Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (44)

Search Parameters:
Keywords = BcSOC1

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3753 KiB  
Article
Elevational Patterns and Seasonal Dynamics of Soil Organic Carbon Fractions and Content in Rice Paddies of Yuanyang Terrace, Southwest China
by Haitao Li, Linxi Chang, Yonglin Wu, Yang Li, Xinran Liang, Fangdong Zhan and Yongmei He
Agronomy 2025, 15(8), 1868; https://doi.org/10.3390/agronomy15081868 - 1 Aug 2025
Viewed by 187
Abstract
Soil organic carbon (SOC) is an important part of the global C pool and is sensitive to climate change. The SOC content and fractions of rice paddies along four elevations (250, 1150, 1600 and 1800 m) on the same slope in four seasons [...] Read more.
Soil organic carbon (SOC) is an important part of the global C pool and is sensitive to climate change. The SOC content and fractions of rice paddies along four elevations (250, 1150, 1600 and 1800 m) on the same slope in four seasons (spring, summer, autumn and winter) at Yuanyang Terrace in southwest China were investigated, and their relationship with environmental factors was analyzed. The contents of SOC, unprotected SOC (uPOM), physically protected SOC (pPOM) and biochemically protected SOC (bcPOM) in rice paddies at a low elevation (250 m), were significantly lower by 49–51% than those at relatively high elevations (1600 m and 1800 m). Among the SOC fractions, the highest proportion (33–50%) was uPOM, followed by pPOM and bcPOM (accounting for 17–40%), and the lowest proportion was chemically protected SOC (cPOM). In addition, there were interseasonal differences among the contents of SOC fractions, with a significantly higher content of SOC, uPOM and pPOM at an elevation of 1600 m in summer than in the other three seasons, whereas the cPOM content at an elevation of 250 m in spring was significantly higher than in the other three higher elevations. According to the redundancy analysis (RDA), total nitrogen was the key environmental factor, with an explanatory degree of 56% affecting the contents of SOC and its fractions. Thus, the SOC content increased with increasing elevation, and physical and biochemical protection were potential stabilization mechanisms responsible for their stability in the rice paddy of Yuanyang Terrace. These results provides empirical evidence for the elevational distribution patterns and seasonal dynamics of SOC fractions in rice paddies across Yuanyang Terrace. These findings highlight the importance of physical and biochemical protection mechanisms in stabilizing SOC in rice paddies, which could enhance long-term C sequestration and contribute to climate change mitigation in terraced agroecosystems. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

21 pages, 1842 KiB  
Article
Study on the Interaction Effect of Heavy Metal Cadmium in Soil–Plant System Controlled by Biochar and Nano-Zero-Valent Iron
by Jiarui Wang, Rangzhuoma Cai, Zhaozhao Hu, Liqun Cai and Jun Wu
Int. J. Mol. Sci. 2025, 26(9), 4373; https://doi.org/10.3390/ijms26094373 - 4 May 2025
Viewed by 1025
Abstract
The accumulation of heavy metal cadmium (Cd) in farmland soil in edible parts of crops seriously threatens plant growth, human health, and even the global ecological environment. Finding stabilization remediation technology is an important means to treat Cd-contaminated soil. This study comprehensively evaluated [...] Read more.
The accumulation of heavy metal cadmium (Cd) in farmland soil in edible parts of crops seriously threatens plant growth, human health, and even the global ecological environment. Finding stabilization remediation technology is an important means to treat Cd-contaminated soil. This study comprehensively evaluated the synergistic effects of independent or combined application of biochar (BC) (10, 30 g kg−1) and nano zero-valent iron (nZVI) (0.1% w/w) on soil properties and morphological and physiological traits of pakchoi (Brassica rapa L. subsp. chinensis) under Cd (1, 3 mg kg−1) stress by pot experiments. It was shown that Cd toxicity negatively affected soil properties, reduced pakchoi biomass and total chlorophyll content, and increased oxidative stress levels. On the contrary, the combined application of BC (30 g kg−1) and nZVI (0.1%, w/w) reduced the Cd accumulation in the shoot parts of pakchoi from 0.78 mg·kg−1 to 0.11 mg·kg−1, which was lower than the Cd limit standard of leafy vegetables (0.20 mg kg−1) in GB 2762-2017 “National Food Safety Standard”. Compared with the control, the treatment group achieved a 61.66% increase in biomass and a 105.56% increase in total chlorophyll content. At the same time, the activities of catalase (CAT) and superoxide dismutase (SOD) increased by 34.86% and 44.57%, respectively, and the content of malondialdehyde (MDA) decreased by 71.27%. In addition, the application of BC alone (30 g·kg−1) increased the soil pH value by 0.43 units and the organic carbon (SOC) content by 37.82%. Overall, the synergistic effect of BC (30 g kg−1) and nZVI (0.1% w/w) helped to restore soil homeostasis and inhibit the biotoxicity of Cd, which provided a new option for soil heavy metal remediation and crop toxicity mitigation. Full article
(This article belongs to the Special Issue Toxicity of Heavy Metal Compounds)
Show Figures

