PEC/Colorimetric Dual-Mode Lab-on-Paper Device via BiVO4/FeOOH Nanocomposite In Situ Modification on Paper Fibers for Sensitive CEA Detection
Abstract
:1. Introduction
2. Experimental Section
2.1. Reagents and Apparatus
2.2. Preperation of BiVO4 Photoelectrode
2.3. Preparation of BiVO4/FeOOH Photoelectrode
2.4. Design and Analytical Steps of the Dual-Mode Lab-on-Paper Device
2.5. PEC/Colorimetric Mechanism of Dual-Mode Lab-on-Paper Biosensing Platform
3. Results
3.1. Morphology and Structure
3.2. PEC and Electrochemical Properties of the Proposed Sensing Platform during Modification
3.3. PEC and Colorimetric Dual-Mode Readout Analytical Performance of CEA
3.4. The Application of Proposed Lab-on-Paper for Real Serum Samples
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gu, X.; She, Z.; Ma, T.; Tian, S.; Kraatz, H.B. Electrochemical Detection of Carcinoembryonic Antigen. Biosens. Bioelectron. 2018, 102, 610–616. [Google Scholar] [CrossRef] [PubMed]
- Sandberg, M.L.; Wang, X.; Martin, A.D.; Nampe, D.P.; Gabrelow, G.B.; Li, C.Z.; McElvain, M.E.; Lee, W.H.; Shafaattalab, S.; Martire, S.; et al. A Carcinoembryonic Antigen-Specific Cell Therapy Selectively Targets Tumor Cells with Hla Loss of Heterozygosity in Vitro and in Vivo. Sci. Transl. Med. 2022, 14, eabm0306. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Bei, J.; Guo, X.; Ding, Y.; Chen, T.; Lu, B.; Wang, Y.; Du, Y.; Yao, Y. Ultrasensitive Photoelectrochemical Immunosensor for Carcinoembryonic Antigen Detection Based on pillar [5]arene-Functionalized Au Nanoparticles and Hollow Pani Hybrid BiOBr Heterojunction. Biosens. Bioelectron. 2022, 208, 114220. [Google Scholar] [CrossRef] [PubMed]
- Su, S.; Li, J.; Yao, Y.; Sun, Q.; Zhao, Q.; Wang, F.; Li, Q.; Liu, X.; Wang, L. Colorimetric Analysis of Carcinoembryonic Antigen Using Highly Catalytic Gold Nanoparticles-Decorated MoS2 Nanocomposites. ACS Appl. Bio Mater. 2019, 2, 292–298. [Google Scholar] [CrossRef]
- Shang, L.; Shi, B.; Zhang, W.; Jia, L.; Ma, R.; Xue, Q.; Wang, H. Ratiometric Electrochemiluminescence Sensing of Carcinoembryonic Antigen Based on Luminol. Anal. Chem. 2022, 94, 12845–12851. [Google Scholar] [CrossRef] [PubMed]
- Song, C.; Yang, Y.; Yang, B.; Min, L.; Wang, L. Combination Assay of Lung Cancer Associated Serum Markers Using Surface-Enhanced Raman Spectroscopy. J. Mater. Chem. B 2016, 4, 1811–1817. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Fu, Z.; Yan, F.; Ju, H. Biomedical and Clinical Applications of Immunoassays and Immunosensors for Tumor Markers. TrAC Trends Anal. Chem. 2007, 26, 679–688. [Google Scholar] [CrossRef]
- Li, J.; Liu, L.; Ai, Y.; Liu, Y.; Sun, H.; Liang, Q. Self-Polymerized Dopamine-Decorated Au NPs and Coordinated with Fe-MOF as a Dual Binding Sites and Dual Signal-Amplifying Electrochemical Aptasensor for the Detection of CEA. ACS Appl. Mater. Interfaces 2020, 12, 5500–5510. [Google Scholar] [CrossRef]
