Increasing Electrical Resistivity of P-Type BiFeO3 Ceramics by Hydrogen Peroxide-Assisted Hydrothermal Synthesis
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Martin, L.W.; Crane, S.P.; Chu, Y.-H.; Holcomb, M.B.; Gajek, M.; Huijben, M.; Yang, C.-H.; Balke, N.; Ramesh, R. Multiferroics and magnetoelectrics: Thin films and nanostructures. J. Phys. Condens. Matter 2008, 20, 434220–434233. [Google Scholar] [CrossRef]
- Deka, B.; Cho, K.H. BiFeO3-Based Relaxor Ferroelectrics for Energy Storage: Progress and Prospects. Materials 2021, 14, 7188. [Google Scholar] [CrossRef]
- Catalan, G.; Scott, J.F. Physics and applications of bismuth ferrite. Adv. Mater. 2009, 21, 2463–2485. [Google Scholar] [CrossRef]
- Rojac, T.; Bencan, A.; Malic, B.; Tutuncu, G.; Jones, J.L.; Daniels, J.E.; Damjanovic, D. BiFeO3 ceramics: Processing, electrical, and electromechanical properties. J. Am. Ceram. Soc. 2014, 97, 1993–2011. [Google Scholar] [CrossRef]
- Zhou, X.; Sun, H.; Luo, Z.; Zhao, H.; Liang, D.; Jafri, H.M.; Huang, H.; Yin, Y.; Li, X. Ferroelectric diode characteristic and tri-state memory in self-assembled BiFeO3 nanoislands with cross-shaped domain structure. Appl. Phys. Lett. 2022, 121, 042903. [Google Scholar] [CrossRef]
- Chen, G.; Chen, J.; Pei, W.; Lu, Y.; Zhang, Q.; Zhang, Q.; He, Y. Bismuth Ferrite Materials for Solar Cells: Current Status and Prospects. Mater. Res. Bull. 2019, 110, 39–49. [Google Scholar] [CrossRef][Green Version]
- Kadim, G.; Masrour, R.; Jabar, A. Ferroelectric, quantum efficiency and photovoltaic properties in perovskite BiFeO3 thin films: First principle calculations and Monte Carlo study. Int. J. Energy Res. 2021, 45, 9961–9969. [Google Scholar] [CrossRef]
- Radmilovic, A.; Smart, T.J.; Ping, Y.; Choi, K. Combined Experimental and Theoretical Investigations of n-Type BiFeO3 for Use as a Photoanode in a Photoelectrochemical Cell. Chem. Mater. 2020, 32, 3262–3270. [Google Scholar] [CrossRef]
- Yang, H.; Wang, Y.Q.; Wang, H.; Jia, X. Oxygen concentration and its effect on the leakage current in BiFeO3 thin films. Appl. Phys. Lett. 2010, 96, 012909. [Google Scholar] [CrossRef]
- Yang, T.; Wei, J.; Sun, Z.; Li, Y.; Liu, Z.; Xu, Y.; Chen, G.; Wang, T.; Sun, H.; Cheng, Z. Design of oxygen vacancy in BiFeO3-based films for higher photovoltaic performance. Appl. Surf. Sci. 2022, 575, 151713. [Google Scholar] [CrossRef]
- Xia, L.; Tybell, T.; Selbach, S.M. Bi vacancy formation in BiFeO3 epitaxial thin films under compressive (001)-strain from first principles. J. Mater. Chem. C 2019, 7, 4870–4878. [Google Scholar] [CrossRef]
- Duan, F.; Ma, Y.; Lv, P.; Sheng, J.; Lu, S.; Zhu, H.; Du, M.; Chen, X.; Chen, M. Oxygen vacancy-enriched Bi2O3/BiFeO3 p-n heterojunction nanofibers with highly efficient photocatalytic activity under visible light irradiation. Appl. Surf. Sci. 2021, 562, 150171. [Google Scholar] [CrossRef]
