Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (25)

Search Parameters:
Keywords = BiVO4/BiFeO3

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2921 KB  
Article
Enhanced Photoelectrochemical Performance of BiVO4 Photoanodes Co-Modified with Borate and NiFeOx
by Siqiang Cheng, Yun Cheng, Taoyun Zhou, Shilin Li, Dong Xie and Xinyu Li
Micromachines 2025, 16(8), 866; https://doi.org/10.3390/mi16080866 - 27 Jul 2025
Cited by 1 | Viewed by 1327
Abstract
Despite significant progress in photoelectrochemical (PEC) water splitting, high fabrication costs and limited efficiency of photoanodes hinder practical applications. Bismuth vanadate (BiVO4), with its low cost, non-toxicity, and suitable band structure, is a promising photoanode material but suffers from poor charge [...] Read more.
Despite significant progress in photoelectrochemical (PEC) water splitting, high fabrication costs and limited efficiency of photoanodes hinder practical applications. Bismuth vanadate (BiVO4), with its low cost, non-toxicity, and suitable band structure, is a promising photoanode material but suffers from poor charge transport, sluggish surface kinetics, and photocorrosion. In this study, porous monoclinic BiVO4 films are fabricated via a simplified successive ionic layer adsorption and reaction (SILAR) method, followed by borate treatment and PEC deposition of NiFeOx. The resulting B/BiVO4/NiFeOx photoanode exhibits a significantly enhanced photocurrent density of 2.45 mA cm−2 at 1.23 V vs. RHE—5.3 times higher than pristine BiVO4. It also achieves an ABPE of 0.77% and a charge transfer efficiency of 79.5%. These results demonstrate that dual surface modification via borate and NiFeOx is a cost-effective strategy to improve BiVO4-based PEC water splitting performance. This work provides a promising pathway for the scalable development of efficient and economically viable photoanodes for solar hydrogen production. Full article
(This article belongs to the Special Issue Advancing Energy Storage Techniques: Chemistry, Materials and Devices)
Show Figures

Figure 1

32 pages, 4701 KB  
Review
Machine-Learning-Guided Design of Nanostructured Metal Oxide Photoanodes for Photoelectrochemical Water Splitting: From Material Discovery to Performance Optimization
by Xiongwei Liang, Shaopeng Yu, Bo Meng, Yongfu Ju, Shuai Wang and Yingning Wang
Nanomaterials 2025, 15(12), 948; https://doi.org/10.3390/nano15120948 - 18 Jun 2025
Cited by 5 | Viewed by 2253
Abstract
The rational design of photoanode materials is pivotal for advancing photoelectrochemical (PEC) water splitting toward sustainable hydrogen production. This review highlights recent progress in the machine learning (ML)-assisted development of nanostructured metal oxide photoanodes, focusing on bridging materials discovery and device-level performance optimization. [...] Read more.
The rational design of photoanode materials is pivotal for advancing photoelectrochemical (PEC) water splitting toward sustainable hydrogen production. This review highlights recent progress in the machine learning (ML)-assisted development of nanostructured metal oxide photoanodes, focusing on bridging materials discovery and device-level performance optimization. We first delineate the fundamental physicochemical criteria for efficient photoanodes, including suitable band alignment, visible-light absorption, charge carrier mobility, and electrochemical stability. Conventional strategies such as nanostructuring, elemental doping, and surface/interface engineering are critically evaluated. We then discuss the integration of ML techniques—ranging from high-throughput density functional theory (DFT)-based screening to experimental data-driven modeling—for accelerating the identification of promising oxides (e.g., BiVO4, Fe2O3, WO3) and optimizing key parameters such as dopant selection, morphology, and catalyst interfaces. Particular attention is given to surrogate modeling, Bayesian optimization, convolutional neural networks, and explainable AI approaches that enable closed-loop synthesis-experiment-ML frameworks. ML-assisted performance prediction and tandem device design are also addressed. Finally, current challenges in data standardization, model generalizability, and experimental validation are outlined, and future perspectives are proposed for integrating ML with automated platforms and physics-informed modeling to facilitate scalable PEC material development for clean energy applications. Full article
(This article belongs to the Special Issue Nanomaterials for Novel Photoelectrochemical Devices)
Show Figures

