BiVO4-Based Magnetic Heterostructures as Photocatalysts for Degradation of Antibiotics in Water †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Synthesis of Nanomaterials
2.2.1. Synthesis of BiVO4 Nanoparticles
- Solid-state synthesis
- Synthesis under reflux
2.2.2. Synthesis of Nanoparticles of CoFe2O4
2.2.3. Synthesis of BiV-CoFe Hybrid Materials
2.3. Photocatalytic Studies
3. Results
3.1. Characterization of Materials
3.2. Photocatalytic Studies
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- UNICEF; WHO. Progress on Sanitation and Drinking Water. 2015 Update and MDG Assessment; World Health Organization: Geneva, Switzerland, 2015. [Google Scholar]
- Lopes, J.L.; Martins, M.J.; Nogueira1, H.I.S.; Estrada, A.C.; Trindade, T. Carbon-based heterogeneous photocatalysts for water cleaning technologies: A review. Environ. Chem. Lett. 2021, 19, 643–668. [Google Scholar] [CrossRef]
- Gaya, U.I. Heterogeneous Photocatalysis Using Inorganic Semiconductor Solids, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Kudo, A.; Miseki, Y. Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 2009, 38, 253–278. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Zhang, X.; Li, W.; Yu, Y.; Liu, M.; Wang, L.; Li, C.; Zhang, X.; Liu, X.; Lin, X. Leaf-like BiVO4 nanostructure decorated by nitrogen-doped carbon quantum dots: Binary heterostructure photocatalyst for enhanced photocatalytic performance. Mater. Res. Bull. 2020, 122, 110640. [Google Scholar] [CrossRef]
- Liu, S.Q. Magnetic semiconductor nano-photocatalysts for the degradation of organic pollutants. Environ. Chem. Lett. 2012, 10, 209–216. [Google Scholar] [CrossRef]
- Tahar, L.B.; Oueslati, M.H.; Abualreish, M.J.A. Synthesis of magnetite derivatives nanoparticles and their application for the removal of chromium (VI) from aqueous solutions. J. Colloid Interface Sci. 2018, 512, 115–126. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Wu, Z.; Yu, T.; Jiang, C.; Kim, W.S. Recent progress on magnetic iron oxide nanoparticles: Synthesis, surface functional strategies and biomedical applications. Sci. Technol. Adv. Mater. 2015, 16, 23501. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.-S.; Lin, L.-Y.; Chen, Y.-S. Facile solid-state synthesis for producing molybdenum and tungsten co-doped monoclinic BiVO4 as the photocatalyst for photoelectrochemical water oxidation. Int. J. Hydrog. Energy 2019, 44, 7905–7914. [Google Scholar] [CrossRef]
- Oliveira-Silva, R.; Da Costa, J.P.; Vitorino, R.; Daniel-Da-Silva, A.L. Magnetic chelating nanoprobes for enrichment and selective recovery of metalloproteases from human saliva. J. Mater. Chem. B 2015, 3, 238–249. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Shang, H.; Shi, F.; Chao, C.; Zhang, X.; Zhang, B. Preparation and efficient visible light-induced photocatalytic activity of m-BiVO4 with different morphologies. J. Phys. Chem. Solids 2015, 85, 44–50. [Google Scholar] [CrossRef]
- Ke, D.; Peng, T.; Ma, L.; Cai, P.; Dai, K. Effects of hydrothermal temperature on the microstructures of BiVO4 and its photocatalytic O2 evolution activity under visible light. Inorg. Chem. 2009, 48, 4685–4691. [Google Scholar] [CrossRef] [PubMed]
- Nagabhushana, G.P.; Tavakoli, A.H.; Navrotsky, A. Energetics of bismuth vanadate. J. Solid State Chem. 2015, 225, 187–192. [Google Scholar] [CrossRef]
- Tokunaga, S.; Kato, H.; Kudo, A. Selective preparation of monoclinic and tetragonal BiVO4 with scheelite structure and their photocatalytic properties. Chem. Mater. 2001, 13, 4624–4628. [Google Scholar] [CrossRef]
- Lardhi, S.; Cavallo, L.; Harb, M. Determination of the intrinsic defect at the origin of poor H2 evolution performance of the monoclinic BiVO4 photocatalyst using Density Functional Theory. J. Phys. Chem. C 2018, 122, 18204–18211. [Google Scholar] [CrossRef]
Sample | Pseudo-First-Order | Pseudo-Second-Order | ||
---|---|---|---|---|
q1 (mg/g) | R2 | q2 (mg/g) | R2 | |
BiV–SS | 0.82 | 0.94 | 1.01 | 0.91 |
BiV–R | 0.46 | 0.99 | 0.48 | 0.99 |
BiV–SS–CoFe | 0.53 | 0.99 | 0.82 | 0.98 |
BiV–R–CoFe | 0.24 | 0.97 | 0.33 | 0.95 |
CoFe | 0.06 | 0.98 | 0.07 | 0.96 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Estrada, A.C.; Pinto, F.; Lopes, C.B.; Trindade, T. BiVO4-Based Magnetic Heterostructures as Photocatalysts for Degradation of Antibiotics in Water. Mater. Proc. 2023, 14, 49. https://doi.org/10.3390/IOCN2023-14532
Estrada AC, Pinto F, Lopes CB, Trindade T. BiVO4-Based Magnetic Heterostructures as Photocatalysts for Degradation of Antibiotics in Water. Materials Proceedings. 2023; 14(1):49. https://doi.org/10.3390/IOCN2023-14532
Chicago/Turabian StyleEstrada, Ana C., Filipa Pinto, Cláudia B. Lopes, and Tito Trindade. 2023. "BiVO4-Based Magnetic Heterostructures as Photocatalysts for Degradation of Antibiotics in Water" Materials Proceedings 14, no. 1: 49. https://doi.org/10.3390/IOCN2023-14532
APA StyleEstrada, A. C., Pinto, F., Lopes, C. B., & Trindade, T. (2023). BiVO4-Based Magnetic Heterostructures as Photocatalysts for Degradation of Antibiotics in Water. Materials Proceedings, 14(1), 49. https://doi.org/10.3390/IOCN2023-14532