Figure 1

32 pages, 6010 KiB  
Article
Association of Selected STAT Inhibitors with Prolactin-Induced Protein (PIP) in Breast Cancer
by Karolina Jabłońska, Alicja Kmiecik, Katarzyna Nowińska, Aleksandra Piotrowska, Jarosław Suchański, Katarzyna Ratajczak-Wielgomas, Aleksandra Partyńska, Hanna Romanowicz, Beata Smolarz, Rafał Matkowski and Piotr Dzięgiel
Int. J. Mol. Sci. 2025, 26(4), 1416; https://doi.org/10.3390/ijms26041416 - 7 Feb 2025
Viewed by 1326
Abstract
Breast cancer (BC) is the most common cancer in women, and a higher level of prolactin-induced protein (PIP) is associated with better responses to adjuvant chemotherapy. The signal transducer and activator of transcription 5 (STAT5) is a potential regulator of the PIP gene. [...] Read more.
Breast cancer (BC) is the most common cancer in women, and a higher level of prolactin-induced protein (PIP) is associated with better responses to adjuvant chemotherapy. The signal transducer and activator of transcription 5 (STAT5) is a potential regulator of the PIP gene. Prolactin (PRL) and its receptor (PRLR) activate JAK2/STAT5 signaling in BC, which is modulated by inhibitors like suppressors of cytokine signaling (SOCS) proteins and protein inhibitors of activated STAT (PIAS). Using real-time PCR and immunohistochemistry, we studied the relationship between PIP and STAT5 inhibitors in BC. Our findings indicated that PIP and STAT5 levels decrease with a higher tumor grade, size, and tumor/nodes/metastasis (TNM) clinical stage, while nuclear PIAS3 levels increase with tumor progression. Both STAT inhibitors are linked to estrogen and progesterone receptor status. Notably, STAT5 correlates positively with PIP, SOCS3, and PIAS3, suggesting that it may be a favorable prognostic factor. Among the STAT inhibitors, only nuclear PIAS3 expression correlates with PIP. In vitro studies indicated that silencing PIAS3 in T47D cells does not affect PIP expression or sensitivity to doxorubicin (DOX), but T47D control cells with a higher PIP expression are more sensitive to DOX, highlighting the need for further investigation into these mechanisms. Full article
(This article belongs to the Special Issue Molecular Mechanisms and Targeted Therapies of Breast Cancer)
Show Figures

Figure 1

19 pages, 2912 KiB  
Article
Biochar Enhances Paddy Productivity, Carbon Sequestration, and Reduces Greenhouse Gas Emissions in the Middle Yangtze River Region
by He Wang, Wei Dong, Dongguo Shao, Luguang Liu, Bin Liao, Wenquan Gu, Chi Tang, Jie Liu, Wentong Hu, Jinping Feng and Jie Huang
Agronomy 2024, 14(12), 3067; https://doi.org/10.3390/agronomy14123067 - 23 Dec 2024
Cited by 2 | Viewed by 1684
Abstract
Biochar’s benign effects on agricultural production have been demonstrated. Still, no consistent conclusions have been drawn on the impact of biochar-amended paddy fields on carbon sequestration, gas emission reduction, and efficiency enhancement in typical cropping areas in the middle Yangtze River. A field [...] Read more.
Biochar’s benign effects on agricultural production have been demonstrated. Still, no consistent conclusions have been drawn on the impact of biochar-amended paddy fields on carbon sequestration, gas emission reduction, and efficiency enhancement in typical cropping areas in the middle Yangtze River. A field experiment using five dosages of biochar (CK, BC1.5, BC3, BC4.5, and BC6) at 0, 1.5, 3, 4.5, and 6 kg·m−2 was conducted at the Hubei Irrigation Experiment Center Station, Jingmen City, Hubei Province, China, to investigate the effects of biochar on carbon sequestration, greenhouse gas emissions, and agricultural efficiency in paddy in the middle Yangtze River Region. This study showed that the optimal biochar dosage was 4.5 kg·m−2 (BC4.5). Biochar significantly improved soil properties, increased rice yield by 26.4–61.4%, and enhanced water use efficiency (WUE) and economic profit (EP) by 32.0–83.7% and −8.0–48.6%, respectively. Biochar increased soil carbon sequestration (SCS) and carbon pool management index (CPMI) by 23.0–198.3% and 22.9–71.5%, respectively. Biochar also reduced greenhouse gas emission intensity (GHGI), global warming potential (GWP), and emissions of CO2, CH4, and N2O. Furthermore, structural equation modeling (SEM) indicated that soil organic carbon (SOC), in addition to the “biochar” influence factor, was a key positive influence factor for SCS, CPMI, and EP. Another major positive factor for GWP was silt, and for WUE it was saturated hydraulic conductivity, while TN and SOC were the major negative variables for GHGI. In summary, biochar demonstrated outstanding carbon sequestration and emission reduction impacts while ensuring crop production growth and efficiency improvement. The results provide a research basis for safeguarding food security and mitigating climate warming in the middle Yangtze River region. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