Figure 1

28 pages, 6012 KB  
Review
Semiconductor-Based Photoelectrocatalysts in Water Splitting: From the Basics to Mechanistic Insights—A Brief Review
by W. J. Pech-Rodríguez, Nihat Ege Şahin, G. G. Suarez-Velázquez and P. C. Meléndez-González
Materials 2025, 18(9), 1952; https://doi.org/10.3390/ma18091952 - 25 Apr 2025
Cited by 2 | Viewed by 3069
Abstract
Hydrogen and oxygen serve as energy carriers that can ease the transition of energy due to their high energy densities. Nonetheless, their production processes entail the development of efficient and low-cost storage and conversion technologies. In this regard, photoelectrocatalysts are materials based on [...] Read more.
Hydrogen and oxygen serve as energy carriers that can ease the transition of energy due to their high energy densities. Nonetheless, their production processes entail the development of efficient and low-cost storage and conversion technologies. In this regard, photoelectrocatalysts are materials based on the photoelectronic effect where electrons and holes interact with H2O, producing H2 and O2, and in some cases, this is achieved with acceptable efficiency. Although there are several reviews on this topic, most of them focus on traditional semiconductors, such as TiO2 and ZnO, neglecting others, such as those based on non-noble metals and organic ones. Herein, semiconductors like CdSe, NiWO4, Fe2O3, and others have been investigated and compared in terms of photocurrent density, band gap, and charge transfer resistance. In addition, this brief review aims to discuss the mechanisms of overall water-splitting reactions from a photonic point of view and subsequently discusses the engineering of material synthesis. Advanced composites are also addressed, such as WO3/BiVO4/Cu2O and CN-FeNiOOH-CoOOH, which demonstrate high efficiency by delivering photocurrent densities of 5 mAcm−2 and 3.5 mA cm−2 at 1.23 vs. RHE, respectively. Finally, the authors offer their perspectives and list the main challenges based on their experience in developing semiconductor-based materials applied in several fields. In this manner, this brief review provides the main advances in these topics, used as references for new directions in designing active materials for photoelectrocatalytic water splitting. Full article
Show Figures

Figure 1

15 pages, 6548 KB  
Article
Er-Doped BiVO4/BiFeO3 Nanocomposites Synthesized via Sonochemical Process and Their Piezo-Photocatalytic Application
by Thanaphon Kansaard, Maneerat Songpanit, Russameeruk Noonuruk, Chakkaphan Wattanawikkam, Wanichaya Mekprasart, Kanokthip Boonyarattanakalin, Chalicheemalapalli Kulala Jayasankar and Wisanu Pecharapa
Nanomaterials 2024, 14(11), 954; https://doi.org/10.3390/nano14110954 - 29 May 2024
Cited by 5 | Viewed by 1658
Abstract
In this work, Er-doped BiVO4/BiFeO3 composites are prepared using the sonochemical process with a difference of rare earth loading compositions. The crystallinity and chemical and morphological structure of as-synthesized samples were investigated via X-ray diffraction, Raman scattering, and electron microscopy, [...] Read more.
In this work, Er-doped BiVO4/BiFeO3 composites are prepared using the sonochemical process with a difference of rare earth loading compositions. The crystallinity and chemical and morphological structure of as-synthesized samples were investigated via X-ray diffraction, Raman scattering, and electron microscopy, respectively. The diffuse reflectance technique was used to extract the optical property and calculate the optical band gap of the composite sample. The piezo-photocatalytic performance was evaluated according to the decomposition of a Rhodamine B organic compound. The decomposition of the organic compound was achieved under ultrasonic bath irradiation combined with light exposure. The Er-doped BiVO4/BiFeO3 composite heterojunction material exhibited significant enhancement of the piezo-photocatalytic activity under both ultrasonic and light irradiation due to the improvement in charge generation and separation. The result indicates that Er dopant strongly affects the phase transformation, change in morphology, and alternation in optical band gap of the BiVO4 matrix. The incorporation of BiFeO3 in the composite form with BiVO4 doped with 1%Er can improve the photocatalytic performance of BiVO4 via piezo-induced charge separation and charge recombination retardment. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Figure 1

