Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (387)

Search Parameters:
Keywords = Balaji

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1969 KiB  
Review
Computed Tomography and Coronary Plaque Analysis
by Hashim Alhammouri, Ramzi Ibrahim, Rahmeh Alasmar, Mahmoud Abdelnabi, Eiad Habib, Mohamed Allam, Hoang Nhat Pham, Hossam Elbenawi, Juan Farina, Balaji Tamarappoo, Clinton Jokerst, Kwan Lee, Chadi Ayoub and Reza Arsanjani
Tomography 2025, 11(8), 85; https://doi.org/10.3390/tomography11080085 - 30 Jul 2025
Viewed by 300
Abstract
Advances in plaque imaging have transformed cardiovascular diagnostics through detailed characterization of atherosclerotic plaques beyond traditional stenosis assessment. This review outlines the clinical applications of varying modalities, including dual-layer spectral CT, photon-counting CT, dual-energy CT, and CT-derived fractional flow reserve (CT-FFR). These technologies [...] Read more.
Advances in plaque imaging have transformed cardiovascular diagnostics through detailed characterization of atherosclerotic plaques beyond traditional stenosis assessment. This review outlines the clinical applications of varying modalities, including dual-layer spectral CT, photon-counting CT, dual-energy CT, and CT-derived fractional flow reserve (CT-FFR). These technologies offer improved spatial resolution, tissue differentiation, and functional assessment of coronary lesions. Additionally, artificial intelligence has emerged as a powerful tool to automate plaque detection, quantify burden, and refine risk prediction. Collectively, these innovations provide a more comprehensive approach to coronary artery disease evaluation and support personalized management strategies. Full article
(This article belongs to the Special Issue New Trends in Diagnostic and Interventional Radiology)
Show Figures

Figure 1

20 pages, 1340 KiB  
Article
Assessment of Soil and Plant Nutrient Status, Spectral Reflectance, and Growth Performance of Various Dragon Fruit (Pitaya) Species Cultivated Under High Tunnel Systems
by Priyanka Belbase, Krishnaswamy Jayachandran and Maruthi Sridhar Balaji Bhaskar
Soil Syst. 2025, 9(3), 75; https://doi.org/10.3390/soilsystems9030075 - 14 Jul 2025
Viewed by 313
Abstract
Dragon fruit or pitaya (Hylocereus sp.) is an exotic tropical plant gaining popularity in the United States as it is a nutrient-rich fruit with mildly sweet flavor and a good source of fiber. Although high tunnels are being used to produce specialized [...] Read more.
Dragon fruit or pitaya (Hylocereus sp.) is an exotic tropical plant gaining popularity in the United States as it is a nutrient-rich fruit with mildly sweet flavor and a good source of fiber. Although high tunnels are being used to produce specialized crops, little is known about how pitaya growth, physiology and nutrient uptake change throughout the production period. This study aims to evaluate the impact of high tunnels and varying rates of vermicompost on three varieties of pitaya, White Pitaya (WP), Yellow Pitaya (YP), and Red Pitaya (RP), to assess the soil and plant nutrient dynamics, spectral reflectance changes and plant growth. Plants were assessed at 120 and 365 DAP (Days After Plantation). YP thrived in a high tunnel compared to an open environment in terms of survival before 120 DAP, with no diseased incidence and higher nutrient retention. The nutrient accumulation in the RP, WP, and YP shoot samples 120 DAP were ranked in the following order, K > N > Ca > Mg > P > Fe > Zn > B > Mn, while 365 DAP, they were ranked as K > Ca > N > Mg > P > S > Fe > Zn > B > Mn. The nutrient accumulation in the RP, WP, and YP, soil samples 120 and 365 DAP were ranked in the following order: N > Ca > Mg > P > K > Na > Zn. Soil nutrients showed a higher concentration of Na and K grown inside the high tunnels in all three pitaya species due to the increased concentration of soluble salts. Spectral reflectance analysis showed that RP and WP had higher reflectance in the visible and NIR region compared to YP due to their higher plant biomass and canopy cover. This study emphasizes the importance of environmental conditions, nutrition strategies, and plant physiology in the different pitaya plant species. The results suggest that high tunnels with appropriate vermicompost can enhance pitaya growth and development. Full article
Show Figures