17 pages, 2510 KiB  
Article
Sustainable Soil Management in Alkaline Soils: The Role of Biochar and Organic Nitrogen in Enhancing Soil Fertility
by Mushtaq Ahmad Khan, Abdul Basir, Syed Tanveer Shah, Monsif Ur Rehman, Mehmood ul Hassan, Hongbing Zheng, Abdul Basit, Árpád Székely, Aftab Jamal, Emanuele Radicetti, Yaser Hassan Dewir and Roberto Mancinelli
Land 2024, 13(11), 1869; https://doi.org/10.3390/land13111869 - 8 Nov 2024
Cited by 1 | Viewed by 1380
Abstract
Biochar (BC) serves a vital function in sequestering carbon, improving nutrient cycles, and boosting overall soil quality. This research explored the enhancement of the chemical and physical properties of soil (alkaline) using nitrogen and biochar (from organic and inorganic sources) in a semi-arid [...] Read more.
Biochar (BC) serves a vital function in sequestering carbon, improving nutrient cycles, and boosting overall soil quality. This research explored the enhancement of the chemical and physical properties of soil (alkaline) using nitrogen and biochar (from organic and inorganic sources) in a semi-arid climate during the autumn seasons of 2015–2016 and 2016–2017. The study involved applying biochar at various rates (0, 10, 20, and 30 t ha⁻1) and nitrogen at different levels (0, 90, 120, and 150 kg ha⁻1) using urea, poultry manure (PM), and farmyard manure (FYM) as nitrogen sources, which were applied to the field in a randomized complete block design with split-plot arrangement. The application of biochar at the highest rate (30 t ha⁻1) resulted in a significant increase of over 120% in soil organic matter (SOM), soil organic carbon (SOC), and soil moisture content (SMC). Additionally, it increased total soil nitrogen (STN) by 14.16% and mineral nitrogen (SMN) by 9.09%. In contrast, applying biochar at this rate reduced soil bulk density (SBD), pH, and electrical conductivity (EC) by 28.52%, 3.38%, and 2.27%, respectively, compared to the control. Similarly, applying nitrogen at 150 kg ha⁻1 using FYM significantly improved SOC, SOM, SMC, and SBD. At the same rate, using PM as a nitrogen source enhanced STN and SMN while reducing soil pH and EC. In conclusion, this study shows that applying biochar at 30 t ha⁻1 combined with nitrogen at 150 kg ha⁻1, sourced from either PM or FYM, offers great potential for improving soil fertility and promoting carbon sequestration in alkaline soils of semi-arid regions. These findings highlight the value of integrating BC and organic N sources for enhancing agroecosystem sustainability. Thus, this study provides a promising pathway to enhance soil quality, improve crop productivity, and support sustainable agricultural practices in challenging environments. Full article
Show Figures