- Su, S.; Han, X.; Lu, Z.; Liu, W.; Zhu, D.; Chao, J.; Fan, C.; Wang, L.; Song, S.; Weng, L.; et al. Facile Synthesis of a MoS2-Prussian Blue Nanocube Nanohybrid-Based Electrochemical Sensing Platform for Hydrogen Peroxide and Carcinoembryonic Antigen Detection. ACS Appl. Mater. Interfaces 2017, 9, 12773–12781. [Google Scholar] [CrossRef]
- Gao, Y.; Li, M.; Zeng, Y.; Liu, X.; Tang, D. Tunable Competitive Absorption-Induced Signal-on Photoelectrochemical Immunoassay for Cardiac Troponin I Based on Z-Scheme Metal-Organic Framework Heterojunctions. Anal. Chem. 2022, 94, 13582–13589. [Google Scholar] [CrossRef]
- Ye, X.; Wang, X.; Kong, Y.; Dai, M.; Han, D.; Liu, Z. Fret Modulated Signaling: A Versatile Strategy to Construct Photoelectrochemical Microsensors for in vivo Analysis. Angew. Chem. Int. Ed. 2021, 60, 11774–11778. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Li, G.; Chen, K.; Yang, H.; Yang, M.; Zhang, Y.; Wan, Y.; Shen, Y.; Zhang, Y. Simultaneous Unlocking Optoelectronic and Interfacial Properties of C60 for Ultrasensitive Immunosensing by Coupling to Metal-Organic Framework. Anal. Chem. 2020, 92, 983–990. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.Y.; Xu, Y.T.; Wang, B.; Yu, S.Y.; Shi, X.M.; Zhao, W.W.; Jiang, D.; Chen, H.Y.; Xu, J.J. A Photoelectrochemical Nanoreactor for Single-Cell Sampling and near Zero-Background Faradaic Detection of Intracellular MicroRNA. Angew. Chem. Int. Ed. 2022, 61, e202212752. [Google Scholar]
- Shu, J.; Tang, D. Recent Advances in Photoelectrochemical Sensing: From Engineered Photoactive Materials to Sensing Devices and Detection Modes. Anal. Chem. 2020, 92, 363–377. [Google Scholar] [CrossRef] [PubMed]
- Victorious, A.; Saha, S.; Pandey, R.; Soleymani, L. Enhancing the Sensitivity of Photoelectrochemical DNA Biosensing Using Plasmonic DNA Barcodes and Differential Signal Readout. Angew. Chem. Int. Ed. 2021, 60, 7316–7322. [Google Scholar] [CrossRef]
- Wang, Y.; Shi, H.; Cui, K.; Zhang, L.; Ge, S.; Yu, J. Reversible Electron Storage in Tandem Photoelectrochemical Cell for Light Driven Unassisted Overall Water Splitting. Appl. Catal. B-Environ. 2020, 275, 119094. [Google Scholar] [CrossRef]
- Wang, F.; Fan, Q.; Wang, Y.; Ge, S.; Yan, M.; Yu, J. A Paper-Supported Photoelectrochemical Sensing Platform Based on Surface Plasmon Resonance Enhancement for Real-Time H2S Determination. J. Anal. Test. 2018, 3, 89–98. [Google Scholar] [CrossRef]
- Wang, S.; Liu, G.; Wang, L. Crystal Facet Engineering of Photoelectrodes for Photoelectrochemical Water Splitting. Chem. Rev. 2019, 119, 5192–5247. [Google Scholar] [CrossRef]
