PEC/Colorimetric Dual-Mode Lab-on-Paper Device via BiVO4/FeOOH Nanocomposite In Situ Modification on Paper Fibers for Sensitive CEA Detection
Abstract
1. Introduction
2. Experimental Section
2.1. Reagents and Apparatus
2.2. Preperation of BiVO4 Photoelectrode
2.3. Preparation of BiVO4/FeOOH Photoelectrode
2.4. Design and Analytical Steps of the Dual-Mode Lab-on-Paper Device
2.5. PEC/Colorimetric Mechanism of Dual-Mode Lab-on-Paper Biosensing Platform
3. Results
3.1. Morphology and Structure
3.2. PEC and Electrochemical Properties of the Proposed Sensing Platform during Modification
3.3. PEC and Colorimetric Dual-Mode Readout Analytical Performance of CEA
3.4. The Application of Proposed Lab-on-Paper for Real Serum Samples
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gu, X.; She, Z.; Ma, T.; Tian, S.; Kraatz, H.B. Electrochemical Detection of Carcinoembryonic Antigen. Biosens. Bioelectron. 2018, 102, 610–616. [Google Scholar] [CrossRef] [PubMed]
- Sandberg, M.L.; Wang, X.; Martin, A.D.; Nampe, D.P.; Gabrelow, G.B.; Li, C.Z.; McElvain, M.E.; Lee, W.H.; Shafaattalab, S.; Martire, S.; et al. A Carcinoembryonic Antigen-Specific Cell Therapy Selectively Targets Tumor Cells with Hla Loss of Heterozygosity in Vitro and in Vivo. Sci. Transl. Med. 2022, 14, eabm0306. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Bei, J.; Guo, X.; Ding, Y.; Chen, T.; Lu, B.; Wang, Y.; Du, Y.; Yao, Y. Ultrasensitive Photoelectrochemical Immunosensor for Carcinoembryonic Antigen Detection Based on pillar [5]arene-Functionalized Au Nanoparticles and Hollow Pani Hybrid BiOBr Heterojunction. Biosens. Bioelectron. 2022, 208, 114220. [Google Scholar] [CrossRef] [PubMed]
- Su, S.; Li, J.; Yao, Y.; Sun, Q.; Zhao, Q.; Wang, F.; Li, Q.; Liu, X.; Wang, L. Colorimetric Analysis of Carcinoembryonic Antigen Using Highly Catalytic Gold Nanoparticles-Decorated MoS2 Nanocomposites. ACS Appl. Bio Mater. 2019, 2, 292–298. [Google Scholar] [CrossRef]
- Shang, L.; Shi, B.; Zhang, W.; Jia, L.; Ma, R.; Xue, Q.; Wang, H. Ratiometric Electrochemiluminescence Sensing of Carcinoembryonic Antigen Based on Luminol. Anal. Chem. 2022, 94, 12845–12851. [Google Scholar] [CrossRef] [PubMed]
- Song, C.; Yang, Y.; Yang, B.; Min, L.; Wang, L. Combination Assay of Lung Cancer Associated Serum Markers Using Surface-Enhanced Raman Spectroscopy. J. Mater. Chem. B 2016, 4, 1811–1817. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Fu, Z.; Yan, F.; Ju, H. Biomedical and Clinical Applications of Immunoassays and Immunosensors for Tumor Markers. TrAC Trends Anal. Chem. 2007, 26, 679–688. [Google Scholar] [CrossRef]
- Li, J.; Liu, L.; Ai, Y.; Liu, Y.; Sun, H.; Liang, Q. Self-Polymerized Dopamine-Decorated Au NPs and Coordinated with Fe-MOF as a Dual Binding Sites and Dual Signal-Amplifying Electrochemical Aptasensor for the Detection of CEA. ACS Appl. Mater. Interfaces 2020, 12, 5500–5510. [Google Scholar] [CrossRef]
