The Role of Vermicompost and Vermicompost Tea in Sustainable Corn Production and Fall Armyworm Suppression
Abstract
1. Introduction
2. Methodology
2.1. Study Site and Experimental Setup
2.2. Corn Physiology Measurement and Fall Armyworm Infestation
2.3. Plant and Soil Sampling and Chemical Analysis
2.4. Statistical Analysis
3. Results
3.1. Physicochemical Properties of Vermicompost (VC), Background Soil (BS), and Soils Post-Corn Harvest
3.2. Plant Chemical Analysis
3.3. Corn Height
3.4. Relative Chlorophyll Content of Corn
3.5. Fresh Cob Yield and Total Dry Biomass
3.6. Fall Armyworm Infestation in Corn
4. Discussion
4.1. Physicochemical Properties of Vermicompost (VC), Background Soil (BS), and Soils Post-Corn Harvest
4.2. Plant Chemical Analysis
4.3. Corn Height
4.4. Relative Chlorophyll Content of Corn
4.5. Fresh Cob Yield and Total Dry Biomass
4.6. Fall Armyworm Infestation in Corn
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- United Nations. World Population Projected to Reach 9.8 Billion in 2050, and 11.2 Billion in 2100. 2025. Available online: https://www.un.org/en/desa/world-population-projected-reach-98-billion-2050-and-112-billion-2100 (accessed on 27 May 2025).
- FAO. Global Agriculture Towards 2050; FAO: Rome, Italy, 2009. [Google Scholar]
- Viana, C.M.; Freire, D.; Abrantes, P.; Rocha, J.; Pereira, P. Agricultural land systems importance for supporting food security and sustainable development goals: A systematic review. Sci. Total Environ. 2022, 806, 150718. [Google Scholar] [CrossRef]
- Ahmad, M.F.; Ahmad, F.A.; Alsayegh, A.A.; Zeyaullah, M.; AlShahrani, A.M.; Muzammil, K.; Saati, A.A.; Wahab, S.; Elbendary, E.Y.; Kambal, N.; et al. Pesticides impacts on human health and the environment with their mechanisms of action and possible countermeasures. Heliyon 2024, 10, e29128. [Google Scholar] [CrossRef]
- Shah, F.; Wu, W. Soil and Crop Management Strategies to Ensure Higher Crop Productivity within Sustainable Environments. Sustainability 2019, 11, 1485. [Google Scholar] [CrossRef]
- Oyege, I.; Wasswa, J.; Bhaskar, M.S.B.; Nkedi-Kizza, P.; Kasozi, G.N. Mixed-Solvent Sorption and Moisture-Regime-Dependent Degradation of Chlorpyrifos in Selected Tropical Soils. Int. J. Environ. Res. 2024, 18, 14. [Google Scholar] [CrossRef]
- Kocaman, A.; İnci, Y.; Kıtır, N.; Turan, M.; Argın, S.; Yıldırım, E.; Giray, G.; Ersoy, N.; Güneş, A.; Katırcıoğlu, H.; et al. The effect of novel biotechnological vermicompost on tea yield, plant nutrient content, antioxidants, amino acids, and organic acids as an alternative to chemical fertilizers for sustainability. BMC Plant Biol. 2024, 24, 868. [Google Scholar] [CrossRef] [PubMed]
- Rey, C.S.; Oyege, I.; Shetty, K.G.; Jayachandran, K.; Bhaskar, M.S.B. Evaluation of Vermicompost, Seaweed, and Algal Fertilizers on Soil Fertility and Plant Production of Sunn Hemp. Soil Syst. 2024, 8, 132. [Google Scholar] [CrossRef]