- Li, L.; Shi, H.; Yu, H.; Tan, X.; Wang, Y.; Ge, S.; Wang, A.; Cui, K.; Zhang, L.; Yu, J. Ultrathin MoSe2 Nanosheet Anchored CdS-ZnO Functional Paper Chip as a Highly Efficient Tandem Z-Scheme Heterojunction Photoanode for Scalable Photoelectrochemical Water Splitting. Appl. Catal. B-Environ. 2021, 292, 120184. [Google Scholar] [CrossRef]
- Huang, J.; Li, X.; Xiu, M.; Huang, K.; Cui, K.; Zhang, J.; Ge, S.; Hao, S.; Yu, J.; Huang, Y. A Paper-Based Photoelectrochemical Sensing Platform Based on in Situ Grown ZnO/ZnIn2S4 Heterojunctions onto Paper Fibers for Sensitively Detecting AFP. Biosensors 2022, 12, 818. [Google Scholar] [CrossRef]
- Shi, H.; Ge, S.; Wang, Y.; Gao, C.; Yu, J. Wide-Spectrum-Responsive Paper-Supported Photoelectrochemical Sensing Platform Based on Black Phosphorus-Sensitized TiO2. ACS Appl. Mater. Interfaces 2019, 11, 41062–41068. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Wang, X.; Zhang, Z.; Zhang, L.; Zang, D.; Ge, S.; Yu, J. Photoelectrochemical Platform with Tailorable Anode-Cathode Activities Based on Semiconductors Coupling DNA Walker for Detection of miRNA. Sens. Actuators B Chem. 2022, 365, 131969. [Google Scholar] [CrossRef]
- Yang, H.; Wang, J.; Yu, H.; Li, X.; Li, Z.; Cui, K.; Zhang, L.; Ge, S.; Yu, J. FeOOH/Cu2O/CuS Photocathode-Enabled Simultaneous Promotion on Charge Carrier Separation and Electron Acceptor Reduction for Lab-on-Paper Homogeneous Cathodic Photoelectrochemical Bioassay. Chem. Eng. J. 2022, 430, 132846. [Google Scholar] [CrossRef]
- Peng, B.; Zhang, Z.; Tang, L.; Ouyang, X.; Zhu, X.; Chen, L.; Fan, X.; Zhou, Z.; Wang, J. Self-Powered Photoelectrochemical Aptasensor for Oxytetracycline Cathodic Detection Based on a Dual Z-Scheme WO3/G-C3N4/MnO2 Photoanode. Anal. Chem. 2021, 93, 9129–9138. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Tan, Z.; Chen, X.; Chen, X.; Cheng, L.; Wu, H.; Li, P.; Zhang, Z. Carnation-like Morphology of BiVO4-7 Enables Sensitive Photoelectrochemical Determination of Cr(VI) in the Food and Environment. Biosensors 2022, 12, 130. [Google Scholar] [CrossRef]
- Nguyen, T.D.; Nguyen, V.-H.; Nanda, S.; Vo, D.-V.N.; Nguyen, V.H.; Van Tran, T.; Nong, L.X.; Nguyen, T.T.; Bach, L.-G.; Abdullah, B.; et al. BiVO4 Photocatalysis Design and Applications to Oxygen production and Degradation of Organic Compounds: A Review. Environ. Chem. Lett. 2020, 18, 1779–1801. [Google Scholar] [CrossRef]
- Tayebi, M.; Lee, B.-K. Recent Advances in BiVO4 Semiconductor Materials for Hydrogen Production Using Photoelectrochemical Water Splitting. Renew. Sustain. Energy Rev. 2019, 111, 332–343. [Google Scholar] [CrossRef]
- Han, Q.; Li, L.; Gao, W.; Shen, Y.; Wang, L.; Zhang, Y.; Wang, X.; Shen, Q.; Xiong, Y.; Zhou, Y.; et al. Elegant Construction of ZnIn2S4/BiVO4 Hierarchical Heterostructures as Direct Z-Scheme Photocatalysts for Efficient CO2 Photoreduction. ACS Appl. Mater. Interfaces 2021, 13, 15092–15100. [Google Scholar] [CrossRef]