- Su, S.; Han, X.; Lu, Z.; Liu, W.; Zhu, D.; Chao, J.; Fan, C.; Wang, L.; Song, S.; Weng, L.; et al. Facile Synthesis of a MoS2-Prussian Blue Nanocube Nanohybrid-Based Electrochemical Sensing Platform for Hydrogen Peroxide and Carcinoembryonic Antigen Detection. ACS Appl. Mater. Interfaces 2017, 9, 12773–12781. [Google Scholar] [CrossRef]
- Gao, Y.; Li, M.; Zeng, Y.; Liu, X.; Tang, D. Tunable Competitive Absorption-Induced Signal-on Photoelectrochemical Immunoassay for Cardiac Troponin I Based on Z-Scheme Metal-Organic Framework Heterojunctions. Anal. Chem. 2022, 94, 13582–13589. [Google Scholar] [CrossRef]
- Ye, X.; Wang, X.; Kong, Y.; Dai, M.; Han, D.; Liu, Z. Fret Modulated Signaling: A Versatile Strategy to Construct Photoelectrochemical Microsensors for in vivo Analysis. Angew. Chem. Int. Ed. 2021, 60, 11774–11778. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Li, G.; Chen, K.; Yang, H.; Yang, M.; Zhang, Y.; Wan, Y.; Shen, Y.; Zhang, Y. Simultaneous Unlocking Optoelectronic and Interfacial Properties of C60 for Ultrasensitive Immunosensing by Coupling to Metal-Organic Framework. Anal. Chem. 2020, 92, 983–990. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.Y.; Xu, Y.T.; Wang, B.; Yu, S.Y.; Shi, X.M.; Zhao, W.W.; Jiang, D.; Chen, H.Y.; Xu, J.J. A Photoelectrochemical Nanoreactor for Single-Cell Sampling and near Zero-Background Faradaic Detection of Intracellular MicroRNA. Angew. Chem. Int. Ed. 2022, 61, e202212752. [Google Scholar]
- Shu, J.; Tang, D. Recent Advances in Photoelectrochemical Sensing: From Engineered Photoactive Materials to Sensing Devices and Detection Modes. Anal. Chem. 2020, 92, 363–377. [Google Scholar] [CrossRef] [PubMed]
- Victorious, A.; Saha, S.; Pandey, R.; Soleymani, L. Enhancing the Sensitivity of Photoelectrochemical DNA Biosensing Using Plasmonic DNA Barcodes and Differential Signal Readout. Angew. Chem. Int. Ed. 2021, 60, 7316–7322. [Google Scholar] [CrossRef]
- Wang, Y.; Shi, H.; Cui, K.; Zhang, L.; Ge, S.; Yu, J. Reversible Electron Storage in Tandem Photoelectrochemical Cell for Light Driven Unassisted Overall Water Splitting. Appl. Catal. B-Environ. 2020, 275, 119094. [Google Scholar] [CrossRef]
- Wang, F.; Fan, Q.; Wang, Y.; Ge, S.; Yan, M.; Yu, J. A Paper-Supported Photoelectrochemical Sensing Platform Based on Surface Plasmon Resonance Enhancement for Real-Time H2S Determination. J. Anal. Test. 2018, 3, 89–98. [Google Scholar] [CrossRef]
- Wang, S.; Liu, G.; Wang, L. Crystal Facet Engineering of Photoelectrodes for Photoelectrochemical Water Splitting. Chem. Rev. 2019, 119, 5192–5247. [Google Scholar] [CrossRef]