Figure 1

13 pages, 1496 KiB  
Article
Yeast Surface Display of Protein Addresses Confers Robust Storage and Access of DNA-Based Data
by Magdelene N. Lee, Gunavaran Brihadiswaran, Balaji M. Rao, James M. Tuck and Albert J. Keung
DNA 2025, 5(3), 34; https://doi.org/10.3390/dna5030034 - 9 Jul 2025
Viewed by 282
Abstract
Background/Objectives: The potential of DNA as an information-dense storage medium has inspired a broad spectrum of creative systems. In particular, hybrid biomolecular systems that integrate new materials and chemistries with DNA could drive novel functions. In this work, we explore the potential [...] Read more.
Background/Objectives: The potential of DNA as an information-dense storage medium has inspired a broad spectrum of creative systems. In particular, hybrid biomolecular systems that integrate new materials and chemistries with DNA could drive novel functions. In this work, we explore the potential for proteins to serve as molecular file addresses. We stored DNA-encoded data in yeast and leveraged yeast surface display to readily produce the protein addresses and make them easy to access on the cell surface. Methods: We generated yeast populations that each displayed a distinct protein on their cell surfaces. These proteins included binding partners for cognate antibodies as well as chromatin-associated proteins that bind post-translationally modified histone peptides. For each specific yeast population, we transformed a library of hundreds of DNA sequences collectively encoding a specific image file. Results: We first demonstrated that the yeast retained file-encoded DNA through multiple cell divisions without a noticeable skew in their distribution or a loss in file integrity. Second, we showed that the physical act of sorting yeast displaying a specific file address was able to recover the desired data without a loss in file fidelity. Finally, we showed that analog addresses can be achieved by using addresses that have overlapping binding specificities for target peptides. Conclusions: These results motivate further exploration into the advantages proteins may confer in molecular information storage. Full article
Show Figures

Figure 1

17 pages, 4340 KiB  
Article
Butylated Hydroxyanisole (BHA) Disrupts Brain Signalling in Embryo–Larval Stage of Zebrafish Leading to Attention Deficit Hyperactivity Disorder (ADHD)
by Kandhasamy Veshaal, Ramasamy Vasantharekha, Usha Rani Balu, Mahesh Vallabi Aayush, Saheshnu Sai Balaji Pillai, Winkins Santosh and Barathi Seetharaman
J. Xenobiot. 2025, 15(4), 116; https://doi.org/10.3390/jox15040116 - 9 Jul 2025
Viewed by 368
Abstract
Background: Butylated hydroxyanisole (BHA) has been extensively used in several commercial industries as a preservative. It causes severe cellular and neurological damage affecting the developing fetus and might induce attention deficit hyperactivity disorder (ADHD). Methods: Zebrafish embryos were subjected to five distinct doses [...] Read more.
Background: Butylated hydroxyanisole (BHA) has been extensively used in several commercial industries as a preservative. It causes severe cellular and neurological damage affecting the developing fetus and might induce attention deficit hyperactivity disorder (ADHD). Methods: Zebrafish embryos were subjected to five distinct doses of BHA—0.5, 1, 2, 4, and 8 ppb up to 96 h post fertilization (hpf). Hatching rate, heart rate, and body malformations were assessed at 48 hpf, 72 hpf, and 48–96 hpf, respectively. After exposure, apoptotic activity, neurobehavioral evaluation, neurotransmitter assay, and antioxidant activity were assessed at 96 hpf. At 120 hpf, the expression of genes DRD4, COMT, 5-HTR1aa, and BDNF was evaluated by real-time PCR. Results: BHA exposure showed a delay in the hatching rate and a decrease in the heart rate of the embryo when compared with the control. Larvae exhibited developmental deformities such as bent spine, yolk sac, and pericardial edema. A higher density of apoptotic cells was observed in BHA-exposed larvae at 96 hpf. There was a decline in catalase (CAT), glutathione peroxidase (GPx), glutathione-S-transferase (GST), and superoxide dismutase (SOD) activity, indicating oxidative stress. There was a significant decrease in Acetylcholinesterase (AChE) activity and serotonin levels with an increase in concentration of BHA, leading to a dose-responsive increase in anxiety and impairment in memory. A significant decrease in gene expression was also observed for DRD4, COMT, 5-HTR1aa, and BDNF. Conclusions: Even at lower concentrations of BHA, zebrafish embryos suffered from developmental toxicity, anxiety, and impaired memory due to a decrease in AChE activity and serotonin levels and altered the expression of the mentioned genes. Full article
Show Figures