- Veeralingam, S.; Yadav, P.; Badhulika, S. An Fe-Doped ZnO/BiVO4 Heterostructure-Based Large Area, Flexible, High-Performance Broadband Photodetector with an Ultrahigh Quantum Yield. Nanoscale 2020, 12, 9152–9161. [Google Scholar] [CrossRef]
- Feng, J.; Li, F.; Liu, L.; Liu, X.; Qian, Y.; Ren, X.; Wang, X.; Wei, Q. Ultrasensitive Photoelectrochemical Immunosensor for Procalcitonin Detection with Porous Nanoarray BiVO4/Cu2S Platform as Advanced Signal Amplification under Anodic Bias. Sens. Actuators B Chem. 2020, 308, 127685. [Google Scholar] [CrossRef]
- Coelho, D.; Gaudêncio, J.P.R.S.; Carminati, S.A.; Ribeiro, F.W.P.; Nogueira, A.F.; Mascaro, L.H. Bi Electrodeposition on WO3 Photoanode to Improve the Photoactivity of the WO3/BiVO4 Heterostructure to Water Splitting. Chem. Eng. J. 2020, 399, 125836. [Google Scholar] [CrossRef]
- Tian, T.; Jiang, G.; Li, Y.; Xiang, W.; Fu, W. Unveiling the Activity and Stability of BiVO4 Photoanodes with Cocatalyst for Water Oxidation. Renew. Energy 2022, 199, 132–139. [Google Scholar] [CrossRef]
- Zhou, T.; Chen, S.; Wang, J.; Zhang, Y.; Li, J.; Bai, J.; Zhou, B. Dramatically Enhanced Solar-Driven Water Splitting of BiVO4 Photoanode via Strengthening Hole Transfer and Light Harvesting by Co-Modification of CQDs and Ultrathin Β-FeOOH Layers. Chem. Eng. J. 2021, 403, 126350. [Google Scholar] [CrossRef]
- Alizadeh, N.; Salimi, A.; Sham, T.-K.; Bazylewski, P.; Fanchini, G.; Fathi, F.; Soleimani, F. Hierarchical Co (OH)2/FeOOH/WO3 Ternary Nanoflowers as a Dual-Function Enzyme with pH-switchable Peroxidase and Catalase Mimic Activities for Cancer Cell Detection and Enhanced Photodynamic Therapy. Chem. Eng. J. 2021, 417, 129134. [Google Scholar] [CrossRef]
- Zhang, Y.; Shi, L.; Geng, Z.; Ren, T.; Yang, Z. The Improvement of Photocatalysis O2 Production over BiVO4 with Amorphous FeOOH Shell Modification. Sci. Rep. 2019, 9, 19090. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zahran, Z.N.; Mohamed, E.A.; Haleem, A.A.; Naruta, Y. Efficient Photoelectrochemical O2 and Co Production Using BiVO4 Water Oxidation Photoanode and CO2 Reduction Au Nanoparticle Cathode Prepared by in Situ Deposition from Au3+ Containing Solution. Adv. Sustain. Syst. 2017, 1, 1700111. [Google Scholar] [CrossRef]
- Geng, H.; Ying, P.; Zhao, Y.; Gu, X. Cactus Shaped FeOOH/Au/BiVO4 Photoanodes for Efficient Photoelectrochemical Water Splitting. Int. J. Hydrogen Energy 2021, 46, 35280–35289. [Google Scholar] [CrossRef]
- Zhang, M.; Lai, C.; Li, B.; Xu, F.; Huang, D.; Liu, S.; Qin, L.; Fu, Y.; Liu, X.; Yi, H.; et al. Unravelling the Role of Dual Quantum Dots Cocatalyst in 0D/2D Heterojunction Photocatalyst for Promoting Photocatalytic Organic Pollutant Degradation. Chem. Eng. J. 2020, 396, 125343. [Google Scholar] [CrossRef]