- Gutiérrez-Miceli, F.A.; Santiago-Borraz, J.; Molina, J.A.M.; Nafate, C.C.; Abud-Archila, M.; Llaven, M.A.O.; Rincón-Rosales, R.; Dendooven, L. Vermicompost as a soil supplement to improve growth, yield and fruit quality of tomato (Lycopersicum esculentum). Bioresour. Technol. 2007, 98, 2781–2786. [Google Scholar] [CrossRef]
- Yatoo, A.M.; Ali, N.; Baba, Z.A.; Hassan, B. Sustainable management of diseases and pests in crops by vermicompost and vermicompost tea. A review. Agron. Sustain. Dev. 2021, 41, 1–26. [Google Scholar] [CrossRef]
- Jiang, X.; Lu, C.; Hu, R.; Shi, W.; Zhou, L.; Wen, P.; Jiang, Y.; Lo, Y.M. Nutritional and microbiological effects of vermicompost tea in hydroponic cultivation of maple peas (Pisum sativum var. arvense L.). Food Sci. Nutr. 2023, 11, 3184–3202. [Google Scholar] [CrossRef]
- Pilla, N.; Tranchida-Lombardo, V.; Gabrielli, P.; Aguzzi, A.; Caputo, M.; Lucarini, M.; Durazzo, A.; Zaccardelli, M. Effect of Compost Tea in Horticulture. Horticulturae 2023, 9, 984. [Google Scholar] [CrossRef]
- Rehman, S.U.; De Castro, F.; Aprile, A.; Benedetti, M.; Fanizzi, F.P. Vermicompost: Enhancing Plant Growth and Combating Abiotic and Biotic Stress. Agronomy 2023, 13, 1134. [Google Scholar] [CrossRef]
- Iqbal, A.; Khan, R.; Hussain, Q.; Imran, M.; Mo, Z.; Hua, T.; Adnan, M.; Abid, I.; Rizwana, H.; Elshikh, M.S.; et al. Vermicompost application enhances soil health and plant physiological and antioxidant defense to conferring heavy metals tolerance in fragrant rice. Front. Sustain. Food Syst. 2024, 8, 1418554. [Google Scholar] [CrossRef]
- Pathma, J.; Sakthivel, N. Microbial diversity of vermicompost bacteria that exhibit useful agricultural traits and waste management potential. Springerplus 2012, 1, 26. [Google Scholar] [CrossRef] [PubMed]
- Oyege, I.; Bhaskar, M.S.B. Residual Impacts of Vermicompost-Derived Nutrients on a Strawberry–Corn Double Cropping System Under Plasticulture in South Florida. Environments 2025, 12, 171. [Google Scholar] [CrossRef]
- Souffront, D.K.S.; Salazar-Amoretti, D.; Jayachandran, K. Influence of vermicompost tea on secondary metabolite production in tomato crop. Sci. Hortic. 2022, 301, 111135. [Google Scholar] [CrossRef]
- You, X.; Tojo, M.; Ching, S.; Wang, K.-H. Effects of vermicompost water extract prepared from bamboo and kudzu against Meloidogyne incognita and Rotylenchulus reniformis. J. Nematol. 2018, 50, 569–578. [Google Scholar] [CrossRef]
- Shahbandeh, M. Global Corn Production from 2014/2015 to 2024/2025 (in Million Metric Tons). 2025. Available online: https://www.statista.com/statistics/1156213/global-corn-production/#:~:text=In%20the%202023/24%20trade%20year%2C%20the%20amount,corn%2C%20closely%20followed%20by%20China%20and%20Brazil (accessed on 27 May 2025).
- USDA. Production-Corn. 2025. Available online: https://www.fas.usda.gov/data/production/commodity/0440000 (accessed on 27 May 2025).