Figure 1

17 pages, 1442 KiB  
Article
The Role of Vermicompost and Vermicompost Tea in Sustainable Corn Production and Fall Armyworm Suppression
by Ivan Oyege and Maruthi Sridhar Balaji Bhaskar
Agriculture 2025, 15(13), 1433; https://doi.org/10.3390/agriculture15131433 - 3 Jul 2025
Cited by 1 | Viewed by 458
Abstract
Integrating organic soil amendments such as vermicompost (VC) and vermicompost tea (VCT) in agriculture has received increasing attention as a sustainable strategy to improve soil fertility, enhance plant growth, and suppress pest infestations. This study aimed to evaluate the effects of varying concentrations [...] Read more.
Integrating organic soil amendments such as vermicompost (VC) and vermicompost tea (VCT) in agriculture has received increasing attention as a sustainable strategy to improve soil fertility, enhance plant growth, and suppress pest infestations. This study aimed to evaluate the effects of varying concentrations of VCT (10%, 20%, and 40%), alone and in combination with VC (2.47 ton/ha), on the development and yield of corn (Zea mays), and suppression of fall armyworm (FAW, Spodoptera frugiperda) infestation. The experiment was conducted in seven raised beds with seven treatments: V0 (control), VCT10, VCT20, VCT40, VC1 + VCT10, VC1 + VCT20, and VC1 + VCT40. Six weekly applications of VCT were applied starting at the V2 stage, and soil and plant nutrient contents were determined post-harvest. Additionally, relative chlorophyll content, height, cob yield, dry biomass, and FAW infestations were assessed. Results show that both VC and VCT significantly enhanced soil nutrient content compared to the control treatment (V0). VCT20 and VC1 + VCT10 improved plant N, K, and micronutrient uptake. Corn treated with VCT10 and VC1 + VCT10 had the highest biomass (6.52 and 6.57 tons/ha, respectively), while VCT20 produced the highest cob yield (6.0 tons/ha), which was more than eight times that of V0. SPAD values and corn height were significantly high across all treatments, with VCT20 achieving the highest SPAD readings while the control achieved the lowest. For FAW infestation, the control treatment experienced moderate infestation. At the same time, there was complete suppression in VCT20 and VCT40 treatments and a reduction in VC + VCT treatments, likely due to the bioactive compounds and beneficial microbes in VC and VCT that strengthened plant immunity. The results suggest that VCT20 is a cost-effective, eco-friendly amendment for improving corn performance and FAW resistance. This study contributes to sustainable agriculture by demonstrating how organic amendments can enhance crop resilience while supporting environmentally friendly farming practices. Full article
(This article belongs to the Special Issue Vermicompost in Sustainable Crop Production—2nd Edition)
Show Figures