- Li, L.; Shi, H.; Yu, H.; Tan, X.; Wang, Y.; Ge, S.; Wang, A.; Cui, K.; Zhang, L.; Yu, J. Ultrathin MoSe2 Nanosheet Anchored CdS-ZnO Functional Paper Chip as a Highly Efficient Tandem Z-Scheme Heterojunction Photoanode for Scalable Photoelectrochemical Water Splitting. Appl. Catal. B-Environ. 2021, 292, 120184. [Google Scholar] [CrossRef]
- Huang, J.; Li, X.; Xiu, M.; Huang, K.; Cui, K.; Zhang, J.; Ge, S.; Hao, S.; Yu, J.; Huang, Y. A Paper-Based Photoelectrochemical Sensing Platform Based on in Situ Grown ZnO/ZnIn2S4 Heterojunctions onto Paper Fibers for Sensitively Detecting AFP. Biosensors 2022, 12, 818. [Google Scholar] [CrossRef]
- Shi, H.; Ge, S.; Wang, Y.; Gao, C.; Yu, J. Wide-Spectrum-Responsive Paper-Supported Photoelectrochemical Sensing Platform Based on Black Phosphorus-Sensitized TiO2. ACS Appl. Mater. Interfaces 2019, 11, 41062–41068. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Wang, X.; Zhang, Z.; Zhang, L.; Zang, D.; Ge, S.; Yu, J. Photoelectrochemical Platform with Tailorable Anode-Cathode Activities Based on Semiconductors Coupling DNA Walker for Detection of miRNA. Sens. Actuators B Chem. 2022, 365, 131969. [Google Scholar] [CrossRef]
- Yang, H.; Wang, J.; Yu, H.; Li, X.; Li, Z.; Cui, K.; Zhang, L.; Ge, S.; Yu, J. FeOOH/Cu2O/CuS Photocathode-Enabled Simultaneous Promotion on Charge Carrier Separation and Electron Acceptor Reduction for Lab-on-Paper Homogeneous Cathodic Photoelectrochemical Bioassay. Chem. Eng. J. 2022, 430, 132846. [Google Scholar] [CrossRef]
- Peng, B.; Zhang, Z.; Tang, L.; Ouyang, X.; Zhu, X.; Chen, L.; Fan, X.; Zhou, Z.; Wang, J. Self-Powered Photoelectrochemical Aptasensor for Oxytetracycline Cathodic Detection Based on a Dual Z-Scheme WO3/G-C3N4/MnO2 Photoanode. Anal. Chem. 2021, 93, 9129–9138. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Tan, Z.; Chen, X.; Chen, X.; Cheng, L.; Wu, H.; Li, P.; Zhang, Z. Carnation-like Morphology of BiVO4-7 Enables Sensitive Photoelectrochemical Determination of Cr(VI) in the Food and Environment. Biosensors 2022, 12, 130. [Google Scholar] [CrossRef]
- Nguyen, T.D.; Nguyen, V.-H.; Nanda, S.; Vo, D.-V.N.; Nguyen, V.H.; Van Tran, T.; Nong, L.X.; Nguyen, T.T.; Bach, L.-G.; Abdullah, B.; et al. BiVO4 Photocatalysis Design and Applications to Oxygen production and Degradation of Organic Compounds: A Review. Environ. Chem. Lett. 2020, 18, 1779–1801. [Google Scholar] [CrossRef]
- Tayebi, M.; Lee, B.-K. Recent Advances in BiVO4 Semiconductor Materials for Hydrogen Production Using Photoelectrochemical Water Splitting. Renew. Sustain. Energy Rev. 2019, 111, 332–343. [Google Scholar] [CrossRef]
- Han, Q.; Li, L.; Gao, W.; Shen, Y.; Wang, L.; Zhang, Y.; Wang, X.; Shen, Q.; Xiong, Y.; Zhou, Y.; et al. Elegant Construction of ZnIn2S4/BiVO4 Hierarchical Heterostructures as Direct Z-Scheme Photocatalysts for Efficient CO2 Photoreduction. ACS Appl. Mater. Interfaces 2021, 13, 15092–15100. [Google Scholar] [CrossRef]