Figure 1

16 pages, 4638 KiB  
Essay
Effects of Fertilization and Planting Modes on Soil Organic Carbon and Microbial Community Formation of Tree Seedlings
by Sutong Fan, Yao Tang, Hongzhi Yang, Yuda Hu, Yelin Zeng, Yonghong Wang, Yunlin Zhao, Xiaoyong Chen, Yaohui Wu and Guangjun Wang
Plants 2024, 13(18), 2665; https://doi.org/10.3390/plants13182665 - 23 Sep 2024
Cited by 4 | Viewed by 2111
Abstract
Biochar and organic fertilizer can significantly increase soil organic carbon (SOC) and promote agricultural production, but it is still unclear how they affect forest SOC after. Here, low-quality plantation soil was subjected to four distinct fertilization treatments: (CK, without fertilization; BC, tea seed [...] Read more.
Biochar and organic fertilizer can significantly increase soil organic carbon (SOC) and promote agricultural production, but it is still unclear how they affect forest SOC after. Here, low-quality plantation soil was subjected to four distinct fertilization treatments: (CK, without fertilization; BC, tea seed shell biochar alone; OF, tea meal organic fertilizer alone; BCF, tea seed shell biochar plus tea meal organic fertilizer). Cunninghamia lanceolata (Lamb.) Hook and Cyclobalanopsis glauca (Thunb.) Oersted seedlings were then planted in pots at the ratios of 2:0, 1:1, and 0:2 (SS, SQ, QQ) and grown for one year. The results showed that the BCF treatment had the best effect on promoting seedling growth and increasing SOC content. BCF changed soil pH and available nutrient content, resulting in the downregulation of certain oligotrophic groups (Acidobacteria and Basidiomycetes) and the upregulation of eutrophic groups (Ascomycota and Proteobacteria). Key bacterial groups, which were identified by Line Discriminant Analysis Effect Size analysis, were closely associated with microbial biomass carbon (MBC) and SOC. Pearson correlation analysis showed that bacterial community composition exhibited a positive correlation with SOC, MBC, available phosphorus, seedling biomass, and plant height, whereas fungal community composition was predominantly positively correlated with seedling underground biomass. It suggested that environmental differences arising from fertilization and planting patterns selectively promote microbial communities that contribute to organic carbon formation. In summary, the combination of biochar and organic fertilizers would enhance the improvement and adaptation of soil microbial communities, playing a crucial role in increasing forest soil organic carbon and promoting tree growth. Full article
Show Figures

Figure 1

16 pages, 2273 KiB  
Article
Enhanced Soil Fertility and Carbon Sequestration in Urban Green Spaces through the Application of Fe-Modified Biochar Combined with Plant Growth-Promoting Bacteria
by Guoyao Niu, Chiquan He, Shaohua Mao, Zongze Chen, Yangyang Ma and Yi Zhu
Biology 2024, 13(8), 611; https://doi.org/10.3390/biology13080611 - 12 Aug 2024
Cited by 7 | Viewed by 2463
Abstract
The soil of urban green spaces is severely degraded due to human activities during urbanization, and it is crucial to investigate effective measures that can restore the ecological functions of the soil. This study investigated the effects of plant growth promoting bacteria ( [...] Read more.
The soil of urban green spaces is severely degraded due to human activities during urbanization, and it is crucial to investigate effective measures that can restore the ecological functions of the soil. This study investigated the effects of plant growth promoting bacteria (Bacillus clausii) and Fe-modified biochar on soil fertility increases and mechanisms of carbon sequestration. Additionally, the effects on C-cycling-related enzyme activity and the bacterial community were also explored. Six treatments included no biochar or Bacillus clausii suspension added (CK), only Bacillus clausii suspension (BC), only biochar (B), only Fe-modified biochar (FeB), biochar combined with Bacillus clausii (BBC), and Fe-modified biochar combined with Bacillus clausii (FeBBC). Compared with other treatments, the FeBBC treatment significantly decreased soil pH, alleviated soil alkalization, and increased the alkali-hydro nitrogen content in the soil. Compared to the individual application of FeB and BC, the FeBBC treatment significantly improved aggregates’ stability and positively improved soil fertility and ecological function. Additionally, compared to the individual application of FeB and BC, the soil organic carbon (SOC), particulate organic carbon (POC), and soil inorganic carbon (SIC) contents for the FeBBC-treated soil increased by 28.46~113.52%, 66.99~434.72%, and 7.34~10.04%, respectively. In the FeBBC treatment, FeB can improve soil physicochemical properties and provide bacterial attachment sites, increase the abundance and diversity of bacterial communities, and promote the uniform distribution of carbon-related bacteria in the soil. Compared to a single ecological restoration method, FeBBC treatment can improve soil fertility and carbon sequestration, providing important reference values for urban green space soil ecological restoration. Full article
(This article belongs to the Special Issue Biology, Ecology and Management of Aquatic Macrophytes and Algae)
Show Figures