- Nuss, E.T.; Tanumihardjo, S.A. Maize: A Paramount Staple Crop in the Context of Global Nutrition. Compr. Rev. Food Sci. Food Saf. 2010, 9, 417–436. [Google Scholar] [CrossRef]
- Bhat, S.A.; Qadri, S.A.A.; Dubbey, V.; Sofi, I.B.; Huang, N.-F. Impact of crop management practices on maize yield: Insights from farming in tropical regions and predictive modeling using machine learning. J. Agric. Food Res. 2024, 18, 101392. [Google Scholar] [CrossRef]
- Matova, P.M.; Casper, N.; Magorokosho, C.; Kutywayo, D.; Gutsa, F.; Labuschagne, M. Fall-armyworm invasion, control practices and resistance breeding in Sub-Saharan Africa. Crop Sci. 2020, 60, 2951–2970. [Google Scholar] [CrossRef]
- Ajmal, M.S.; Ali, S.; Jamal, A.; Saeed, M.F.; Radicetti, E.; Civolani, S. Feeding and Growth Response of Fall Armyworm Spodoptera frugiperda (Lepidoptera: Noctuidae) towards Different Host Plants. Insects 2024, 15, 789. [Google Scholar] [CrossRef]
- Ullah, M.I.; Arshad, M.; Ahmed, W.; Altaf, N.; Arroj, A.; Afzal, M. Relative Feeding Potential and Biology of Fall Armyworm, Spodoptera frugiperda Fed on Different Host Plants. Arab. J. Plant Prot. 2023, 41, 1–7. [Google Scholar] [CrossRef]
- Oyege, I.; Sibitenda, H.; Bhaskar, M.S.B. Deep Learning Applications for Real-Time and Early Detection of Fall Armyworm, African Armyworm, and Maize Stem Borer. Mach. Learn. Appl. 2024, 18, 100596. [Google Scholar] [CrossRef]
- Oyege, I.; Switz, A.; Oquendo, L.; Prasad, A.; Bhaskar, M.S.B. Green synthesis of neem extract and neem oil-based azadirachtin nanopesticides for fall Armyworm control and management. Ecotoxicol. Environ. Saf. 2025, 295, 118168. [Google Scholar] [CrossRef]
- FAO. Global Action for Fall Armyworm Control. 2024. Available online: https://www.fao.org/fall-armyworm/en/ (accessed on 27 May 2025).
- Oyege, I.; Bhaskar, M.S.B. Evaluation of Vermicompost and Vermicompost Tea Application on Corn (Zea mays) Growth and Physiology using Optical Plant Sensors. Plant Nutr. 2024, 48, 1275–1293. [Google Scholar] [CrossRef]
- Silva, A.M. The First USDA People’s Garden in South Florida. 2010. Available online: https://www.usda.gov/about-usda/news/blog/first-usda-peoples-garden-south-florida (accessed on 24 October 2024).
- Prasanna, B.M.; Huesing, J.E.; Eddy, R.; Peschke, V.M. Fall Armyworm in Africa: A Guide for Integrated Pest Management; Feed the Future: Washington, DC, USA, 2018. [Google Scholar]
- Weih, M.; Hamnér, K.; Pourazari, P. Analyzing plant nutrient uptake and utilization efficiencies: Comparison between crops and approaches. Plant Soil 2018, 430, 7–21. [Google Scholar] [CrossRef]
- Ritchie, S.W. How a Corn Plant Develops; Cooperative Extension Service; Iowa State University of Science and Technology: Ames, IA, USA, 2005. [Google Scholar]
- Gaudino, S.; Galas, C.; Belli, M.; Barbizzi, S.; de Zorzi, P.; Jaćimović, R.; Jeran, Z.; Pati, A.; Sansone, U. The role of different soil sample digestion methods on trace elements analysis: A comparison of ICP-MS and INAA measurement results. Accredit. Qual. Assur. 2007, 12, 84–93. [Google Scholar] [CrossRef]
- González-Estrada, E.; Cosmes, W. Shapiro–Wilk test for skew normal distributions based on data transformations. J. Stat. Comput. Simul. 2019, 89, 3258–3272. [Google Scholar] [CrossRef]
- Nordstokke, D.W.; Zumbo, B.D. A new nonparametric Levene test for equal variances. Psicológica 2010, 31, 401–430. [Google Scholar]
- Oyege, I.; Bhaskar, M.S.B. Effects of Vermicompost on Soil and Plant Health and Promoting Sustainable Agriculture. Soil Syst. 2023, 7, 101. [Google Scholar] [CrossRef]
- Brosnan, J.T.; Brosnan, M.E. The Sulfur-Containing Amino Acids: An Overview12. J. Nutr. 2006, 136, 1636S–1640S. [Google Scholar] [CrossRef]
- Ishfaq, M.; Wang, Y.; Yan, M.; Wang, Z.; Wu, L.; Li, C.; Li, X. Physiological Essence of Magnesium in Plants and Its Widespread Deficiency in the Farming System of China. Front. Plant Sci. 2022, 13, 802274. [Google Scholar] [CrossRef] [PubMed]
- Mao, Y.; Chai, X.; Zhong, M.; Zhang, L.; Zhao, P.; Kang, Y.; Guo, J.; Yang, X. Effects of nitrogen and magnesium nutrient on the plant growth, quality, photosynthetic characteristics, antioxidant metabolism, and endogenous hormone of Chinese kale (Brassica albograbra Bailey). Sci. Hortic. 2022, 303, 111243. [Google Scholar] [CrossRef]
- USDA. 2023 State Agriculture Overview Florida. 2024. Available online: https://www.nass.usda.gov/Quick_Stats/Ag_Overview/stateOverview.php?state=FLORIDA (accessed on 21 September 2024).
