorial optimization problems remain largely underexplored in this domain, despite their potential to identify critical nodes, hidden substructures, and flow patterns. The goal of this paper is to assess the applicability of graph combinatorial optimization problems to blockchain transaction networks, systematically review existing analytics approaches, discuss their respective strengths and limitations, and explore how combining different techniques can yield deeper insights into the structural and functional properties of blockchain ecosystems. Full article
Show Figures

Figure 1

32 pages, 2775 KB  
Review
AIoT at the Frontline of Climate Change Management: Enabling Resilient, Adaptive, and Sustainable Smart Cities
by Claudia Banciu and Adrian Florea
Climate 2026, 14(1), 19; https://doi.org/10.3390/cli14010019 - 15 Jan 2026
Viewed by 234
Abstract
The convergence of Artificial Intelligence (AI) and the Internet of Things (IoT), known as Artificial Intelligence of Things (AIoT), has emerged as a transformative paradigm for enabling intelligent, data-driven, and context-aware decision-making in urban environments to reduce the carbon footprint of mobility and [...] Read more.
The convergence of Artificial Intelligence (AI) and the Internet of Things (IoT), known as Artificial Intelligence of Things (AIoT), has emerged as a transformative paradigm for enabling intelligent, data-driven, and context-aware decision-making in urban environments to reduce the carbon footprint of mobility and industry. This review examines the conceptual foundations, and state-of-the-art developments of AIoT, with a particular emphasis on its applications in smart cities and its relevance to climate change management. AIoT integrates sensing, connectivity, and intelligent analytics to provide optimized solutions in transportation systems, energy management, waste collection, and environmental monitoring, directly influencing urban sustainability. Beyond urban efficiency, AIoT can play a critical role in addressing the global challenges and management of climate change by (a) precise measurements and autonomously remote monitoring; (b) real-time optimization in renewable energy distribution; and (c) developing prediction models for early warning of climate disasters. This paper performs a literature review and bibliometric analysis to identify the current landscape of AIoT research in smart city contexts. Over 1885 articles from Web of Sciences and over 1854 from Scopus databases, published between 1993 and January 2026, were analyzed. The results reveal a strong and accelerating growth in research activity, with publication output doubling in the most recent two years compared to 2023. Waste management and air quality monitoring have emerged as leading application domains, where AIoT-based optimization and predictive models demonstrate measurable improvements in operational efficiency and environmental impact. Altogether, these support faster and more effective decisions for reducing greenhouse gas emissions and ensuring the sustainable use of resources. The reviewed studies reveal rapid advancements in edge intelligence, federated learning, and secure data sharing through the integration of AIoT with blockchain technologies. However, significant challenges remain regarding scalability, interoperability, privacy, ethical governance, and the effective translation of research outcomes into policy and citizen-oriented tools such as climate applications, insurance models, and disaster alert systems. By synthesizing current research trends, this article highlights the potential of AIoT to support sustainable, resilient, and citizen-centric smart city ecosystems while identifying both critical gaps and promising directions for future investigations. Full article
Show Figures

Figure 1

29 pages, 78456 KB  
Article
End-to-End Teleoperated Driving Video Transmission Under 6G with AI and Blockchain
by Ignacio Benito Frontelo, Pablo Pérez, Nuria Oyaga and Marta Orduna
Sensors 2026, 26(2), 571; https://doi.org/10.3390/s26020571 - 14 Jan 2026
Viewed by 289
Abstract
Intelligent vehicle networks powered by machine learning, AI and blockchain are transforming various sectors beyond transportation. In this context, being able to remote drive a vehicle is key for enhancing autonomous driving systems. After deploying end-to-end teleoperated driving systems under 5G networks, the [...] Read more.
Intelligent vehicle networks powered by machine learning, AI and blockchain are transforming various sectors beyond transportation. In this context, being able to remote drive a vehicle is key for enhancing autonomous driving systems. After deploying end-to-end teleoperated driving systems under 5G networks, the need to address complex challenges in other critical areas arises. These challenges belong to different technologies that need to be integrated in this particular system: video transmission and visualization technologies, artificial intelligence techniques, and network optimization features, incorporating haptic devices and critical data security. This article explores how these technologies can enhance the teleoperated driving activity experiences already executed in real-life environments by analyzing the quality of the video which is transmitted over the network, exploring its correlation with the current state-of-the-art AI object detection algorithms, analyzing the extended reality and digital twin paradigms, obtaining the maximum possible performance of forthcoming 6G networks and proposing decentralized security schema for ensuring the privacy and safety of the end-users of teleoperated driving infrastructures. An integrated set of conclusions and recommendations will be given to outline the future teleoperated driving systems design in the forthcoming years. Full article
(This article belongs to the Special Issue Advances in Intelligent Vehicular Networks and Communications)
Show Figures