Graphical abstract

14 pages, 5795 KiB  
Article
CIRCADIAN CLOCK-ASSOCIATED1 Delays Flowering by Directly Inhibiting the Transcription of BcSOC1 in Pak-choi
by Ying He, Dong Xiao, Cheng Jiang, Yiran Li and Xilin Hou
Plants 2024, 13(16), 2190; https://doi.org/10.3390/plants13162190 - 8 Aug 2024
Cited by 1 | Viewed by 1228
Abstract
Flowering is critical to the success of plant propagation. The MYB family transcription factor CIRCADIAN CLOCK-ASSOCIATED1 (CCA1) is an essential component of the core loop of the circadian clock and plays a crucial role in regulating plant flowering time. In this [...] Read more.
Flowering is critical to the success of plant propagation. The MYB family transcription factor CIRCADIAN CLOCK-ASSOCIATED1 (CCA1) is an essential component of the core loop of the circadian clock and plays a crucial role in regulating plant flowering time. In this study, we found that photoperiod affects the expression pattern and expression level of BcCCA1, which is delayed flowering time under short-day conditions in Pak-choi [Brassica campestris (syn. Brassica rapa) ssp. chinensis]. We detected overexpression and silencing of BcCCA1 in Pak-choi, resulting in delayed and promoted flowering time, respectively. Furthermore, we also discovered that FLOWERING LOCUS C (BcFLC) and SUPPRESSOR OF CONSTANS1 (BcSOC1) were expressed significantly differently in BcCCA1 overexpression and silencing plants compared with control plants. Therefore, we further investigated the interaction relationship between BcCCA1, BcFLC, and BcSOC1, and the results showed that BcCCA1 and BcFLC as a complex interacted with each other. Moreover, both BcCCA1 and BcFLC can directly bind to the promoter of BcSOC1 and repress its transcription, and BcCCA1 can form a complex with BcFLC to enhance the transcriptional inhibition of BcSOC1 by BcFLC. This study reveals a new mechanism by which the circadian clock regulates flowering time. Full article
(This article belongs to the Special Issue Floral Biology 3.0)
Show Figures

Figure 1

18 pages, 2256 KiB  
Article
Biochar Co-Compost: A Promising Soil Amendment to Restrain Greenhouse Gases and Improve Rice Productivity and Soil Fertility
by Muhammad Umair Hassan, Guoqin Huang, Rizwan Munir, Tahir Abbas Khan and Mehmood Ali Noor
Agronomy 2024, 14(7), 1583; https://doi.org/10.3390/agronomy14071583 - 20 Jul 2024
Cited by 4 | Viewed by 2487
Abstract
Agriculture is a major source of greenhouse gas (GHG) emissions. Biochar has been recommended as a potential strategy to mitigate GHG emissions and improve soil fertility and crop productivity. However, few studies have investigated the potential of biochar co-compost (BCC) in relation to [...] Read more.
Agriculture is a major source of greenhouse gas (GHG) emissions. Biochar has been recommended as a potential strategy to mitigate GHG emissions and improve soil fertility and crop productivity. However, few studies have investigated the potential of biochar co-compost (BCC) in relation to soil properties, rice productivity, and GHG emissions. Therefore, we examined the potential of BC, compost (CP), and BCC in terms of environmental and agronomic benefits. The study comprised four different treatments: control, biochar, compost, and biochar co-compost. The application of all of the treatments increased the soil pH; however, BC and BCC remained the top performers. The addition of BC and BBC also limited the ammonium nitrogen (NH4+-N) availability and increased soil organic carbon (SOC), which limited the GHG emissions. Biochar co-compost resulted in fewer carbon dioxide (CO2) emissions, while BC resulted in fewer methane (CH4) emissions, which was comparable with BCC. Moreover, BC caused a marked reduction in nitrous oxide (N2O) emissions that was comparable to BCC. This reduction was attributed to increased soil pH, nosZ, and nirK abundance and a reduction in ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) abundance. The application of different amendments, particularly BCC, favored rice growth and productivity by increasing nutrient availability, soil carbon, and enzymatic activities. Lastly, BCC and BC also increased the abundance and diversity of soil bacteria, which favored plant growth and caused a reduction in GHG emissions. Our results suggest that BCC could be an important practice to recycle organic sources while optimizing climate change and crop productivity. Full article
(This article belongs to the Section Agricultural Biosystem and Biological Engineering)
Show Figures

Figure 1

10 pages, 884 KiB  
Article
Carbon Mineralization Dynamics of Switchgrass (Panicum virgatum) Biochar in a Northern Florida Soil
by Yuch-Ping Hsieh and Kristina Hatakka
Sustainability 2024, 16(10), 4060; https://doi.org/10.3390/su16104060 - 13 May 2024
Viewed by 1371
Abstract
Biochar has been considered one of the viable solutions for atmospheric carbon sequestration because of its resistance to mineralization in soils. However, our knowledge of the mineralization rates of biochar in soils is still inconclusive due to the drawbacks of either the study [...] Read more.
Biochar has been considered one of the viable solutions for atmospheric carbon sequestration because of its resistance to mineralization in soils. However, our knowledge of the mineralization rates of biochar in soils is still inconclusive due to the drawbacks of either the study methods or insufficient characterization of the studied materials or both. The objectives of this study were (1) to characterize switchgrass (SG) biochar by multi-element scanning thermal analysis (MESTA), and (2) to determine the mineralization rates of the SG biochar carbon (BC) in soil by the 13C tracer method. The results indicated that the 400 °C and the 600 °C SG biochars were not significantly different in chemical composition or thermal stability. A MESTA thermogram of the SG feedstock can predict the yield and thermal stability of the resulting biochar. The 13C tracer determined the mineralization rates and deduced the corresponding mean residence times (MRTs) of the BC, SG-C, and native SOC to be 347 years, 4 years, and 65 years, respectively. The MRT of BC should be a minimal estimate because of the limited incubation period. Even so, the MRT was already two orders of magnitude greater than that of the SG feedstock indicating the carbon sequestration potential of the biochar in soil. Full article
Show Figures