- Yang, D.; Lei, L.; Yang, K.; Gao, K.; Jia, T.; Wang, L.; Wang, X.; Xue, C. An Immunochromatography Strip with Peroxidase-Mimicking Ferric Oxyhydroxide Nanorods-Mediated Signal Amplification and Readout. Microchim. Acta 2022, 189, 58. [Google Scholar] [CrossRef]
- Wang, L.; Xu, X.; Niu, X.; Pan, J. Colorimetric Detection and Membrane Removal of Arsenate by a Multifunctional L-arginine Modified FeOOH. Sep. Purif. Technol. 2021, 258, 118021. [Google Scholar] [CrossRef]
- Xu, X.; Luo, J.; Wei, S.; Zou, X.; Niu, X.; Pan, J. Three-Dimensional Flower-like Multifunctional Adsorbents with Excellent Sorptive Removal and Colorimetric Detection of Arsenate. Chem. Eng. J. 2020, 398, 125649. [Google Scholar] [CrossRef]
- Pan, T.; Liu, S.; Zhang, L.; Xie, W. Flexible Organic Optoelectronic Devices on Paper. iScience 2022, 25, 103782. [Google Scholar] [CrossRef] [PubMed]
- Shakeri, A.; Jarad, N.A.; Leung, A.; Soleymani, L.; Didar, T.F. Biofunctionalization of Glass- and Paper-Based Microfluidic Devices: A Review. Adv. Mater. Interfaces 2019, 6, 1900940. [Google Scholar] [CrossRef]
- Zhou, C.; Cui, K.; Liu, Y.; Hao, S.; Zhang, L.; Ge, S.; Yu, J. Ultrasensitive Microfluidic Paper-Based Electrochemical/Visual Analytical Device via Signal Amplification of Pd@Hollow Zn/Co Core-Shell ZIF67/ZIF8 Nanoparticles for Prostate-Specific Antigen Detection. Anal. Chem. 2021, 93, 5459–5467. [Google Scholar] [CrossRef]
- Cui, K.; Zhou, C.; Zhang, B.; Zhang, L.; Liu, Y.; Hao, S.; Tang, X.; Huang, Y.; Yu, J. Enhanced Catalytic Activity Induced by the Nanostructuring Effect in Pd Decoration onto Doped Ceria Enabling an Origami Paper Analytical Device for High Performance of Amyloid-Beta Bioassay. ACS Appl. Mater. Interfaces 2021, 13, 33937–33947. [Google Scholar] [CrossRef] [PubMed]
- Brooks, J.C.; Mace, C.R. Scalable Methods for Device Patterning as an Outstanding Challenge in Translating Paper-Based Microfluidics from the Academic Benchtop to the Point-of-Care. J. Anal. Test. 2019, 3, 50–60. [Google Scholar] [CrossRef]
- Hou, Y.; Lv, C.C.; Guo, Y.L.; Ma, X.H.; Liu, W.; Jin, Y.; Li, B.X.; Yang, M.; Yao, S.Y. Recent Advances and Applications in Paper-Based Devices for Point-of-Care Testing. J. Anal. Test. 2022, 6, 247–273. [Google Scholar] [CrossRef]
- Pereira, C.; Parolo, C.; Idili, A.; Gomis, R.R.; Rodrigues, L.; Sales, G.; Merkoçi, A. Paper-Based Biosensors for Cancer Diagnostics. Trends Chem. 2022, 4, 554–567. [Google Scholar] [CrossRef]
- Chen, S.-J.; Tseng, C.-C.; Huang, K.-H.; Chang, Y.-C.; Fu, L.-M. Microfluidic Sliding Paper-Based Device for Point-of-Care Determination of Albumin-to-Creatine Ratio in Human Urine. Biosensors 2022, 12, 496. [Google Scholar] [CrossRef]