- Ávalos-Sánchez, E.; López-Martínez, A.; Molina-Aiz, F.D.; Reca, J.; Marín-Membrive, P.; Valera-Martínez, D.L. Effect of Different Substrates, and Irrigation with Water with Different Saline Concentrations, on the Development of Tomato Fungal Diseases in an Almería-Type Greenhouse. Agronomy 2022, 12, 1050. [Google Scholar] [CrossRef]
- Benito, P.; Celdrán, M.; Bellón, J.; Arbona, V.; González-Guzmán, M.; Porcel, R.; Yenush, L.; Mulet, J.M. The combination of a microbial and a non-microbial biostimulant increases yield in lettuce (Lactuca sativa) under salt stress conditions by up-regulating cytokinin biosynthesis. J. Integr. Plant Biol. 2024, 66, 2140–2157. [Google Scholar] [CrossRef]
- Vambe, M.; Coopoosamy, R.M.; Arthur, G.; Naidoo, K. Potential role of vermicompost and its extracts in alleviating climatic impacts on crop production. J. Agric. Food Res. 2023, 12, 100585. [Google Scholar] [CrossRef]
Treatment | pH | N (%) | P (%) | K (%) | Ca (mg kg−1) | Mg (mg kg−1) | Zn (mg kg−1) | Na (mg kg−1) | C (%) | OM (%) | CEC (cmol/kg) |
---|---|---|---|---|---|---|---|---|---|---|---|
BS | 7.93 ± 0.06 a | 0.71 ± 0.13 b | 0.042 ± 0.010 b | 0.127 ± 0.030 b | 5272 ±153 a | 1353 ± 124 a | 24.5 ± 2.60 a | 222.9 ± 39.6 a | 14.2 ± 0.89 b | 25.2 ± 1.59 b | 20.4 ± 0.78 b |
VC | 7.5 ± 0.00 b | 1.55 ± 0.05 a | 0.176 ± 0.035 a | 0.502 ± 0.038 a | 1831 ±140 b | 1391 ± 208 a | 30.5 ± 5.87 a | 296.0 ± 24.7 a | 22.8 ± 0.47 a | 39.3 ± 0.81 a | 33.6 ± 3.41 a |
Surface Soils (0–10 cm) | |||||||||||
V0 | 7.83 ± 0.06 a | 0.09 ± 0.00 b | 0.002 ± 0.000 b | 0.001 ± 0.000 b | 267 ± 69 b | 43 ± 15 b | 1.6 ± 0.07 b | 2.0 ± 0.3 b | 1.80 ± 0.14 c | 3.1 ± 0.24 c | 1.7 ± 0.03 b |
VCT10 | 7.77 ± 0.06 a | 0.69 ± 0.08 a | 0.018 ± 0.001 a | 0.010 ± 0.001 a | 2517 ± 54 a | 385 ± 27 a | 17.0 ± 0.99 a | 19.5 ± 1.2 a | 12.4 ± 1.19 ab | 21.3 ± 2.04 ab | 16.0 ± 0.50 a |