Figure 1

23 pages, 7815 KiB  
Article
Design of AD Converters in 0.35 µm SiGe BiCMOS Technology for Ultra-Wideband M-Sequence Radar Sensors
by Miroslav Sokol, Pavol Galajda, Jan Saliga and Patrik Jurik
Sensors 2024, 24(9), 2838; https://doi.org/10.3390/s24092838 - 29 Apr 2024
Cited by 2 | Viewed by 1355
Abstract
The article presents the analysis, design, and low-cost implementation of application-specific AD converters for M-sequence-based UWB applications to minimize and integrate the whole UWB sensor system. Therefore, the main goal of this article is to integrate the AD converter’s own design with the [...] Read more.
The article presents the analysis, design, and low-cost implementation of application-specific AD converters for M-sequence-based UWB applications to minimize and integrate the whole UWB sensor system. Therefore, the main goal of this article is to integrate the AD converter’s own design with the UWB analog part into the system-in-package (SiP) or directly into the system-on-a-chip (SoC), which cannot be implemented with commercial AD converters, or which would be disproportionately expensive. Based on the current and used UWB sensor system requirements, to achieve the maximum possible bandwidth in the proposed semiconductor technology, a parallel converter structure is designed and presented in this article. Moreover, 5-bit and 4-bit parallel flash AD converters were initially designed as part of the research and design of UWB M-sequence radar systems for specific applications, and are briefly introduced in this article. The requirements of the newly proposed specific UWB M-sequence systems were established based on the knowledge gained from these initial designs. After thorough testing and evaluation of the concept of the early proposed AD converters for these specific UWB M-sequence systems, the design of a new AD converter was initiated. After confirming sufficient characteristics based on the requirements of UWB M-sequence systems for specific applications, a 7-bit AD converter in low-cost 0.35 µm SiGe BiCMOS technology from AMS was designed, fabricated, and presented in this article. The proposed 7-bit AD converter achieves the following parameters: ENOB = 6.4 bits, SINAD = 38 dB, SFDR = 42 dBc, INL = ±2-bit LSB, and DNL = ±1.5 LSB. The maximum sampling rate reaches 1.4 Gs/s, the power consumption at 20 Ms/s is 1050 mW, and at 1.4 Gs/s is 1290 mW, with a power supply of −3.3 V. Full article
(This article belongs to the Section Radar Sensors)
Show Figures

Figure 1

14 pages, 2451 KiB  
Article
Hardware Acceleration of Digital Pulse Shape Analysis Using FPGAs
by César González, Mariano Ruiz, Antonio Carpeño, Alejandro Piñas, Daniel Cano-Ott, Julio Plaza, Trino Martinez and David Villamarin
Sensors 2024, 24(9), 2724; https://doi.org/10.3390/s24092724 - 25 Apr 2024
Cited by 2 | Viewed by 2019
Abstract
The BC501A sensor is a liquid scintillator frequently used in nuclear physics for detecting fast neutrons. This paper describes a hardware implementation of digital pulse shape analysis (DPSA) for real-time analysis. DPSA is an algorithm that extracts the physically relevant parameters from the [...] Read more.
The BC501A sensor is a liquid scintillator frequently used in nuclear physics for detecting fast neutrons. This paper describes a hardware implementation of digital pulse shape analysis (DPSA) for real-time analysis. DPSA is an algorithm that extracts the physically relevant parameters from the detected BC501A signals. The hardware solution is implemented in a MicroTCA system that provides the physical, mechanical, electrical, and cooling support for an AMC board (NAMC-ZYNQ-FMC) with a Xilinx ZYNQ Ultrascale-MP SoC. The Xilinx FPGA programmable logic implements a JESD204B interface to high-speed ADCs. The physical and datalink JESD204B layers are implemented using hardware description language (HDL), while the Xilinx high-level synthesis language (HLS) is used for the transport and application layers. The DPSA algorithm is a JESD204B application layer that includes a FIR filter and a constant fraction discriminator (CFD) function, a baseline calculation function, a peak detection function, and an energy calculation function. This architecture achieves an analysis mean time of less than 100 µs per signal with an FPGA resource utilization of about 50% of its most used resources. This paper presents a high-performance DPSA embedded system that interfaces with a 1 GS/s ADC and performs accurate calculations with relatively low latency. Full article
(This article belongs to the Special Issue Advanced Interface Circuits for Sensor Systems (Volume II))
Show Figures