- Dias, G.S.; Catellani, I.B.; Cotica, L.F.; Santos, I.A.; Freitas, V.F.; Yokaichiya, F. Highly resistive fast-sintered BiFeO3 ceramics, Integrated Ferroelectrics. Integr. Ferroelectr. 2016, 174, 43–49. [Google Scholar] [CrossRef]
- Wang, N.; Luo, X.; Han, L.; Zhang, Z.; Zhang, R.; Olin, H.; Yang, Y. Structure, Performance, and Application of BiFeO3 Nanomaterials. Nano-Micro Lett. 2020, 81, 12. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Wang, Y.F.; Xu, C.; Yan, L.; Qiao, X. Precise Adjustment of Forbidden Bandwidth in BiFeO3 / Bi25FeO40 Heterojunction Structure. SSRN 2022. [Google Scholar] [CrossRef]
- Xu, Q.; Sobhan, M.; Yang, Q.; Anariba, F.; Ong, K.P.; Wu, P. The role of Bi vacancies in the electrical conduction of BiFeO3: A first-principles approach. Dalton Trans. 2014, 43, 10787–10793. [Google Scholar] [CrossRef] [PubMed]
- Tuluk, A.; Brouwer, H.; van der Zwaag, S. Controlling the Oxygen Defects Concentration in a Pure BiFeO3 Bulk Ceramic. Materials 2022, 15, 6509. [Google Scholar] [CrossRef]
- Yang, T.; Wei, J.; Lv, Z. Ferroelectric polarization tuning the photovoltaic and diode-like effect of the Ni, Sm co-doped BiFeO3 film capacitors. J. Mater. Sci. Mater. Electron. 2019, 30, 12163–12169. [Google Scholar] [CrossRef]
- Imaizumi, F.; Goto, T.; Teramoto, A.; Sugawa, S.; Ohmi, T. Crystallinity improvement of ferroelectric BiFeO3 thin film by oxygen radical treatment. ECS Trans. 2015, 66, 261–267. [Google Scholar] [CrossRef]
- Martínez, A.B.; Godard, N.; Aruchamy, N.; Milesi-Brault, C.; Condurache, O.; Bencan, A.; Glinsek, S.; Granzow, T. Solution-processed BiFeO3 thin films with low leakage current. J. Eur. Ceram. Soc. 2021, 41, 6449–6455. [Google Scholar] [CrossRef]
- Syed, A.; Siddaramanna, A.; Elgorban, A.M.; Hakeem, D.A.; Nagaraju, G. Hydrogen Peroxide-Assisted Hydrothermal Synthesis of BiFeO3 Microspheres and Their Dielectric Behavior. Magnetochemistry 2020, 6, 42. [Google Scholar] [CrossRef]
- Geneste, G.; Paillard, C.; Dkhil, B. Polarons, vacancies, vacancy associations, and defect states in multiferroic BiFeO3. Physical. Review B 2019, 99, 024104. [Google Scholar] [CrossRef][Green Version]
- Peng, Y.-T. Remarkably enhanced photovoltaic effects and first-principles calculations in neodymium doped BiFeO3. Sci. Rep. 2017, 7, 45164. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Casut, C.; Bucur, R.; Miclau, N.; Malaescu, I.; Miclau, M. Biphasic BiFeO3 ceramics based on rhombohedral and tetragonal polymorphs. Adv. Appl. Ceram. 2023. [Google Scholar] [CrossRef]
- Bucur, R.; Bucur, A.I.; Novaconi, S.; Nicoara, I. Synthesis and characterization of BaTi1−xSnxO3–0.5mol%GeO2. J. Alloy Compd. 2012, 539, 148–153. [Google Scholar] [CrossRef]
- Čebela, M.; Jankovic, B.; Hercigonja, R.; Lukic, M.J.; Dohcevic-Mitrovic, Z.; Milivojevic, D.; Matovic, B. Comprehensive characterization of BiFeO3 powder synthesized by the hydrothermal procedure. Process. Appl. Ceram. 2016, 10, 201–208. [Google Scholar] [CrossRef][Green Version]