16 pages, 3084 KB  
Article
Enhancing the Photocatalytic Performance of BiVO4 for Micropollutant Degradation by Fe and Ag Photomodification
by Marin Popović, Tayebeh Sharifi, Marijana Kraljić Roković, Boštjan Genorio, Boštjan Žener, Igor Peternel, Urška Lavrenčič Štangar, Hrvoje Kušić, Ana Lončarić Božić and Marin Kovačić
Processes 2023, 11(9), 2803; https://doi.org/10.3390/pr11092803 - 21 Sep 2023
Cited by 3 | Viewed by 2452
Abstract
Wider application of BiVO4 (BVO) for photocatalytic water treatment is primarily limited by its modest photocatalytic effectiveness, despite its appropriately narrow band gap for low-cost, sunlight-facilitated water treatment processes. In this study, we have photomodified an isotype BVO, consisting of a tetragonal [...] Read more.
Wider application of BiVO4 (BVO) for photocatalytic water treatment is primarily limited by its modest photocatalytic effectiveness, despite its appropriately narrow band gap for low-cost, sunlight-facilitated water treatment processes. In this study, we have photomodified an isotype BVO, consisting of a tetragonal zircon and monoclinic scheelite phase, with Fe (Fe@BVO) and Ag (Ag@BVO) ionic precursors under UV illumination in an aqueous ethanol solution in order to assess their effect on the opto-electronic properties and effectiveness for the removal of ciprofloxacin (CIP). Fe@BVO failed to demonstrate enhanced effectiveness over pristine BVO, whereas all Ag@BVO achieved improved CIP degradation, especially 1% Ag@BVO. At pH 4 and 6, 1% Ag@BVO demonstrated nearly 24% greater removal of CIP than BVO alone. Photomodification with Fe created surface oxygen vacancies, as confirmed by XPS and Mott–Schottky analysis, which facilitated improved electron mobility, although no distinct Fe-containing phase nor Fe-doping was detected. On the other hand, the introduction of mid-band gap states by oxygen vacancies decreased the reducing power of the photogenerated electrons as the flat band potentials were shifted to more positive values, thus likely negatively impacting superoxide formation. In contrast, Ag-photomodification (Ag@BVO) resulted in the formation of Ag2O/AgO and Ag nanoparticles on the surface of BVO, which, under illumination, generated hot electrons by surface plasmon resonance and enhanced the mobility of photogenerated electrons. Our research underscores the pivotal role of photogenerated electrons for CIP degradation by BiVO4-based materials and emphasizes the importance of appropriate band-edge engineering for optimizing contaminant degradation. Full article
Show Figures

Figure 1

13 pages, 4514 KB  
Article
Two-in-One Electrons Trapped Fe-BiOCl-Vo Nanosheets for Promoting Photocatalytic-Fenton Degradation Performances of Phenol
by Jinlin Long, Suizhao Zhang, Donghao Xia, Qi Wan, Yu Wan, Meiqiu Nong and Zhaohui Wu
Catalysts 2023, 13(6), 947; https://doi.org/10.3390/catal13060947 - 29 May 2023
Cited by 3 | Viewed by 2209
Abstract
Fe-BiOCl-Vo nanosheets with electron-capture centers of doped Fe and surface oxygen vacancies (Vo) for enhanced photocatalytic-Fenton performances were conducted. Compared with pristine BiOCl nanosheets, the band gap of the resulting Fe-BiOCl-Vo nanosheets was narrowed, and defective bands were introduced [...] Read more.
Fe-BiOCl-Vo nanosheets with electron-capture centers of doped Fe and surface oxygen vacancies (Vo) for enhanced photocatalytic-Fenton performances were conducted. Compared with pristine BiOCl nanosheets, the band gap of the resulting Fe-BiOCl-Vo nanosheets was narrowed, and defective bands were introduced due to the Fe doping and Vo. Furthermore, the integrated electron trapping effect of Vo and doped Fe can efficiently drive charge transfer and separation. As a result, the photocatalytic-Fenton performances of phenol over Fe-BiOCl-Vo nanosheets were enhanced. The photocatalytic-Fenton performances of Fe-BiOCl-Vo nanosheets were enhanced two-fold and four-fold, respectively, as compared with the photocatalytic performances of Fe-BiOCl-Vo and pristine BiOCl nanosheets. During the photocatalytic-Fenton process, the multiple reactive species referring holes (h+), superoxide radicals (●O2), and hydroxyl radicals (●OH) induced by the efficiently separated charge carriers and Fenton reaction played synergetic roles in phenol degradation and mineralization. This work provides a sophisticated structure design of catalysts for efficient charge transfer and separation, promoting photocatalytic-Fenton performance. Full article
Show Figures