Figure 1

14 pages, 5157 KiB  
Article
The Application of Biochar Enhances Soil Organic Carbon and Rice Yields
by Chuang Yang, Sen Dou, Dan Guo and Hangjin Zhao
Agronomy 2024, 14(3), 455; https://doi.org/10.3390/agronomy14030455 - 25 Feb 2024
Cited by 4 | Viewed by 2773
Abstract
The freezing winter temperatures in Northeast China hinder the breakdown speed of straw, making it challenging to implement widespread straw return in rice fields, meaning that crop remnants are not efficiently utilised. This study involved a pot experiment conducted on rice plants that [...] Read more.
The freezing winter temperatures in Northeast China hinder the breakdown speed of straw, making it challenging to implement widespread straw return in rice fields, meaning that crop remnants are not efficiently utilised. This study involved a pot experiment conducted on rice plants that were treated with varying quantities of biochar: CK (no biochar); BC1 (5 t ha−1); BC2 (10 t ha−1); and BC3 (20 t ha−1). An investigation was conducted to examine the impact of biochar on the soil organic carbon (SOC), humus (HS) composition, humic acid (HA) structure, and rice yield of paddy fields. The findings demonstrated that the use of biochar led to a substantial rise in SOC and HA-C concentrations in the soil layer between 20 and 40 cm. Additionally, biochar’s application enhanced soil humification. Notably, the treatment with BC3 (20 t ha−1) had the most pronounced impact. The O/C ratio in the HA and the relative strength of the peaks at 1620 cm−1 on the infrared spectra showed a more pronounced response to the BC3 treatment compared to the other biochar treatments. However, the application of the BC1 treatment at a rate of 5 t ha−1 and the BC2 treatment at a rate of 10 t ha−1 had a minimal impact on the fluorescence intensity of humic acid (HA). The application of the BC3 treatment increased the aromatic nature of the humic acid (HA) in paddy soil, leading to the formation of an intricate and enduring HA structure. Furthermore, the use of the BC3 treatment resulted in a notable enhancement in the quantity of spikes, spike weight, and number of grains per spike. Additionally, it positively impacted the accumulation of dry matter in the spike, leading to a substantial 13.7% increase in the rice yield. Applying biochar at a rate of 20 t ha−1 is a sensible and effective approach to enhance the soil organic carbon (SOC) content, enhance the stability of the humic acid (HA)’s structure, and raise the rice yield in the rice-growing area of Northeast China. This study’s findings will establish a theoretical foundation for utilising soil biochar in the rice fields located in Northeast China. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