- Kulkarni, M.B.; Ayachit, N.H.; Aminabhavi, T.M. Biosensors and Microfluidic Biosensors: From Fabrication to Application. Biosensors 2022, 12, 543. [Google Scholar] [CrossRef]
- Tan, X.; Yu, H.; Liang, B.; Han, M.; Ge, S.; Zhang, L.; Li, L.; Li, L.; Yu, J. A Target-Driven Self-Feedback Paper-Based Photoelectrochemical Sensing Platform for Ultrasensitive Detection of Ochratoxin a with an In2S3/WO3 Heterojunction Structure. Anal. Chem. 2022, 94, 1705–1712. [Google Scholar] [CrossRef]
- Li, Y.; He, R.; Niu, Y.; Li, F. Paper-Based Electrochemical Biosensors for Point-of-Care Testing of Neurotransmitters. J. Anal. Test. 2019, 3, 19–36. [Google Scholar] [CrossRef]
- Zhu, L.; Lv, X.; Yu, H.; Tan, X.; Rong, Y.; Feng, W.; Zhang, L.; Yu, J.; Zhang, Y. Paper-Based Bipolar Electrode Electrochemiluminescence Platform Combined with Pencil-Drawing Trace for the Detection of M.Sssi Methyltransferase. Anal. Chem. 2022, 94, 8327–8334. [Google Scholar] [CrossRef] [PubMed]
- Preechakasedkit, P.; Siangproh, W.; Khongchareonporn, N.; Ngamrojanavanich, N.; Chailapakul, O. Development of an Automated Wax-Printed Paper-Based Lateral Flow Device for Alpha-Fetoprotein Enzyme-Linked Immunosorbent Assay. Biosens. Bioelectron. 2018, 102, 27–32. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, Y.-L.; Cui, S.-H.; Wen, C.-Y.; Li, P.; Yu, J.-F.; Tang, S.-M.; Zeng, J.-B. Distance-Based Detection of Ag+ with Gold Nanoparticles-Coated Microfluidic Paper. J. Anal. Test. 2021, 5, 11–18. [Google Scholar] [CrossRef]
- Zhou, C.; Cui, K.; Liu, Y.; Li, L.; Zhang, L.; Hao, S.; Ge, S.; Yu, J. Bi2S3@MoS2 Nanoflowers on Cellulose Fibers Combined with Octahedral CeO2 for Dual-Mode Microfluidic Paper-Based MiRNA-141 Sensors. ACS Appl. Mater. Interfaces 2021, 13, 32780–32789. [Google Scholar] [CrossRef]
- Li, X.; Cui, K.; Xiu, M.; Zhou, C.; Li, L.; Zhang, J.; Hao, S.; Zhang, L.; Ge, S.; Huang, Y.; et al. In Situ Growth of WO3/BiVO4 Nanoflowers onto Cellulose Fibers to Construct Photoelectrochemical/Colorimetric Lab-on-Paper Devices for the Ultrasensitive Detection of AFP. J. Mater. Chem. B 2022, 10, 4031–4039. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Cui, K.; Liu, Y.; Li, L.; Zhang, L.; Xu, M.; Ge, S.; Wang, Y.; Yu, J. Ultrasensitive Lab-on-Paper Device via Cu/Co Double-Doped CeO2 Nanospheres as Signal Amplifiers for Electrochemical/Visual Sensing of Mirna-155. Sens. Actuators B Chem. 2020, 321, 128499. [Google Scholar] [CrossRef]
- Liu, Y.; Cui, K.; Kong, Q.; Zhang, L.; Ge, S.; Yu, J. A Self-Powered Origami Paper Analytical Device with a Pop-up Structure for Dual-Mode Electrochemical Sensing of ATP Assisted by Glucose Oxidase-Triggered Reaction. Biosens. Bioelectron. 2020, 148, 111839. [Google Scholar] [CrossRef]