VCT20 | 7.83 ± 0.06 a | 0.80 ± 0.10 a | 0.017 ± 0.000 a | 0.008 ± 0.001 a | 2578 ± 68 a | 368 ± 12 a | 17.0 ± 1.41 a | 18.7 ± 1.8 a | 14.2 ± 2.10 ab | 24.4 ± 3.62 ab | 16.2 ± 0.36 a |
VCT40 | 7.7 ± 0.00 a | 0.86 ± 0.19 a | 0.016 ± 0.002 a | 0.009 ± 0.002 a | 2694 ± 67 a | 373 ± 55 a | 14.1 ± 1.96 a | 17.2 ± 2.3 a | 17.6± 4.22 a | 30.2 ± 7.27 a | 16.8 ± 0.21 a |
VC1 + VCT10 | 7.77 ± 0.06 a | 0.72 ± 0.08 a | 0.018± 0.003 a | 0.009 ± 0.003 a | 2676 ± 136 a | 372 ± 56 a | 16.3 ± 2.83 a | 15.2 ± 3.4 a | 13.1 ± 1.78 ab | 22.6 ± 3.07 ab | 16.7 ± 1.22 a |
VC1 + VCT20 | 7.9 ± 0.00 a | 0.62 ± 0.08 a | 0.017 ± 0.003 a | 0.008 ± 0.002 a | 2579 ± 113 a | 356 ± 81 a | 15.1 ± 2.27 a | 21.2 ± 2.9 a | 11.0 ± 1.26 b | 18.95 ±2.17 b | 16.1 ± 1.24 a |
VC1 + VCT40 | 7.83 ± 0.15 a | 0.85 ± 0.11 a | 0.019 ± 0.002 a | 0.010 ± 0.001 a | 2641 ± 127 a | 397 ± 55 a | 15.7 ± 1.92 a | 21.8 ± 5.9 a | 15.0 ± 2.24 ab | 25.8 ± 3.85 ab | 16.8 ± 0.37 a |
Subsurface Soils (10–20 cm) | |||||||||||
V0 | 7.87 ± 0.12 ab | 0.08± 0.02 b | 0.002 ± 0.000 c | 0.002 ± 0.000 c | 237 ± 17 b | 55 ± 3.9 b | 1.5 ± 0.10 c | 3.3 ± 1.8 b | 1.5 ± 0.28 c | 2.6 ± 0.48 c | 1.7 ± 0.06 c |
VCT10 | 7.87 ± 0.06 ab | 0.88 ± 0.06 a | 0.018 ± 0.002 ab | 0.009 ± 0.002 b | 2409 ± 83 a | 432 ± 62 a | 13.8 ± 1.42 a | 17.6 ± 4.00 a | 15.4 ± 0.88 ab | 26.4 ± 1.51 ab | 15.9 ± 0.13 ab |
VCT20 | 7.80 ± 0.00 ab | 0.77 ± 0.06 a | 0.018 ± 0.003 ab | 0.009 ± 0.002 b | 2505 ± 131 a | 457 ± 87 a | 14.6 ± 1.92 a | 19.3 ± 4.18 a | 13.5 ± 1.21 ab | 23.1 ± 2.09 ab | 16.6 ± 0.24 ab |
VCT40 | 7.73 ± 0.06 b | 0.83 ± 0.12 a | 0.017 ± 0.001 b | 0.010 ± 0.001 b | 2416 ± 130 a | 503 ± 14 a | 15.4 ± 1.63 a | 21.7 ± 3.00 a | 16.1 ± 1.92 a | 27.8 ± 3.30 a | 16.5 ± 0.64 a |
VC1 + VCT10 | 7.93 ± 0.06 ab | 0.69 ± 0.03 a | 0.019 ± 0.004 ab | 0.011 ± 0.003 b | 2512 ± 142 a | 488 ± 101 a | 15.1 ± 1.96 b | 20.9 ± 5.53 a | 12.0 ± 0.69 b | 20.6 ± 1.19 b | 16.9 ± 1.60 b |