- Veeralingam, S.; Yadav, P.; Badhulika, S. An Fe-Doped ZnO/BiVO4 Heterostructure-Based Large Area, Flexible, High-Performance Broadband Photodetector with an Ultrahigh Quantum Yield. Nanoscale 2020, 12, 9152–9161. [Google Scholar] [CrossRef]
- Feng, J.; Li, F.; Liu, L.; Liu, X.; Qian, Y.; Ren, X.; Wang, X.; Wei, Q. Ultrasensitive Photoelectrochemical Immunosensor for Procalcitonin Detection with Porous Nanoarray BiVO4/Cu2S Platform as Advanced Signal Amplification under Anodic Bias. Sens. Actuators B Chem. 2020, 308, 127685. [Google Scholar] [CrossRef]
- Coelho, D.; Gaudêncio, J.P.R.S.; Carminati, S.A.; Ribeiro, F.W.P.; Nogueira, A.F.; Mascaro, L.H. Bi Electrodeposition on WO3 Photoanode to Improve the Photoactivity of the WO3/BiVO4 Heterostructure to Water Splitting. Chem. Eng. J. 2020, 399, 125836. [Google Scholar] [CrossRef]
- Tian, T.; Jiang, G.; Li, Y.; Xiang, W.; Fu, W. Unveiling the Activity and Stability of BiVO4 Photoanodes with Cocatalyst for Water Oxidation. Renew. Energy 2022, 199, 132–139. [Google Scholar] [CrossRef]
- Zhou, T.; Chen, S.; Wang, J.; Zhang, Y.; Li, J.; Bai, J.; Zhou, B. Dramatically Enhanced Solar-Driven Water Splitting of BiVO4 Photoanode via Strengthening Hole Transfer and Light Harvesting by Co-Modification of CQDs and Ultrathin Β-FeOOH Layers. Chem. Eng. J. 2021, 403, 126350. [Google Scholar] [CrossRef]
- Alizadeh, N.; Salimi, A.; Sham, T.-K.; Bazylewski, P.; Fanchini, G.; Fathi, F.; Soleimani, F. Hierarchical Co (OH)2/FeOOH/WO3 Ternary Nanoflowers as a Dual-Function Enzyme with pH-switchable Peroxidase and Catalase Mimic Activities for Cancer Cell Detection and Enhanced Photodynamic Therapy. Chem. Eng. J. 2021, 417, 129134. [Google Scholar] [CrossRef]
- Zhang, Y.; Shi, L.; Geng, Z.; Ren, T.; Yang, Z. The Improvement of Photocatalysis O2 Production over BiVO4 with Amorphous FeOOH Shell Modification. Sci. Rep. 2019, 9, 19090. [Google Scholar] [CrossRef] [PubMed]
- Zahran, Z.N.; Mohamed, E.A.; Haleem, A.A.; Naruta, Y. Efficient Photoelectrochemical O2 and Co Production Using BiVO4 Water Oxidation Photoanode and CO2 Reduction Au Nanoparticle Cathode Prepared by in Situ Deposition from Au3+ Containing Solution. Adv. Sustain. Syst. 2017, 1, 1700111. [Google Scholar] [CrossRef]
- Geng, H.; Ying, P.; Zhao, Y.; Gu, X. Cactus Shaped FeOOH/Au/BiVO4 Photoanodes for Efficient Photoelectrochemical Water Splitting. Int. J. Hydrogen Energy 2021, 46, 35280–35289. [Google Scholar] [CrossRef]
- Zhang, M.; Lai, C.; Li, B.; Xu, F.; Huang, D.; Liu, S.; Qin, L.; Fu, Y.; Liu, X.; Yi, H.; et al. Unravelling the Role of Dual Quantum Dots Cocatalyst in 0D/2D Heterojunction Photocatalyst for Promoting Photocatalytic Organic Pollutant Degradation. Chem. Eng. J. 2020, 396, 125343. [Google Scholar] [CrossRef]