- Rahbar, M.; Zou, S.; Baharfar, M.; Liu, G. A Customized Microfluidic Paper-Based Platform for Colorimetric Immunosensing: Demonstrated via Hcg Assay for Pregnancy Test. Biosensors 2021, 11, 474. [Google Scholar] [CrossRef]
- Sun, J.; Li, L.; Ge, S.; Zhao, P.; Zhu, P.; Wang, M.; Yu, J. Dual-Mode Aptasensor Assembled by a WO3/Fe2O3 Heterojunction for Paper-Based Colorimetric Prediction/Photoelectrochemical Multicomponent Analysis. ACS Appl. Mater. Interfaces 2021, 13, 3645–3652. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Ye, K.-H.; Zhang, S.; Zhang, J.; Yang, J.; Huang, Y.; Ji, H. Amorphous Type FeOOH Modified Defective BiVO4 Photoanodes for Photoelectrochemical Water Oxidation. Chem. Eng. J. 2022, 428, 131027. [Google Scholar] [CrossRef]
- Cao, H.; Wang, T.; Li, J.; Wu, J.; Du, P. A Molecular Cobaloxime Cocatalyst and Ultrathin Feooh Nanolayers Co-Modified BiVO4 Photoanode for Efficient Photoelectrochemical Water Oxidation. J. Energy Chem. 2022, 69, 497–505. [Google Scholar] [CrossRef]
- Xu, S.; Fu, D.; Song, K.; Wang, L.; Yang, Z.; Yang, W.; Hou, H. One-Dimensional WO3/BiVO4 Heterojunction Photoanodes for Efficient Photoelectrochemical Water Splitting. Chem. Eng. J. 2018, 349, 368–375. [Google Scholar] [CrossRef]
- Sun, Q.; Ren, K.; Qi, L. Boosting the Performance of Bivo4 Photoanodes by the Simultaneous Introduction of Oxygen Vacancies and Cocatalyst via Photoelectrodeposition. ACS Appl. Mater. Interfaces 2022, 14, 37833–37842. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Li, H.; Kong, W.; Liu, H.; Fan, H.; Wang, M. Reducing the Surface Recombination During Light-Driven Water Oxidation by Core-Shell BiVO4@Ni:FeOOH. Electrochim. Acta 2019, 300, 77–84. [Google Scholar] [CrossRef]
- Kang, Z.; Lv, X.; Sun, Z.; Wang, S.; Zheng, Y.-Z.; Tao, X. Borate and Iron Hydroxide Co-Modified BiVO4 Photoanodes for High-Performance Photoelectrochemical Water Oxidation. Chem. Eng. J. 2021, 421, 129819. [Google Scholar] [CrossRef]
- Lv, S.; Zhang, K.; Zhu, L.; Tang, D. ZIF-8-Assisted NaYF4:Yb,Tm@ZnO Converter with Exonuclease Ⅲ-Powered DNA Walker for near-Infrared Light Responsive Biosensor. Anal. Chem. 2020, 92, 1470–1476. [Google Scholar] [CrossRef]
- Zhou, Y.; Lv, S.; Wang, X.Y.; Kong, L.; Bi, S. Biometric Photoelectrochemical-Visual Multimodal Biosensor Based on 3D Hollow HCdS@Au Nanospheres Coupled with Target-Induced Ion Exchange Reaction for Antigen Detection. Anal. Chem. 2022, 94, 14492–14501. [Google Scholar] [CrossRef]
- Huang, X.; Lin, Q.; Lu, L.; Li, M.; Tang, D. In2O3/CdIn2S4 Heterojunction-Based Photoelectro-chemical Immunoassay of Carcinoembryonic Antigen with Enzymatic Biocatalytic Precipitation for Signal Amplification. Anal. Chim. Acta 2022, 1228, 340358. [Google Scholar] [CrossRef]