Figure 1

32 pages, 8110 KB  
Article
A Secure and Efficient Sharing Framework for Student Electronic Academic Records: Integrating Zero-Knowledge Proof and Proxy Re-Encryption
by Xin Li, Minsheng Tan and Wenlong Tian
Future Internet 2026, 18(1), 47; https://doi.org/10.3390/fi18010047 - 12 Jan 2026
Viewed by 194
Abstract
A sharing framework based on Zero-Knowledge Proof (ZKP) and Proxy Re-encryption (PRE) technologies offers a promising solution for sharing Student Electronic Academic Records (SEARs). As core credentials in the education sector, student records are characterized by strong identity binding, the need for long-term [...] Read more.
A sharing framework based on Zero-Knowledge Proof (ZKP) and Proxy Re-encryption (PRE) technologies offers a promising solution for sharing Student Electronic Academic Records (SEARs). As core credentials in the education sector, student records are characterized by strong identity binding, the need for long-term retention, frequent cross-institutional verification, and sensitive information. Compared with electronic health records and government archives, they face more complex security, privacy protection, and storage scalability challenges during sharing. These records not only contain sensitive data such as personal identity and academic performance but also serve as crucial evidence in key scenarios such as further education, employment, and professional title evaluation. Leakage or tampering could have irreversible impacts on a student’s career development. Furthermore, traditional blockchain technology faces storage capacity limitations when storing massive academic records, and existing general electronic record sharing solutions struggle to meet the high-frequency verification demands of educational authorities, universities, and employers for academic data. This study proposes a dedicated sharing framework for students’ electronic academic records, leveraging PRE technology and the distributed ledger characteristics of blockchain to ensure transparency and immutability during sharing. By integrating the InterPlanetary File System (IPFS) with Ethereum Smart Contract (SC), it addresses blockchain storage bottlenecks, enabling secure storage and efficient sharing of academic records. Relying on optimized ZKP technology, it supports verifying the authenticity and integrity of records without revealing sensitive content. Furthermore, the introduction of gate circuit merging, constant folding techniques, Field-Programmable Gate Array (FPGA) hardware acceleration, and the efficient Bulletproofs algorithm alleviates the high computational complexity of ZKP, significantly reducing proof generation time. The experimental results demonstrate that the framework, while ensuring strong privacy protection, can meet the cross-scenario sharing needs of student records and significantly improve sharing efficiency and security. Therefore, this method exhibits superior security and performance in privacy-preserving scenarios. This framework can be applied to scenarios such as cross-institutional academic certification, employer background checks, and long-term management of academic records by educational authorities, providing secure and efficient technical support for the sharing of electronic academic credentials in the digital education ecosystem. Full article
Show Figures

Graphical abstract

44 pages, 7079 KB  
Editorial
Mobile Network Softwarization: Technological Foundations and Impact on Improving Network Energy Efficiency
by Josip Lorincz, Amar Kukuruzović and Dinko Begušić
Sensors 2026, 26(2), 503; https://doi.org/10.3390/s26020503 - 12 Jan 2026
Viewed by 338
Abstract
This paper provides a comprehensive overview of mobile network softwarization, emphasizing the technological foundations and its transformative impact on the energy efficiency of modern and future mobile networks. In the paper, a detailed analysis of communication concepts known as software-defined networking (SDN) and [...] Read more.
This paper provides a comprehensive overview of mobile network softwarization, emphasizing the technological foundations and its transformative impact on the energy efficiency of modern and future mobile networks. In the paper, a detailed analysis of communication concepts known as software-defined networking (SDN) and network function virtualization (NFV) is presented, with a description of their architectural principles, operational mechanisms, and the associated interfaces and management frameworks that enable programmability, virtualization, and centralized control in modern mobile networks. The study further explores the role of cloud computing, virtualization platforms, distributed SDN controllers, and resource orchestration systems, outlining how they collectively support mobile network scalability, automation, and service agility. To assess the maturity and evolution of mobile network softwarization, the paper reviews contemporary research directions, including SDN security, machine-learning-assisted traffic management, dynamic service function chaining, virtual network function (VNF) placement and migration, blockchain-based trust mechanisms, and artificial intelligence (AI)-enabled self-optimization. The analysis also evaluates the relationship between mobile network softwarization and energy consumption, presenting the main SDN- and NFV-based techniques that contribute to reducing mobile network power usage, such as traffic-aware control, rule placement optimization, end-host-aware strategies, VNF consolidation, and dynamic resource scaling. Findings indicate that although fifth-generation (5G) mobile network standalone deployments capable of fully exploiting softwarization remain limited, softwarized SDN/NFV-based architectures provide measurable benefits in reducing network operational costs and improving energy efficiency, especially when combined with AI-driven automation. The paper concludes that mobile network softwarization represents an essential enabler for sustainable 5G and future beyond-5G systems, while highlighting the need for continued research into scalable automation, interoperable architectures, and energy-efficient softwarized network designs. Full article
(This article belongs to the Special Issue Energy-Efficient Communication Networks and Systems: 2nd Edition)
Show Figures