Graphical abstract

8 pages, 2484 KiB  
Proceeding Paper
Comparative Analysis of PMSMs and SRMs for Drone Applications
by Sarangapani Theperumal Vigneshwar, Mahadevan Balaji and Sundaramoorthy Prabhu
Eng. Proc. 2025, 93(1), 14; https://doi.org/10.3390/engproc2025093014 - 2 Jul 2025
Viewed by 243
Abstract
This research paper presents a comprehensive comparison between Permanent Magnet Synchronous Motors (PMSMs) and Switched Reluctance Motors (SRMs) in the context of drone applications. The study focuses on motors designed for an output power of 500 watts, with a torque of 0.8 Nm. [...] Read more.
This research paper presents a comprehensive comparison between Permanent Magnet Synchronous Motors (PMSMs) and Switched Reluctance Motors (SRMs) in the context of drone applications. The study focuses on motors designed for an output power of 500 watts, with a torque of 0.8 Nm. Simulation results demonstrate that both motor types achieve the specified power rating, exhibiting a torque output of 0.8 Nm. In this comparative analysis, key performance parameters, efficiency, and operational characteristics of PMSM and SRM are systematically evaluated. The study addresses the unique features and challenges associated with each motor type, providing valuable insights for optimizing drone propulsion systems. Additionally, the influence of these motor choices on drone efficiency, weight, and overall performance is discussed. The research contributes to the understanding of motor selection in drone design, offering practical guidance for engineers and researchers involved in unmanned aerial vehicle development. As drone applications continue to diversify, this comparative study aids in making informed decisions regarding motor technologies, balancing power requirements, and maximizing operational efficiency. Full article
Show Figures

Figure 1

18 pages, 5113 KiB  
Article
Exploring the Energy Landscape of Conformationally Constrained Peptides in Vacuum and in the Presence of an Explicit Solvent Using the MOLS Technique
by Balaji Nagarajan and Nehru Viji Sankaranarayanan
Sci 2025, 7(3), 93; https://doi.org/10.3390/sci7030093 - 1 Jul 2025
Viewed by 358
Abstract
This research represents the first application of the MOLS method to characterize the conformational energy landscape of an antimicrobial peptide within a solvent environment, providing a novel approach to understanding peptide behavior in solution. This method’s exhaustive nature ensures that all minimum-energy conformations [...] Read more.
This research represents the first application of the MOLS method to characterize the conformational energy landscape of an antimicrobial peptide within a solvent environment, providing a novel approach to understanding peptide behavior in solution. This method’s exhaustive nature ensures that all minimum-energy conformations for a given amino acid sequence are sampled. In this work, we employed a combination of MOLS and VMD software to generate structural models of a cyclic peptide, both solvated and non-solvated, and then utilized the CHARMM force field to conduct energy calculations throughout the sampling process. In the presence of a solvent, this method predicted a structure close to the experimental crystal structure. A significant reduction was observed in gamma turn motifs in the presence of water. The solvent molecules also favored different hydrogen bonding patterns in the peptide by orchestrating an intermolecular interaction with the peptide atoms. This intermolecular interaction involves an ARG side chain and further stabilizes the backbone. It is evident that solvent interactions are key in designing antimicrobial peptides. This study will help in designing and understanding peptides for use as therapeutic agents like antibacterial or antimicrobial peptides. Each conformer obtained from the MOLS method would be one of the best starting points for molecular dynamic simulation to further explore the landscape. Full article
Show Figures