- Yang, D.; Lei, L.; Yang, K.; Gao, K.; Jia, T.; Wang, L.; Wang, X.; Xue, C. An Immunochromatography Strip with Peroxidase-Mimicking Ferric Oxyhydroxide Nanorods-Mediated Signal Amplification and Readout. Microchim. Acta 2022, 189, 58. [Google Scholar] [CrossRef]
- Wang, L.; Xu, X.; Niu, X.; Pan, J. Colorimetric Detection and Membrane Removal of Arsenate by a Multifunctional L-arginine Modified FeOOH. Sep. Purif. Technol. 2021, 258, 118021. [Google Scholar] [CrossRef]
- Xu, X.; Luo, J.; Wei, S.; Zou, X.; Niu, X.; Pan, J. Three-Dimensional Flower-like Multifunctional Adsorbents with Excellent Sorptive Removal and Colorimetric Detection of Arsenate. Chem. Eng. J. 2020, 398, 125649. [Google Scholar] [CrossRef]
- Pan, T.; Liu, S.; Zhang, L.; Xie, W. Flexible Organic Optoelectronic Devices on Paper. iScience 2022, 25, 103782. [Google Scholar] [CrossRef] [PubMed]
- Shakeri, A.; Jarad, N.A.; Leung, A.; Soleymani, L.; Didar, T.F. Biofunctionalization of Glass- and Paper-Based Microfluidic Devices: A Review. Adv. Mater. Interfaces 2019, 6, 1900940. [Google Scholar] [CrossRef]
- Zhou, C.; Cui, K.; Liu, Y.; Hao, S.; Zhang, L.; Ge, S.; Yu, J. Ultrasensitive Microfluidic Paper-Based Electrochemical/Visual Analytical Device via Signal Amplification of Pd@Hollow Zn/Co Core-Shell ZIF67/ZIF8 Nanoparticles for Prostate-Specific Antigen Detection. Anal. Chem. 2021, 93, 5459–5467. [Google Scholar] [CrossRef]
- Cui, K.; Zhou, C.; Zhang, B.; Zhang, L.; Liu, Y.; Hao, S.; Tang, X.; Huang, Y.; Yu, J. Enhanced Catalytic Activity Induced by the Nanostructuring Effect in Pd Decoration onto Doped Ceria Enabling an Origami Paper Analytical Device for High Performance of Amyloid-Beta Bioassay. ACS Appl. Mater. Interfaces 2021, 13, 33937–33947. [Google Scholar] [CrossRef] [PubMed]
- Brooks, J.C.; Mace, C.R. Scalable Methods for Device Patterning as an Outstanding Challenge in Translating Paper-Based Microfluidics from the Academic Benchtop to the Point-of-Care. J. Anal. Test. 2019, 3, 50–60. [Google Scholar] [CrossRef]
- Hou, Y.; Lv, C.C.; Guo, Y.L.; Ma, X.H.; Liu, W.; Jin, Y.; Li, B.X.; Yang, M.; Yao, S.Y. Recent Advances and Applications in Paper-Based Devices for Point-of-Care Testing. J. Anal. Test. 2022, 6, 247–273. [Google Scholar] [CrossRef]
- Pereira, C.; Parolo, C.; Idili, A.; Gomis, R.R.; Rodrigues, L.; Sales, G.; Merkoçi, A. Paper-Based Biosensors for Cancer Diagnostics. Trends Chem. 2022, 4, 554–567. [Google Scholar] [CrossRef]
- Chen, S.-J.; Tseng, C.-C.; Huang, K.-H.; Chang, Y.-C.; Fu, L.-M. Microfluidic Sliding Paper-Based Device for Point-of-Care Determination of Albumin-to-Creatine Ratio in Human Urine. Biosensors 2022, 12, 496. [Google Scholar] [CrossRef]