- Mukherjee, A.; Hossain, S.M.; Pal, M.; Basu, S. Effect of Y-doping on optical properties of multiferroics BiFeO3 nanoparticles. Appl. Nanosci. 2012, 2, 305–310. [Google Scholar] [CrossRef][Green Version]
- Zhang, L.; Zou, Y.; Song, J.; Pan, C.-L.; Sheng, S.-D.; Hou, C.-M. Enhanced photocatalytic activity of Bi25FeO40-Bi2WO6 heterostructures based on the rational design of the heterojunction interface. RSC Adv. 2016, 6, 26038–26044. [Google Scholar] [CrossRef]
- Shah, N.M.; Patel, N.H.; Shah, D.D.; Mehta, P.K. FTIR: Important tool to investigate the chemical bond formation in the polycrystalline xBaTiO3—(1-x)BiFeO3. Mater. Today: Proc. 2021, 47, 616–620. [Google Scholar] [CrossRef]
- Zhang, R.; Zhang, T.; Zhao, C.; Han, Q.; Li, Y.; Liu, Y.; Zeng, K. A novel Z-scheme Bi2WO6-based photocatalyst with enhanced dye degradation activity. J. Nanoparticle Res. 2019, 21, 203. [Google Scholar] [CrossRef]
- Gelderman, K.; Lee, L.; Donne, S.W. Flat-Band Potential of a Semiconductor: W Using the Mott–Schottky Equation. J. Chem. Educ. 2007, 84, 685–688. [Google Scholar] [CrossRef]
- Zhang, C.; Li, Y.; Chu, M. Hydrogen-treated BiFeO3 nanoparticles with enhanced photoelectrochemical performance. RSC Adv. 2016, 6, 24760–24767. [Google Scholar] [CrossRef]
- Gu, Y.H.; Wang, Y.; Chen, F.; Chan, H.L.W.; Chen, W.P. Nonstoichiometric BiFe0.9Ti0.05O3 multiferroic ceramics with ultrahigh electrical resistivity. J. Appl. Phys. 2010, 108, 094112. [Google Scholar] [CrossRef][Green Version]
Product | Procentage of BiFeO3/Bi25FeO40 | Quantity of H2O2/H2O (mL) | Steering in Closed Conditions | BiFeO3 Unit Cell Parameters (Å) |
---|---|---|---|---|
S1 | 100 (%)/0 (%) | 0/15 | No | 5.576 (7) 5.576 (7) 13.864 (2) |
S2 | 87 (%)/13 (%) | 0/15 | No | 5.578 (3) 5.578 (3) 13.865 (7) |
S3 | 87 (%)/13 (%) | 5/10 | Yes | 5.579 (2) 5.579 (2) 13.867 (6) |
Wave Number ν (cm−1) | Force Constant k (N/cm) | Bond Length R (Å) | |
---|---|---|---|
Sample 1 | 556 | 2.243 | 1.957 |
Sample 2 | 555 | 2.259 | 1.959 |
Sample 3 | 538 | 2.123 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Casut, C.; Bucur, R.; Ursu, D.; Malaescu, I.; Miclau, M. Increasing Electrical Resistivity of P-Type BiFeO3 Ceramics by Hydrogen Peroxide-Assisted Hydrothermal Synthesis. Materials 2023, 16, 3130. https://doi.org/10.3390/ma16083130
Casut C, Bucur R, Ursu D, Malaescu I, Miclau M. Increasing Electrical Resistivity of P-Type BiFeO3 Ceramics by Hydrogen Peroxide-Assisted Hydrothermal Synthesis. Materials. 2023; 16(8):3130. https://doi.org/10.3390/ma16083130
Chicago/Turabian StyleCasut, Cristian, Raul Bucur, Daniel Ursu, Iosif Malaescu, and Marinela Miclau. 2023. "Increasing Electrical Resistivity of P-Type BiFeO3 Ceramics by Hydrogen Peroxide-Assisted Hydrothermal Synthesis" Materials 16, no. 8: 3130. https://doi.org/10.3390/ma16083130
APA StyleCasut, C., Bucur, R., Ursu, D., Malaescu, I., & Miclau, M. (2023). Increasing Electrical Resistivity of P-Type BiFeO3 Ceramics by Hydrogen Peroxide-Assisted Hydrothermal Synthesis. Materials, 16(8), 3130. https://doi.org/10.3390/ma16083130