Figure 1

6 pages, 1336 KB  
Proceeding Paper
BiVO4-Based Magnetic Heterostructures as Photocatalysts for Degradation of Antibiotics in Water
by Ana C. Estrada, Filipa Pinto, Cláudia B. Lopes and Tito Trindade
Mater. Proc. 2023, 14(1), 49; https://doi.org/10.3390/IOCN2023-14532 - 5 May 2023
Cited by 3 | Viewed by 1286
Abstract
Bismuth vanadate (BiVO4) has been investigated as a photocatalyst of great interest due to its ability to harvest photons efficiently in the visible spectral region. In addition, powdered BiVO4 shows high photochemical stability, good dispersibility, and resistance to corrosion in [...] Read more.
Bismuth vanadate (BiVO4) has been investigated as a photocatalyst of great interest due to its ability to harvest photons efficiently in the visible spectral region. In addition, powdered BiVO4 shows high photochemical stability, good dispersibility, and resistance to corrosion in oxidative conditions. Herein, we report the synthesis of monoclinic or tetragonal BiVO4 particles using different methods, as well as the synthesis of hybrids materials through the combination of cobalt ferrite (CoFe2O4) and BiVO4, and their application in the photodegradation of aqueous solutions of sulfamethoxazole (SMX) under simulated solar radiation. We demonstrate that high-crystallinity single-phase monoclinic BiVO4 was synthesized fast and efficiently using a solid-state method and, in combination with magnetic CoFe2O4 particles, gives rise to a hybrid material that can be easily separated from the reaction medium, by applying an external magnetic field, without the need for further downstream treatments. Full article
(This article belongs to the Proceedings of The 4th International Online Conference on Nanomaterials)
Show Figures

Figure 1

10 pages, 3635 KB  
Article
Increasing Electrical Resistivity of P-Type BiFeO3 Ceramics by Hydrogen Peroxide-Assisted Hydrothermal Synthesis
by Cristian Casut, Raul Bucur, Daniel Ursu, Iosif Malaescu and Marinela Miclau
Materials 2023, 16(8), 3130; https://doi.org/10.3390/ma16083130 - 16 Apr 2023
Viewed by 2091
Abstract
Bismuth ferrite (BiFeO3, BFO) is still widely investigated both because of the great diversity of its possible applications and from the perspective of intrinsic defect engineering in the perovskite structure. Defect control in BiFeO3 semiconductors could provide a key technology [...] Read more.
Bismuth ferrite (BiFeO3, BFO) is still widely investigated both because of the great diversity of its possible applications and from the perspective of intrinsic defect engineering in the perovskite structure. Defect control in BiFeO3 semiconductors could provide a key technology for overcoming undesirable limitations, namely, a strong leakage current, which is attributed to the presence of oxygen vacancies (VO) and Bi vacancies (VBi). Our study proposes a hydrothermal method for the reduction of the concentration of VBi during the ceramic synthesis of BiFeO3.Using hydrogen peroxide (H2O2) as part of the medium, p-type BiFeO3 ceramics characterized by their low conductivity were obtained. Hydrogen peroxide acted as the electron donor in the perovskite structure, controlling VBi in the BiFeO3 semiconductor, which caused the dielectric constant and loss to decrease along with the electrical resistivity. The reduction of Bi vacancies highlighted by a FT-IR and Mott—Schottky analysis has an expected contribution to the dielectric characteristic. A decrease in the dielectric constant (with approximately 40%) and loss (3 times) and an increase of the electrical resistivity (by 3 times) was achieved by the hydrogen peroxide-assisted hydrothermal synthesized BFO ceramics, as compared with the hydrothermal synthesized BFOs. Full article
(This article belongs to the Special Issue Elaboration of New Materials Using Hydrothermal Methods)
Show Figures