- Kulkarni, M.B.; Ayachit, N.H.; Aminabhavi, T.M. Biosensors and Microfluidic Biosensors: From Fabrication to Application. Biosensors 2022, 12, 543. [Google Scholar] [CrossRef]
- Tan, X.; Yu, H.; Liang, B.; Han, M.; Ge, S.; Zhang, L.; Li, L.; Li, L.; Yu, J. A Target-Driven Self-Feedback Paper-Based Photoelectrochemical Sensing Platform for Ultrasensitive Detection of Ochratoxin a with an In2S3/WO3 Heterojunction Structure. Anal. Chem. 2022, 94, 1705–1712. [Google Scholar] [CrossRef]
- Li, Y.; He, R.; Niu, Y.; Li, F. Paper-Based Electrochemical Biosensors for Point-of-Care Testing of Neurotransmitters. J. Anal. Test. 2019, 3, 19–36. [Google Scholar] [CrossRef]
- Zhu, L.; Lv, X.; Yu, H.; Tan, X.; Rong, Y.; Feng, W.; Zhang, L.; Yu, J.; Zhang, Y. Paper-Based Bipolar Electrode Electrochemiluminescence Platform Combined with Pencil-Drawing Trace for the Detection of M.Sssi Methyltransferase. Anal. Chem. 2022, 94, 8327–8334. [Google Scholar] [CrossRef] [PubMed]
- Preechakasedkit, P.; Siangproh, W.; Khongchareonporn, N.; Ngamrojanavanich, N.; Chailapakul, O. Development of an Automated Wax-Printed Paper-Based Lateral Flow Device for Alpha-Fetoprotein Enzyme-Linked Immunosorbent Assay. Biosens. Bioelectron. 2018, 102, 27–32. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, Y.-L.; Cui, S.-H.; Wen, C.-Y.; Li, P.; Yu, J.-F.; Tang, S.-M.; Zeng, J.-B. Distance-Based Detection of Ag+ with Gold Nanoparticles-Coated Microfluidic Paper. J. Anal. Test. 2021, 5, 11–18. [Google Scholar] [CrossRef]
- Zhou, C.; Cui, K.; Liu, Y.; Li, L.; Zhang, L.; Hao, S.; Ge, S.; Yu, J. Bi2S3@MoS2 Nanoflowers on Cellulose Fibers Combined with Octahedral CeO2 for Dual-Mode Microfluidic Paper-Based MiRNA-141 Sensors. ACS Appl. Mater. Interfaces 2021, 13, 32780–32789. [Google Scholar] [CrossRef]
- Li, X.; Cui, K.; Xiu, M.; Zhou, C.; Li, L.; Zhang, J.; Hao, S.; Zhang, L.; Ge, S.; Huang, Y.; et al. In Situ Growth of WO3/BiVO4 Nanoflowers onto Cellulose Fibers to Construct Photoelectrochemical/Colorimetric Lab-on-Paper Devices for the Ultrasensitive Detection of AFP. J. Mater. Chem. B 2022, 10, 4031–4039. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Cui, K.; Liu, Y.; Li, L.; Zhang, L.; Xu, M.; Ge, S.; Wang, Y.; Yu, J. Ultrasensitive Lab-on-Paper Device via Cu/Co Double-Doped CeO2 Nanospheres as Signal Amplifiers for Electrochemical/Visual Sensing of Mirna-155. Sens. Actuators B Chem. 2020, 321, 128499. [Google Scholar] [CrossRef]
- Liu, Y.; Cui, K.; Kong, Q.; Zhang, L.; Ge, S.; Yu, J. A Self-Powered Origami Paper Analytical Device with a Pop-up Structure for Dual-Mode Electrochemical Sensing of ATP Assisted by Glucose Oxidase-Triggered Reaction. Biosens. Bioelectron. 2020, 148, 111839. [Google Scholar] [CrossRef]