Figure 1

23 pages, 7341 KiB  
Article
CRITIC–EDAS Approach for Evaluating Mechanical Properties of Flax/Vetiver/MFF Hybrid Composites
by M. Navin, Thirumalaisamy Ramakrishnan, Devarajan Balaji and Venkateswaran Bhuvaneswari
Polymers 2025, 17(13), 1790; https://doi.org/10.3390/polym17131790 - 27 Jun 2025
Cited by 1 | Viewed by 313
Abstract
This study investigates the mechanical properties and optimization of hybrid composites composed of flax, vetiver, and mahogany fruit fillers (MFFs) using epoxy resin as the matrix material. Nine distinct composite configurations were fabricated using different MFF concentrations (0, 5, and 10 wt.%) to [...] Read more.
This study investigates the mechanical properties and optimization of hybrid composites composed of flax, vetiver, and mahogany fruit fillers (MFFs) using epoxy resin as the matrix material. Nine distinct composite configurations were fabricated using different MFF concentrations (0, 5, and 10 wt.%) to evaluate their influence on tensile strength, flexural strength, and impact resistance. The MFF was subjected to alkali treatment and characterized using FTIR, XRD, and particle size analysis to enhance its compatibility with the polymer matrix. Vetiver and flax fibers also underwent alkali treatment to improve interfacial bonding. The composite fabrication process followed the Taguchi L9 orthogonal array to optimize the design. Mechanical testing revealed that the incorporation of MFF significantly improved the overall performance, with FVM9 (10 wt.% MFF) exhibiting the highest tensile strength (56.32 MPa), flexural strength (89.65 MPa), and impact resistance (10.46 kJ/m2). The CRITIC–EDAS method was employed to rank the composite configurations, and FVM9 was identified as the optimal configuration. Comparisons with alternative MCDM methods (WASPAS, COPRAS, TOPSIS, and VIKOR) validated the reliability of the rankings, and FVM9 consistently performed the best. The sensitivity analysis demonstrated the robustness of the CRITIC–EDAS approach, as the rankings remained stable despite variations in the criterion weights. The synergistic effect of flax, vetiver, and MFF, along with improved interfacial bonding, contributed to the superior mechanical properties of the hybrid composites. These findings highlight the potential of FVM composites as sustainable, high-performance materials for various industrial applications in the automotive, construction, and aerospace sectors. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

2 pages, 143 KiB  
Correction
Correction: Ssengonzi et al. Inhibitor of DNA Binding Protein 2 (ID2) Mediates the Anti-Proliferative and Pro-Differentiation Effects of Insulin-like Growth Factor-1 (IGF-1). Life 2024, 14, 1663
by Rebecca Ssengonzi, Yuye Wang, Jiayi Zhou, Yukako Kayashima, W. H. Davin Townley-Tilson, Balaji Rao, Qing Ma, Nobuyo Maeda-Smithies and Feng Li
Life 2025, 15(7), 1016; https://doi.org/10.3390/life15071016 - 26 Jun 2025
Viewed by 254
Abstract
In the original publication [...] Full article
14 pages, 4066 KiB  
Article
Microplastics in Stormwater: Sampling and Methodology Challenges
by Andres Sanchez Garcia, Huayun Zhou, Cesar Gomez-Avila, Tariq Hussain, Aryan Roghani, Danny Reible and Balaji Anandha Rao
Toxics 2025, 13(6), 502; https://doi.org/10.3390/toxics13060502 - 14 Jun 2025
Viewed by 677
Abstract
Stormwater runoff is a significant source of microplastics to surface water. This study addresses challenges in the sampling, treatment, and characterization of microplastics in existing stormwater control measures across various regions in the United States. Stormwater sediment samples were collected via traditional stormwater [...] Read more.
Stormwater runoff is a significant source of microplastics to surface water. This study addresses challenges in the sampling, treatment, and characterization of microplastics in existing stormwater control measures across various regions in the United States. Stormwater sediment samples were collected via traditional stormwater sampling approaches for particulate and inorganic contamination with portable automatic samplers, analyzed using visible and fluorescence microscopy with Nile red as a selective stain, and subsequently confirmed through Raman spectroscopy. The inclusion of laboratory and field blanks enabled the identification of contamination at key steps during sample handling. The results reveal that the filtration process is a significant source of laboratory contamination, while the sampling process itself could be a primary contributor to overall sample contamination. Additionally, it was found that using green fluorescence as the sole emission wavelength may underestimate MP quantities, as some particles emit fluorescence exclusively in the red spectrum. Raman analysis revealed interferences caused by pigments and additives in plastics, along with challenges evaluating particles in the low micron range (≤10 microns), which complicates a comprehensive analysis. The findings of this study emphasize the importance of implementing strong quality assurance and control measures when assessing the levels of microplastics in the environment, including sample collection, processing, and analysis. Full article
(This article belongs to the Special Issue Contaminants of Emerging Concern (CECs) in the Water Cycle)
Show Figures