Figure 1

12 pages, 7864 KB  
Article
PbS Quantum Dots-Decorated BiVO4 Photoanodes for Highly Efficient Photoelectrochemical Hydrogen Production
by Joo-Won Seo, Seung-Beom Ha, In-Cheul Song and Jae-Yup Kim
Nanomaterials 2023, 13(5), 799; https://doi.org/10.3390/nano13050799 - 22 Feb 2023
Cited by 11 | Viewed by 3092
Abstract
While metal oxides such as TiO2, Fe2O3, WO3, and BiVO4 have been previously studied for their potential as photoanodes in photoelectrochemical (PEC) hydrogen production, their relatively wide band-gap limits their photocurrent, making them unsuitable [...] Read more.
While metal oxides such as TiO2, Fe2O3, WO3, and BiVO4 have been previously studied for their potential as photoanodes in photoelectrochemical (PEC) hydrogen production, their relatively wide band-gap limits their photocurrent, making them unsuitable for the efficient utilization of incident visible light. To overcome this limitation, we propose a new approach for highly efficient PEC hydrogen production based on a novel photoanode composed of BiVO4/PbS quantum dots (QDs). Crystallized monoclinic BiVO4 films were prepared via a typical electrodeposition process, followed by the deposition of PbS QDs using a successive ionic layer adsorption and reaction (SILAR) method to form a p-n heterojunction. This is the first time that narrow band-gap QDs were applied to sensitize a BiVO4 photoelectrode. The PbS QDs were uniformly coated on the surface of nanoporous BiVO4, and their optical band-gap was reduced by increasing the number of SILAR cycles. However, this did not affect the crystal structure and optical properties of the BiVO4. By decorating the surface of BiVO4 with PbS QDs, the photocurrent was increased from 2.92 to 4.88 mA/cm2 (at 1.23 VRHE) for PEC hydrogen production, resulting from the enhanced light-harvesting capability arising from the narrow band-gap of the PbS QDs. Moreover, the introduction of a ZnS overlayer on the BiVO4/PbS QDs further improved the photocurrent to 5.19 mA/cm2, attributed to the reduction in interfacial charge recombination. Full article
Show Figures

Figure 1

14 pages, 31412 KB  
Communication
Carbon-Protected BiVO4—Cu2O Thin Film Tandem Cell for Solar Water Splitting Applications
by Sitaaraman Srinivasa Rao Raghavan, Nirmala Grace Andrews and Raja Sellappan
Catalysts 2023, 13(1), 144; https://doi.org/10.3390/catal13010144 - 7 Jan 2023
Cited by 11 | Viewed by 3310
Abstract
Carbon-protected BiVO4 photoanode and Cu2O photocathode tandem photoelectrochemical (PEC) system has been explored to reduce surface recombination and enhance the stability of the photoelectrodes. In addition to the carbon layer, the electrodeposited FeOOH nanolayer and drop-casted MoS2 co-catalyst layer [...] Read more.
Carbon-protected BiVO4 photoanode and Cu2O photocathode tandem photoelectrochemical (PEC) system has been explored to reduce surface recombination and enhance the stability of the photoelectrodes. In addition to the carbon layer, the electrodeposited FeOOH nanolayer and drop-casted MoS2 co-catalyst layer on the photoanode and photocathode, respectively improve the reaction kinetics. The optimized photoanode (Mo-BiVO4/C/FeOOH) and photocathode (Cu2O/C/MoS2) produces current densities of ~1.22 mA cm−2 at 1.23 V vs. RHE and ~−1.48 mA cm−2 at 0 V vs. RHE, respectively. The obtained photocurrent is higher than bare photoelectrodes without a carbon layer. Finally, a tandem cell has been constructed, and an unassisted current density of ~0.107 mA cm−2 is obtained for a carbon-protected BiVO4–Cu2O tandem PEC cell at zero bias. The improved stability and enhanced photocurrent of the carbon protective layer are attributed to its better charge transfer resistance and minimized surface defects. Carbon protective layer can be a viable option to improve the stability of photoelectrodes in aqueous media. Full article
Show Figures