- Rahbar, M.; Zou, S.; Baharfar, M.; Liu, G. A Customized Microfluidic Paper-Based Platform for Colorimetric Immunosensing: Demonstrated via Hcg Assay for Pregnancy Test. Biosensors 2021, 11, 474. [Google Scholar] [CrossRef]
- Sun, J.; Li, L.; Ge, S.; Zhao, P.; Zhu, P.; Wang, M.; Yu, J. Dual-Mode Aptasensor Assembled by a WO3/Fe2O3 Heterojunction for Paper-Based Colorimetric Prediction/Photoelectrochemical Multicomponent Analysis. ACS Appl. Mater. Interfaces 2021, 13, 3645–3652. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Ye, K.-H.; Zhang, S.; Zhang, J.; Yang, J.; Huang, Y.; Ji, H. Amorphous Type FeOOH Modified Defective BiVO4 Photoanodes for Photoelectrochemical Water Oxidation. Chem. Eng. J. 2022, 428, 131027. [Google Scholar] [CrossRef]
- Cao, H.; Wang, T.; Li, J.; Wu, J.; Du, P. A Molecular Cobaloxime Cocatalyst and Ultrathin Feooh Nanolayers Co-Modified BiVO4 Photoanode for Efficient Photoelectrochemical Water Oxidation. J. Energy Chem. 2022, 69, 497–505. [Google Scholar] [CrossRef]
- Xu, S.; Fu, D.; Song, K.; Wang, L.; Yang, Z.; Yang, W.; Hou, H. One-Dimensional WO3/BiVO4 Heterojunction Photoanodes for Efficient Photoelectrochemical Water Splitting. Chem. Eng. J. 2018, 349, 368–375. [Google Scholar] [CrossRef]
- Sun, Q.; Ren, K.; Qi, L. Boosting the Performance of Bivo4 Photoanodes by the Simultaneous Introduction of Oxygen Vacancies and Cocatalyst via Photoelectrodeposition. ACS Appl. Mater. Interfaces 2022, 14, 37833–37842. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Li, H.; Kong, W.; Liu, H.; Fan, H.; Wang, M. Reducing the Surface Recombination During Light-Driven Water Oxidation by Core-Shell BiVO4@Ni:FeOOH. Electrochim. Acta 2019, 300, 77–84. [Google Scholar] [CrossRef]
- Kang, Z.; Lv, X.; Sun, Z.; Wang, S.; Zheng, Y.-Z.; Tao, X. Borate and Iron Hydroxide Co-Modified BiVO4 Photoanodes for High-Performance Photoelectrochemical Water Oxidation. Chem. Eng. J. 2021, 421, 129819. [Google Scholar] [CrossRef]
- Lv, S.; Zhang, K.; Zhu, L.; Tang, D. ZIF-8-Assisted NaYF4:Yb,Tm@ZnO Converter with Exonuclease Ⅲ-Powered DNA Walker for near-Infrared Light Responsive Biosensor. Anal. Chem. 2020, 92, 1470–1476. [Google Scholar] [CrossRef]
- Zhou, Y.; Lv, S.; Wang, X.Y.; Kong, L.; Bi, S. Biometric Photoelectrochemical-Visual Multimodal Biosensor Based on 3D Hollow HCdS@Au Nanospheres Coupled with Target-Induced Ion Exchange Reaction for Antigen Detection. Anal. Chem. 2022, 94, 14492–14501. [Google Scholar] [CrossRef]
- Huang, X.; Lin, Q.; Lu, L.; Li, M.; Tang, D. In2O3/CdIn2S4 Heterojunction-Based Photoelectro-chemical Immunoassay of Carcinoembryonic Antigen with Enzymatic Biocatalytic Precipitation for Signal Amplification. Anal. Chim. Acta 2022, 1228, 340358. [Google Scholar] [CrossRef]