Graphical abstract

36 pages, 13208 KiB  
Review
Additive Manufacturing of Metal-Infilled Polylactic Acid-Based Sustainable Biocomposites—A Review of Methods, Properties and Applications Abetted with Patent Landscape Analysis
by Sengottaiyan Sivalingam, Venkateswaran Bhuvaneswari, Lakshminarasimhan Rajeshkumar and Devarajan Balaji
Polymers 2025, 17(11), 1565; https://doi.org/10.3390/polym17111565 - 4 Jun 2025
Viewed by 1124
Abstract
Innovations in additive manufacturing (AM) methods represent a significant advancement in manufacturing technology, opening new avenues for creating objects in various shapes and sizes. Fused deposition modeling (FDM) is a specialized AM technique in which computers build layers upon each other to form [...] Read more.
Innovations in additive manufacturing (AM) methods represent a significant advancement in manufacturing technology, opening new avenues for creating objects in various shapes and sizes. Fused deposition modeling (FDM) is a specialized AM technique in which computers build layers upon each other to form a complete 3D object. The feasibility of producing metal parts using these methods has been thoroughly analyzed, but the design process has yet to catch up with manufacturing capabilities. Biodegradable aliphatic polyester PLA is derived from lactic acid. To enhance its strength, PLA is combined with metal particles, resulting in versatile property improvements and applications. While the aesthetic and functional qualities of PLA–metal composite filaments are intriguing, they also present difficulties related to extrusion, equipment wear, and maintaining consistent print quality. These challenges could be mitigated, to some extent, with careful tuning and specialized hardware. However, the inferior mechanical properties of bioresorbable PLA filaments highlight the need for the development of infilled PLA filaments to improve strength and other characteristics. This review discusses the 3D printing of PLA infilled with metal particles, various materials used, and their properties as a matter of interest in AM technology. Additionally, the applications of PLA–metal composites, along with their implications, limitations, and prospects, are comprehensively examined in this article. This sets the stage for the development of high-strength, sustainable materials for use in a range of engineering and technology fields. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Figure 1

28 pages, 4771 KiB  
Article
Discrimination of High Impedance Fault in Microgrids: A Rule-Based Ensemble Approach with Supervised Data Discretisation
by Arangarajan Vinayagam, Suganthi Saravana Balaji, Mohandas R, Soumya Mishra, Ahmad Alshamayleh and Bharatiraja C
Processes 2025, 13(6), 1751; https://doi.org/10.3390/pr13061751 - 2 Jun 2025
Viewed by 635
Abstract
This research presents a voting ensemble classification model to distinguish high impedance faults (HIFs) from other transients in a photovoltaic (PV) integrated microgrid (MG). Due to their low fault current magnitudes, sporadic incidence, and non-linear character, HIFs are difficult to detect with a [...] Read more.
This research presents a voting ensemble classification model to distinguish high impedance faults (HIFs) from other transients in a photovoltaic (PV) integrated microgrid (MG). Due to their low fault current magnitudes, sporadic incidence, and non-linear character, HIFs are difficult to detect with a conventional protective system. A machine learning (ML)-based ensemble classifier is used in this work to classify HIF more accurately. The ensemble classifier improves overall accuracy by combining the strengths of many rule-based models; this decreases the likelihood of overfitting and increases the robustness of classification. The ensemble classifier includes a classification process into two steps. The first phase extracts features from HIFs and other transient signals using the discrete wavelet transform (DWT) technique. A supervised discretisation approach is then used to discretise these attributes. Using discretised features, the rule-based classifiers like decision tree (DT), Java repeated incremental pruning (JRIP), and partial decision tree (PART) are trained in the second phase. In the classification step, the voting ensemble technique applies the rule of an average probability over the output predictions of rule-based classifiers to obtain the final target of classes. Under standard test conditions (STCs) and real-time weather circumstances, the ensemble technique surpasses individual classifiers in accuracy (95%), HIF detection success rate (93.3%), and overall performance metrics. Feature discretisation boosts classification accuracy to 98.75% and HIF detection to 95%. Additionally, the ensemble model’s efficacy is confirmed by classifying HIF from other transients in the IEEE 13-bus standard network. Furthermore, the ensemble model performs well, even with noisy event data. The proposed model provides higher classification accuracy in both PV-connected MG and IEEE 13 bus networks, allowing power systems to have effective protection against faults with improved reliability. Full article
Show Figures