Figure 1

15 pages, 3210 KB  
Article
PEC/Colorimetric Dual-Mode Lab-on-Paper Device via BiVO4/FeOOH Nanocomposite In Situ Modification on Paper Fibers for Sensitive CEA Detection
by Xu Li, Jiali Huang, Jiayu Ding, Mingzhen Xiu, Kang Huang, Kang Cui, Jing Zhang, Shiji Hao, Yan Zhang, Jinghua Yu and Yizhong Huang
Biosensors 2023, 13(1), 103; https://doi.org/10.3390/bios13010103 - 6 Jan 2023
Cited by 9 | Viewed by 3767
Abstract
A dual-mode lab-on-paper device based on BiVO4/FeOOH nanocomposites as an efficient generating photoelectrochemical (PEC)/colorimetric signal reporter has been successfully constructed by integration of the lab-on-paper sensing platform and PEC/colorimetric detection technologies for sensitive detection of carcinoembryonic antigen (CEA). Concretely, the BiVO [...] Read more.
A dual-mode lab-on-paper device based on BiVO4/FeOOH nanocomposites as an efficient generating photoelectrochemical (PEC)/colorimetric signal reporter has been successfully constructed by integration of the lab-on-paper sensing platform and PEC/colorimetric detection technologies for sensitive detection of carcinoembryonic antigen (CEA). Concretely, the BiVO4/FeOOH nanocomposites were in situ synthesized onto the paper-working electrode (PWE) through hydrothermal synthesis of the BiVO4 layer on cellulose fibers (paper-based BiVO4) which were initially modified by Au nanoparticles for improving the conductivity of three dimensional PWE, and then the photo-electrodeposition of FeOOH onto the paper-based BiVO4 to construct the paper-based BiVO4/FeOOH for the portable dual-mode lab-on-paper device. The obtained nanocomposites with an FeOOH needle-like structure deposited on the BiVO4 layer exhibits enhanced PEC response activity due to its effective separation of the electron–hole pair which could further accelerate the PEC conversion efficiency during the sensing process. With the introduction of CEA targets onto the surface of nanocomposite-modified PWE assisted by the interaction with the CEA antibody from a specific recognition property, a signal-off PEC signal state with a remarkable photocurrent response decreasing trend can be achieved, realizing the quantitative detection of CEA with the PEC signal readout mode. By means of a smart origami paper folding, the colorimetric signal readout is achieved by catalyzing 3,3′,5,5′-tetramethylbenzidine (TMB) to generate blue oxidized TMB in the presence of H2O2 due to the satisfied enzyme-like catalytic activity of the needle-like structure, FeOOH, thereby achieving the dual-mode signal readout system for the proposed lab-on-paper device. Under the optimal conditions, the PEC and colorimetric signals measurement were effectively carried out, and the corresponding linear ranges were 0.001–200 ng·mL−1 and 0.5–100 ng·mL−1 separately, with the limit of detection of 0.0008 and 0.013 ng·mL−1 for each dual-mode. The prepared lab-on-paper device also presented a successful application in serum samples for the detection of CEA, providing a potential pathway for the sensitive detection of target biomarkers in clinical application. Full article
(This article belongs to the Special Issue Paper-Based Biosensors)
Show Figures