19 pages, 3106 KiB  
Article
Increased Expression of Proinflammatory Genes in Peripheral Blood Cells Is Associated with Cardiac Cachexia in Patients with Heart Failure with Reduced Ejection Fraction
by Anja Sandek, Christoph Gertler, Miroslava Valentova, Nadja Jauert, Manuel Wallbach, Wolfram Doehner, Stephan von Haehling, Stefan D. Anker, Jens Fielitz and Hans-Dieter Volk
J. Clin. Med. 2024, 13(3), 733; https://doi.org/10.3390/jcm13030733 - 27 Jan 2024
Cited by 2 | Viewed by 2129
Abstract
Background: Cardiac cachexia (CC) in chronic heart failure with reduced ejection fraction (HFrEF) is characterized by catabolism and inflammation predicting poor prognosis. Levels of responsible transcription factors like signal transducer and activator of transcription (STAT)1, STAT3, suppressor of cytokine signaling (SOCS)1 and [...] Read more.
Background: Cardiac cachexia (CC) in chronic heart failure with reduced ejection fraction (HFrEF) is characterized by catabolism and inflammation predicting poor prognosis. Levels of responsible transcription factors like signal transducer and activator of transcription (STAT)1, STAT3, suppressor of cytokine signaling (SOCS)1 and SOCS3 in peripheral blood cells (PBC) are underinvestigated in CC. Expression of mediators was related to patients’ functional status, body composition (BC) and metabolic gene expression in skeletal muscle (SM). Methods: Gene expression was quantified by qRT-PCR in three cohorts: non-cachectic patients (ncCHF, n = 19, LVEF 31 ± 7%, BMI 30.2 ± 5.0 kg/m2), cachectic patients (cCHF; n = 18, LVEF 27 ± 7%, BMI 24.3 ± 2.5 kg/m2) and controls (n = 17, LVEF 70 ± 7%, BMI 27.6 ± 4.6 kg/m2). BC was assessed by dual-energy X-ray absorptiometry. Blood inflammatory markers were measured. We quantified solute carrier family 2 member 4 (SLC2A4) and protein degradation by expressions of proteasome 20S subunit beta 2 and calpain-1 catalytic subunit in SM biopsies. Results: TNF and IL-10 expression was higher in cCHF than in ncCHF and controls (all p < 0.004). cCHF had a lower fat mass index (FMI) and lower fat-free mass index (FFMI) compared to ncCHF and controls (p < 0.05). STAT1 and STAT3 expression was higher in cCHF vs. ncCHF or controls (1.1 [1.6] vs. 0.8 [0.9] vs. 0.9 [1.1] RU and 4.6 [5.5] vs. 2.5 [4.8] vs. 3.0 [4.2] RU, all ANOVA-p < 0.05). The same applied for SOCS1 and SOCS3 expression (1.1 [1.5] vs. 0.4 [0.4] vs. 0.4 [0.5] and 0.9 [3.3] vs. 0.4 [1.1] vs. 0.8 [0.9] RU, all ANOVA-p < 0.04). In cCHF, higher TNF and STAT1 expression was associated with lower FMI (r = 0.5, p = 0.053 and p < 0.05) but not with lower FFMI (p > 0.4). In ncCHF, neither cytokine nor STAT/SOCS expression was associated with BC (all p > 0.3). SLC2A4 was upregulated in SM of cCHF vs. ncCHF (p < 0.03). Conclusions: Increased STAT1, STAT3, SOCS1 and SOCS3 expression suggests their involvement in CC. In cCHF, higher TNF and STAT-1 expression in PBC were associated with lower FMI. Increased SLC2A4 in cachectic SM biopsies indicates altered glucose metabolism. Full article
(This article belongs to the Section Cardiology)
Show Figures

Graphical abstract

18 pages, 2591 KiB  
Article
Seasonal and Day–Night Variations in Carbonaceous Aerosols and Their Light-Absorbing Properties in Guangzhou, China
by Jiannan Su, Runqi Zhang, Bowen Liu, Mengxue Tong, Shaoxuan Xiao, Xiaoyang Wang, Qilong Zhao, Wei Song, Dilinuer Talifu and Xinming Wang
Atmosphere 2023, 14(10), 1545; https://doi.org/10.3390/atmos14101545 - 10 Oct 2023
Cited by 3 | Viewed by 1878
Abstract
Carbonaceous aerosols (CAs), including elemental carbon (EC) and organic carbon (OC), have become the dominant component in PM2.5 in many Chinese cities, and it is imperative to address their spatiotemporal variations and sources in order to continually improve air quality. In this [...] Read more.
Carbonaceous aerosols (CAs), including elemental carbon (EC) and organic carbon (OC), have become the dominant component in PM2.5 in many Chinese cities, and it is imperative to address their spatiotemporal variations and sources in order to continually improve air quality. In this study, the mass concentrations and light absorption properties of EC and OC in PM2.5 were investigated at diverse sites in Guangzhou, in the winter of 2020 and the autumn of 2021, using the DRI Model 2015 thermal–optical carbon analyzer. The results showed that total EC and organic matter (OM = OC × 1.8) could account for nearly 30% of the PM2.5 mass concentrations. Secondary production was the most important source for OC, with secondary OC (SOC) percentages in the OC as high as 72.8 ± 7.0% in autumn and 68.4 ± 13.1% in winter. Compared to those in 2015, OC and EC concentrations were reduced by 25.4% and 73.4% in 2021, highlighting the effectiveness of control measures in recent years. The absorption coefficient of brown carbon at 405 nm (babs,BrC,405) decreased by over 40%, and the mass absorption coefficient (MAC) at 405 nm of total carbon (TC) decreased by over 30%. EC and OC concentrations and the light absorption of black carbon (babs,BC,405) showed no significant diurnal differences in both autumn and winter mainly because the reduction in anthropogenic emissions at night was compensated by the lowering of the boundary layer. Differentially, babs,BrC,405 was significantly lower during daytime than at night in autumn, probably due to the daytime photobleaching effect. The sources of EC, OC, BC, and BrC were preliminarily diagnosed by their correlation with typical source markers. In autumn, babs,BrC,405 might be related to biomass burning and coal combustion, while babs,BC,405 were largely related to vehicle emissions and coal combustion. In winter, babs,BrC,405 was closely related to coal combustion. Full article
(This article belongs to the Section Aerosols)
Show Figures

Figure 1

Back to TopTop