Figure 1

12 pages, 2753 KiB  
Article
Plasma Matrix Metalloproteinases Signature as Biomarkers for Pediatric Tuberculosis Diagnosis: A Prospective Case–Control Study
by Nathella Pavan Kumar, Syed Hissar, Arul Nancy, Kannan Thiruvengadam, Velayuthum V. Banurekha, Sarath Balaji, S. Elilarasi, N. S. Gomathi, J. Ganesh, M. A. Aravind, Dhanaraj Baskaran, Soumya Swaminathan and Subash Babu
Diseases 2025, 13(6), 171; https://doi.org/10.3390/diseases13060171 - 27 May 2025
Viewed by 392
Abstract
Diagnosing tuberculosis (TB) in children presents significant challenges, necessitating the identification of reliable biomarkers for accurate diagnosis. In this study, we investigated plasma matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) as potential diagnostic markers. A prospective case–control study involved 167 children [...] Read more.
Diagnosing tuberculosis (TB) in children presents significant challenges, necessitating the identification of reliable biomarkers for accurate diagnosis. In this study, we investigated plasma matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) as potential diagnostic markers. A prospective case–control study involved 167 children classified into confirmed TB, unconfirmed TB, and unlikely TB control groups. Plasma levels of MMPs (MMP 1, 2, 3, 7, 8, 9, 12, and 13) and TIMPs (TIMP 1, 2, 3, and 4) were measured using multiplex assays. Elevated baseline levels of MMP-1, MMP-2, MMP-7, MMP-9, TIMP-1, TIMP-2, TIMP-3, and TIMP-4 were observed in active TB cases compared to unlikely TB controls. Receiver operating characteristics (ROC) analysis identified MMP-1, MMP-2, MMP-9, and TIMP-1 as potential biomarkers with over 80% sensitivity and specificity. A three-MMP signature (MMP-1, MMP-2, and MMP-9) demonstrated 100% sensitivity and specificity. The findings suggest that a baseline MMP signature could serve as an accurate biomarker for diagnosing pediatric TB, enabling early intervention and effective management. Full article
Show Figures