Graphical abstract

14 pages, 5947 KB  
Article
Structural and Electrochemical Properties of Li2O-V2O5-B2O3-Bi2O3 Glass and Glass-Ceramic Cathodes for Lithium-Ion Batteries
by Yuan Chen, Yufei Zhao, Feihong Liu, Mengdie Ding, Juan Wang, Jiuxin Jiang, Pascal Boulet and Marie-Christine Record
Molecules 2023, 28(1), 229; https://doi.org/10.3390/molecules28010229 - 27 Dec 2022
Cited by 9 | Viewed by 3151
Abstract
In this study, 20Li2O-60V2O5-(20 − x)B2O3-xBi2O3 (x = 5, 7.5, 10 mol%) glass materials have been prepared by the melt-quenching method, and the structure and morphology [...] Read more.
In this study, 20Li2O-60V2O5-(20 − x)B2O3-xBi2O3 (x = 5, 7.5, 10 mol%) glass materials have been prepared by the melt-quenching method, and the structure and morphology of the glass materials have been characterized by XRD, FTIR, Raman, and FE-SEM. The results show that the disordered network of the glass is mainly composed of structural motifs, such as VO4, BO3, BiO3, and BiO6. The electrochemical properties of the glass cathode material have been investigated by the galvanostatic charge-discharge method and cyclic voltammetry, and the results show that with the increases of Bi2O3 molar content, the amount of the VO4 group increases, and the network structure of the glass becomes more stable. To further enhance the electrochemical properties, glass-ceramic materials have been obtained by heat treatment, and the effect of the heat treatment temperature on the structure and electrochemical properties of the glass has been studied. The results show that the initial discharge capacity of the glass-ceramic cathode obtained by heat treatment at 280 °C at a current density of 50 mA·g−1 is 333.4 mAh·g−1. In addition, after several cycles of charging and discharging at a high current density of 1000 mA·g−1 and then 10 cycles at 50 mA·g−1, its discharge capacity remains at approximately 300 mAh·g−1 with a capacity retention rate of approximately 90.0%. The results indicate that a proper heat treatment temperature is crucial to improving the electrochemical properties of glass materials. This study provides an approach for the development of new glass cathode materials for lithium-ion batteries. Full article
(This article belongs to the Special Issue Feature Papers in Materials Chemistry)
Show Figures

Figure 1

16 pages, 5795 KB  
Article
Surface and Electrical Characterization of Bilayers Based on BiFeO3 and VO2
by Jhonatan Martínez, Edgar Mosquera-Vargas, Víctor Fuenzalida, Marcos Flores, Gilberto Bolaños and Jesús Diosa
Nanomaterials 2022, 12(15), 2578; https://doi.org/10.3390/nano12152578 - 27 Jul 2022
Cited by 3 | Viewed by 2140
Abstract
Thin films of BiFeO3, VO2, and BiFeO3/VO2 were grown on SrTiO3(100) and Al2O3(0001) monocrystalline substrates using radio frequency and direct current sputtering techniques. To observe the effect of the coupling [...] Read more.
Thin films of BiFeO3, VO2, and BiFeO3/VO2 were grown on SrTiO3(100) and Al2O3(0001) monocrystalline substrates using radio frequency and direct current sputtering techniques. To observe the effect of the coupling between these materials, the surface of the films was characterized by profilometry, atomic force microscopy, and X-ray photoelectron spectroscopy. The heterostructures, monolayers, and bilayers based on BiFeO3 and VO2 grew with good adhesion and without delamination or signs of incompatibility between the layers. A good granular arrangement and RMS roughness between 1 and 5 nm for the individual layers (VO2 and BiFeO3) and between 6 and 18 nm for the bilayers (BiFeO3/VO2) were observed. Their grain size is between 20 nm and 26 nm for the individual layers and between 63 nm and 67 nm for the bilayers. X-ray photoelectron spectroscopy measurements show a higher proportion of V4+, Bi3+, and Fe3+ in the films obtained. The homogeneous ordering, low roughness, and oxidation states on the obtained surface show a good coupling in these films. The I-V curves show ohmic behavior at room temperature and change with increasing temperature. The effect of coupling these materials in a thin film shows the appearance of hysteresis cycles, I-V and R-T, which is typical of materials with high potential in applications, such as resistive memories and solar cells. Full article
(This article belongs to the Section Synthesis, Interfaces and Nanostructures)
Show Figures