- Zhang, K.; Lv, S.; Zhou, Q.; Tang, D. CoOOH Nanosheets-Coated G-C3N4/CuInS2 Nanohybrids for Photoelectrochemical Biosensor of Carcinoembryonic Antigen Coupling Hybridization Chain Reaction with Etching Reaction. Sens. Actuators B Chem. 2020, 307, 127631. [Google Scholar] [CrossRef]
- Mao, Y.; Wang, N.; Yu, F.; Yu, S.; Liu, L.; Tian, Y.; Wang, J.; Wang, Y.; He, L.; Wu, Y. Simultaneous Detection of Carcinoembryonic Antigen and Neuron-Specific Enolase in Human Serum Based on Time-Resolved Chemiluminescence Immunoassay. Analyst 2019, 144, 4813–4819. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Guo, X.; Liu, W.; Zhang, L. Paper-Based Fluorometric Immunodevice with Quantum-Dot Labeled Antibodies for Simultaneous Detection of Carcinoembryonic Antigen and Prostate Specific Antigen. Mikrochim. Acta 2019, 186, 112. [Google Scholar] [CrossRef] [PubMed]
- Li, N.L.; Jia, L.P.; Ma, R.N.; Jia, W.L.; Lu, Y.Y.; Shi, S.S.; Wang, H.S. A Novel Sandwiched Electrochemiluminescence Immunosensor for the Detection of Carcinoembryonic Antigen Based on Carbon Quantum Dots and Signal Amplification. Biosens. Bioelectron. 2017, 89, 453–460. [Google Scholar] [CrossRef] [PubMed]
Serum Sample | Added, ng·mL−1 | Found, ng·mL−1 | Recovery, % | RSD, % |
---|---|---|---|---|
1 | 1 × 10−2 | 1.01 × 10−2 | 101 | 1.1 |
2 | 1 × 10−1 | 9.7 × 10−2 | 97 | 2.7 |
3 | 1 × 100 | 1.03 × 100 | 103 | 1.8 |
4 | 1 × 101 | 9.67 × 100 | 96.7 | 3.2 |
5 | 1 × 102 | 9.83 × 101 | 98.3 | 2.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Huang, J.; Ding, J.; Xiu, M.; Huang, K.; Cui, K.; Zhang, J.; Hao, S.; Zhang, Y.; Yu, J.; et al. PEC/Colorimetric Dual-Mode Lab-on-Paper Device via BiVO4/FeOOH Nanocomposite In Situ Modification on Paper Fibers for Sensitive CEA Detection. Biosensors 2023, 13, 103. https://doi.org/10.3390/bios13010103
Li X, Huang J, Ding J, Xiu M, Huang K, Cui K, Zhang J, Hao S, Zhang Y, Yu J, et al. PEC/Colorimetric Dual-Mode Lab-on-Paper Device via BiVO4/FeOOH Nanocomposite In Situ Modification on Paper Fibers for Sensitive CEA Detection. Biosensors. 2023; 13(1):103. https://doi.org/10.3390/bios13010103
Chicago/Turabian StyleLi, Xu, Jiali Huang, Jiayu Ding, Mingzhen Xiu, Kang Huang, Kang Cui, Jing Zhang, Shiji Hao, Yan Zhang, Jinghua Yu, and et al. 2023. "PEC/Colorimetric Dual-Mode Lab-on-Paper Device via BiVO4/FeOOH Nanocomposite In Situ Modification on Paper Fibers for Sensitive CEA Detection" Biosensors 13, no. 1: 103. https://doi.org/10.3390/bios13010103
APA StyleLi, X., Huang, J., Ding, J., Xiu, M., Huang, K., Cui, K., Zhang, J., Hao, S., Zhang, Y., Yu, J., & Huang, Y. (2023). PEC/Colorimetric Dual-Mode Lab-on-Paper Device via BiVO4/FeOOH Nanocomposite In Situ Modification on Paper Fibers for Sensitive CEA Detection. Biosensors, 13(1), 103. https://doi.org/10.3390/bios13010103