Figure 1

19 pages, 2884 KiB  
Article
Residual Impacts of Vermicompost-Derived Nutrients on a Strawberry–Corn Double Cropping System Under Plasticulture in South Florida
by Ivan Oyege and Maruthi Sridhar Balaji Bhaskar
Environments 2025, 12(5), 171; https://doi.org/10.3390/environments12050171 - 21 May 2025
Cited by 1 | Viewed by 1263
Abstract
The increasing demand for sustainable agricultural practices necessitates strategies such as organic fertilizer alternatives and residual nutrient use to enhance crop productivity while maintaining soil health. This study investigates the residual effects of vermicompost on strawberry growth and physiology after a corn cropping [...] Read more.
The increasing demand for sustainable agricultural practices necessitates strategies such as organic fertilizer alternatives and residual nutrient use to enhance crop productivity while maintaining soil health. This study investigates the residual effects of vermicompost on strawberry growth and physiology after a corn cropping cycle. The objectives were to assess how different vermicompost application rates impact strawberry yield, biomass, chlorophyll content, and fruit quality. The experiment was conducted over six months, using raised beds previously cultivated with corn and treated with six nutrient management strategies, namely, V0 (control), VC1, VCT100, VC1+VCT50, VC3, and VC3+VCT50. Metrics such as SPAD values, Brix sugar content, and stomatal conductance were measured throughout the growing season to assess physiological responses. Soil and plant chemical concentrations were determined at the end of the study to evaluate nutrient status. Results showed that the VC1 treatment produced the highest yield (11,573 kg/acre) and biomass (38,364 kg/acre), with significantly improved fruit quality (Brix sugar content of 8.3%) compared to the control (6.8%). SPAD values declined over time and showed no statistically significant differences among treatments. In the surface soil, VC3+VCT50 exhibited the highest N, P, Mg, Na, organic matter, and cation exchange capacity (CEC), and it also resulted in the highest leaf N. Leaves had higher N, P, K, and Mg concentrations, while Fe, Mn, and Cu were more concentrated in roots. Spectral reflectance data indicated reduced chlorophyll content in the VC3+VCT50-treated plants. These findings suggest that moderate vermicompost applications, such as VC1, can significantly contribute to sustainable agriculture by enhancing strawberry productivity and reducing dependence on synthetic fertilizers. However, high-rate applications, especially VC3 and VC3+VCT50, reduced plant vigor and yield, possibly due to salinity stress and the high sodium content in the vermicompost used in this study. Such outcomes may vary depending on feedstock composition, highlighting the importance of salinity screening when using organic amendments in salt-sensitive crops like strawberries. Full article
Show Figures

Figure 1

25 pages, 3272 KiB  
Review
Connective Tissue Disorder-Induced Diffuse Alveolar Hemorrhage: A Comprehensive Review with an Emphasis on Airway and Respiratory Management
by Mayuri Mudgal, Swetha Balaji, Ajeetha Priya Gajendiran, Ananthraj Subramanya, Shanjai Krishnan Murugan, Venkatesh Gondhi, Aseem Rai Bhatnagar and Kulothungan Gunasekaran
Life 2025, 15(5), 793; https://doi.org/10.3390/life15050793 - 15 May 2025
Viewed by 1097
Abstract
Diffuse alveolar hemorrhage (DAH), a catastrophic complication of connective tissue disorders (CTDs), manifests as rapid-onset hypoxemia, alveolar infiltrates, and progressive bleeding into the airways. While immune-mediated alveolar–endothelial injury primarily drives its pathophysiology, diagnosis is based on bronchoscopy and chest imaging. The clinical urgency [...] Read more.
Diffuse alveolar hemorrhage (DAH), a catastrophic complication of connective tissue disorders (CTDs), manifests as rapid-onset hypoxemia, alveolar infiltrates, and progressive bleeding into the airways. While immune-mediated alveolar–endothelial injury primarily drives its pathophysiology, diagnosis is based on bronchoscopy and chest imaging. The clinical urgency lies in securing the compromised airway and stabilizing respiratory failure, a challenge increased by CTD-specific anatomical alterations such as cervical spine instability, cricoarytenoid arthritis, and subglottic stenosis. High-dose corticosteroids and immunosuppression are essential, while severe cases require extracorporeal membrane oxygenation or plasmapheresis. This comprehensive review introduces two novel approaches to address fundamental gaps in the management of CTD-induced DAH: a structured algorithm for a CTD-specific airway risk stratification tool, integrating anatomical screening and the application of lung ultrasounds (LUSs) for post-intubation CTD-induced DAH ventilation management. The need for a multidisciplinary team approach is also discussed. Despite aggressive care, mortality remains high (25–50%), underscoring the necessity for improved early recognition and intervention strategies for these high-risk patients. Full article
(This article belongs to the Special Issue Infection, Inflammation and Rheumatology)
Show Figures

Figure 1

Back to TopTop