Figure 1

20 pages, 6748 KB  
Article
Vanadium(V) Complexes with Siderophore Vitamin E-Hydroxylamino-Triazine Ligands
by Maria Loizou, Ioanna Hadjiadamou, Chryssoula Drouza, Anastasios D. Keramidas, Yannis V. Simos and Dimitrios Peschos
Inorganics 2021, 9(10), 73; https://doi.org/10.3390/inorganics9100073 - 29 Sep 2021
Cited by 5 | Viewed by 3631
Abstract
Novel vitamin E chelate siderophore derivatives and their VV and FeIII complexes have been synthesised and the chemical and biological properties have been evaluated. In particular, the α- and δ-tocopherol derivatives with bis-methyldroxylamino triazine (α-tocTHMA) and (δ-tocDPA) as well their V [...] Read more.
Novel vitamin E chelate siderophore derivatives and their VV and FeIII complexes have been synthesised and the chemical and biological properties have been evaluated. In particular, the α- and δ-tocopherol derivatives with bis-methyldroxylamino triazine (α-tocTHMA) and (δ-tocDPA) as well their VV complexes, [V2VO3(α-tocTHMA)2] and [V2IVO3(δ-tocTHMA)2], have been synthesised and characterised by infrared (IR), nuclear magnetic resonance (NMR), electron paramagnetic resonance (EPR) and ultra violet-visible (UV-Vis) spectroscopies. The dimeric vanadium complexes in solution are in equilibrium with their respefrctive monomers, H2O + [V2VO2(μ-O)]4+ = 2 [VVO(OH)]2+. The two amphiphilic vanadium complexes exhibit enhanced hydrolytic stability. EPR shows that the complexes in lipophilic matrix are mild radical initiators. Evaluation of their biological activity shows that the compounds do not exhibit any significant cytotoxicity to cells. Full article
Show Figures

Graphical abstract

37 pages, 7764 KB  
Review
Oxidation of Organic Compounds with Peroxides Catalyzed by Polynuclear Metal Compounds
by Georgiy B. Shul’pin and Lidia S. Shul’pina
Catalysts 2021, 11(2), 186; https://doi.org/10.3390/catal11020186 - 31 Jan 2021
Cited by 26 | Viewed by 5859
Abstract
The review describes articles that provide data on the synthesis and study of the properties of catalysts for the oxidation of alkanes, olefins, and alcohols. These catalysts are polynuclear complexes of iron, copper, osmium, nickel, manganese, cobalt, vanadium. Such complexes for example are: [...] Read more.
The review describes articles that provide data on the synthesis and study of the properties of catalysts for the oxidation of alkanes, olefins, and alcohols. These catalysts are polynuclear complexes of iron, copper, osmium, nickel, manganese, cobalt, vanadium. Such complexes for example are: [Fe2(HPTB)(m-OH)(NO3)2](NO3)2·CH3OH·2H2O, where HPTB-¼N,N,N0,N0-tetrakis(2-benzimidazolylmethyl)-2-hydroxo-1,3-diaminopropane; complex [(PhSiO1,5)6]2[CuO]4[NaO0.5]4[dppmO2]2, where dppm-1,1-bis(diphenylphosphino)methane; (2,3-η-1,4-diphenylbut-2-en-1,4-dione)undecacarbonyl triangulotriosmium; phenylsilsesquioxane [(PhSiO1.5)10(CoO)5(NaOH)]; bi- and tri-nuclear oxidovanadium(V) complexes [{VO(OEt)(EtOH)}2(L2)] and [{VO(OMe)(H2O)}3(L3)]·2H2O (L2 = bis(2-hydroxybenzylidene)terephthalohydrazide and L3 = tris(2-hydroxybenzylidene)benzene-1,3,5-tricarbohydrazide); [Mn2L2O3][PF6]2 (L = 1,4,7-trimethyl-1,4,7-triazacyclononane). For comparison, articles are introduced describing catalysts for the oxidation of alkanes and alcohols with peroxides, which are simple metal salts or mononuclear metal complexes. In many cases, polynuclear complexes exhibit higher activity compared to mononuclear complexes and exhibit increased regioselectivity, for example, in the oxidation of linear alkanes. The review contains a description of some of the mechanisms of catalytic reactions. Additionally presented are articles comparing the rates of oxidation of solvents and substrates under oxidizing conditions for various catalyst structures, which allows researchers to conclude about the nature of the oxidizing species. This review is focused on recent works, as well as review articles and own original studies of the authors. Full article
Show Figures

Graphical abstract

Back to TopTop