Figure 1

20 pages, 3516 KB  
Article
Adaptive Edge–Cloud Framework for Real-Time Smart Grid Optimization with IIoT Analytics
by Omar Alharbi
Electronics 2026, 15(2), 300; https://doi.org/10.3390/electronics15020300 - 9 Jan 2026
Viewed by 267
Abstract
The large-scale integration of Distributed Energy Resources (DERs) in smart grids creates challenges related to real-time optimization, system scalability, and operational security. This paper presents GridOpt, a hybrid edge–cloud framework designed to address these challenges through distributed intelligence and coordinated control. In GridOpt, [...] Read more.
The large-scale integration of Distributed Energy Resources (DERs) in smart grids creates challenges related to real-time optimization, system scalability, and operational security. This paper presents GridOpt, a hybrid edge–cloud framework designed to address these challenges through distributed intelligence and coordinated control. In GridOpt, edge nodes handle latency-sensitive tasks, while cloud resources support the processing of large-scale grid data. Security is addressed through the integration of homomorphic encryption and blockchain-based consensus, together with an interoperability layer that enables coordination among heterogeneous grid components. Simulation results show that GridOpt achieves an average latency of 76 ms and an energy consumption of 25 Joules under high-throughput conditions. The framework further maintains scalability beyond 10 requests per second with a resource utilization of 54% in dense deployment scenarios. Comparative analysis indicates that GridOpt outperforms ECCGrid, JOintCS, and EdgeApp across key performance metrics. Full article
Show Figures

Figure 1

28 pages, 4808 KB  
Article
Hybrid Renewable Systems Integrating Hydrogen, Battery Storage and Smart Market Platforms for Decarbonized Energy Futures
by Antun Barac, Mario Holik, Kristijan Ćurić and Marinko Stojkov
Energies 2026, 19(2), 331; https://doi.org/10.3390/en19020331 - 9 Jan 2026
Viewed by 461
Abstract
Rapid decarbonization and decentralization of power systems are driving the integration of renewable generation, energy storage and digital technologies into unified energy ecosystems. In this context, photovoltaic (PV) systems combined with battery and hydrogen storage and blockchain-based platforms represent a promising pathway toward [...] Read more.
Rapid decarbonization and decentralization of power systems are driving the integration of renewable generation, energy storage and digital technologies into unified energy ecosystems. In this context, photovoltaic (PV) systems combined with battery and hydrogen storage and blockchain-based platforms represent a promising pathway toward sustainable and transparent energy management. This study evaluates the techno-economic performance and operational feasibility of integrated PV systems combining battery and hydrogen storage with a blockchain-based peer-to-peer (P2P) energy trading platform. A simulation framework was developed for two representative consumer profiles: a scientific–educational institution and a residential household. Technical, economic and environmental indicators were assessed for PV systems integrated with battery and hydrogen storage. The results indicate substantial reductions in grid electricity demand and CO2 emissions for both profiles, with hydrogen integration providing additional peak-load stabilization under current cost constraints. Blockchain functionality was validated through smart contracts and a decentralized application, confirming the feasibility of P2P energy exchange without central intermediaries. Grid electricity consumption is reduced by up to approximately 45–50% for residential users and 35–40% for institutional buildings, accompanied by CO2 emission reductions of up to 70% and 38%, respectively, while hydrogen integration enables significant peak-load reduction. Overall, the results demonstrate the synergistic potential of integrating PV generation, battery and hydrogen storage and blockchain-based trading to enhance energy independence, reduce emissions and improve system resilience, providing a comprehensive basis for future pilot implementations and market optimization strategies. Full article
(This article belongs to the Special Issue Energy Management and Life Cycle Assessment for Sustainable Energy)
Show Figures

Figure 1

Back to TopTop