- Zhang, K.; Lv, S.; Zhou, Q.; Tang, D. CoOOH Nanosheets-Coated G-C3N4/CuInS2 Nanohybrids for Photoelectrochemical Biosensor of Carcinoembryonic Antigen Coupling Hybridization Chain Reaction with Etching Reaction. Sens. Actuators B Chem. 2020, 307, 127631. [Google Scholar] [CrossRef]
- Mao, Y.; Wang, N.; Yu, F.; Yu, S.; Liu, L.; Tian, Y.; Wang, J.; Wang, Y.; He, L.; Wu, Y. Simultaneous Detection of Carcinoembryonic Antigen and Neuron-Specific Enolase in Human Serum Based on Time-Resolved Chemiluminescence Immunoassay. Analyst 2019, 144, 4813–4819. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Guo, X.; Liu, W.; Zhang, L. Paper-Based Fluorometric Immunodevice with Quantum-Dot Labeled Antibodies for Simultaneous Detection of Carcinoembryonic Antigen and Prostate Specific Antigen. Mikrochim. Acta 2019, 186, 112. [Google Scholar] [CrossRef] [PubMed]
- Li, N.L.; Jia, L.P.; Ma, R.N.; Jia, W.L.; Lu, Y.Y.; Shi, S.S.; Wang, H.S. A Novel Sandwiched Electrochemiluminescence Immunosensor for the Detection of Carcinoembryonic Antigen Based on Carbon Quantum Dots and Signal Amplification. Biosens. Bioelectron. 2017, 89, 453–460. [Google Scholar] [CrossRef] [PubMed]
Serum Sample | Added, ng·mL−1 | Found, ng·mL−1 | Recovery, % | RSD, % |
---|---|---|---|---|
1 | 1 × 10−2 | 1.01 × 10−2 | 101 | 1.1 |
2 | 1 × 10−1 | 9.7 × 10−2 | 97 | 2.7 |
3 | 1 × 100 | 1.03 × 100 | 103 | 1.8 |
4 | 1 × 101 | 9.67 × 100 | 96.7 | 3.2 |
5 | 1 × 102 | 9.83 × 101 | 98.3 | 2.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Huang, J.; Ding, J.; Xiu, M.; Huang, K.; Cui, K.; Zhang, J.; Hao, S.; Zhang, Y.; Yu, J.; et al. PEC/Colorimetric Dual-Mode Lab-on-Paper Device via BiVO4/FeOOH Nanocomposite In Situ Modification on Paper Fibers for Sensitive CEA Detection. Biosensors 2023, 13, 103. https://doi.org/10.3390/bios13010103
Li X, Huang J, Ding J, Xiu M, Huang K, Cui K, Zhang J, Hao S, Zhang Y, Yu J, et al. PEC/Colorimetric Dual-Mode Lab-on-Paper Device via BiVO4/FeOOH Nanocomposite In Situ Modification on Paper Fibers for Sensitive CEA Detection. Biosensors. 2023; 13(1):103. https://doi.org/10.3390/bios13010103
Chicago/Turabian StyleLi, Xu, Jiali Huang, Jiayu Ding, Mingzhen Xiu, Kang Huang, Kang Cui, Jing Zhang, Shiji Hao, Yan Zhang, Jinghua Yu, and et al. 2023. "PEC/Colorimetric Dual-Mode Lab-on-Paper Device via BiVO4/FeOOH Nanocomposite In Situ Modification on Paper Fibers for Sensitive CEA Detection" Biosensors 13, no. 1: 103. https://doi.org/10.3390/bios13010103
APA StyleLi, X., Huang, J., Ding, J., Xiu, M., Huang, K., Cui, K., Zhang, J., Hao, S., Zhang, Y., Yu, J., & Huang, Y. (2023). PEC/Colorimetric Dual-Mode Lab-on-Paper Device via BiVO4/FeOOH Nanocomposite In Situ Modification on Paper Fibers for Sensitive CEA Detection. Biosensors, 13(1), 103. https://doi.org/10.3390/bios13010103