VC1 + VCT20 | 7.93 ± 0.06 ab | 0.78 ± 0.06 a | 0.024 ± 0.000 a | 0.018 ± 0.003 a | 2609 ± 168 a | 590 ± 26 a | 16.6 ± 1.04 a | 25.0 ± 1.80 a | 13.7 ± 1.30 ab | 23.6 ± 2.24 ab | 18.4 ± 0.78 ab |
VC1 + VCT40 | 7.97 ± 0.12 a | 0.70 ± 0.11 a | 0.019 ± 0.003 ab | 0.012 ± 0.002 b | 2442 ± 129 a | 474 ± 73 a | 20.0 ± 10.56 a | 21.8 ± 3.70 a | 12.2 ± 1.83 b | 21.0 ± 3.15 b | 16.5 ± 1.24 b |
Treatment | N (%) | P (%) | K (%) | Ca (%) | Mg (%) | S (%) | Na (%) | B (mg kg−1) | Fe (mg kg−1) | Mn (mg kg−1) | Zn (mg kg−1) | Cu (mg kg−1) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
V0 | 0.20 ± 0.01 c | 0.10 ± 0.00 d | 0.16 ± 0.01 d | 0.14 ± 0.00 c | 0.04 ± 0.00 d | 0.02 ± 0.00 d | 0.03 ± 0.00 e | 1.07 ± 0.02 b | 375 ± 15 d | 2.68 ± 0.09 c | 15 ± 1 f | 1.12 ± 0.06 d |
VCT10 | 1.30 ± 0.02 b | 0.58 ± 0.03 ab | 0.97 ± 0.05 bc | 1.45 ± 0.07 a | 0.23 ± 0.01 a | 0.18 ± 0.01 a | 0.21 ± 0.01 bc | 9.35 ± 0.47 a | 251 ± 13 b | 22.1 ± 1.10 a | 74 ± 4 d | 2.50 ± 0.13 c |
VCT20 | 1.41 ± 0.07 a | 0.49 ± 0.02 c | 0.89 ± 0.04 c | 1.14 ± 0.06 b | 0.19 ± 0.01 c | 0.14 ± 0.01 b | 0.14 ± 0.01 d | 9.34 ± 0.47 a | 223 ± 11 bc | 19.7 ± 0.99 b | 74 ± 4 d | 2.14 ± 0.11 c |
VCT40 | 1.19 ± 0.06 b | 0.61 ± 0.03 a | 0.95 ± 0.05 bc | 1.20 ± 0.06 b | 0.22 ± 0.01 ab | 0.11 ± 0.01 c | 0.16 ± 0.01 d | 9.03 ± 0.45 a | 321 ± 16 a | 22.8 ± 1.14 a | 104 ± 5 b | 3.52 ± 0.18 a |
VC1 + VCT10 | 1.27 ± 0.01 b | 0.52 ± 0.02 bc | 0.90 ± 0.01 c | 1.12 ± 0.04 b | 0.22 ± 0.01 ab | 0.14 ± 0.01 b | 0.20 ± 0.00 c | 8.73 ± 0.26 a | 239 ± 6 bc | 18.0 ± 0.32 b | 90 ± 3 c | 0.9 ± 0.03 d |
VC1 + VCT20 | 1.25 ± 0.01 b | 0.53 ± 0.02 bc | 1.17 ± 0.05 a | 1.14 ± 0.05 b | 0.22 ± 0.01 ab | 0.18 ± 0.01 a | 0.23 ± 0.01 ab | 8.59 ± 0.16 a | 216 ± 9 c | 18.9 ± 0.48 b | 134 ± 4 a | 2.03 ± 0.06 c |
VC1 + VCT40 | 1.30 ± 0.02 b | 0.49 ± 0.02 c | 1.02 ± 0.03 b | 1.18 ± 0.04 b | 0.20 ± 0.01 bc | 0.15 ± 0.01 b | 0.24 ± 0.01 a | 8.74 ± 0.23 a | 233 ± 10 b | 19.1 ± 0.73 b | 63 ± 3 e | 1.98 ± 0.09 b |
Treatment | Cob Yield (ton/ha) | Dry Biomass (ton/ha) |
---|---|---|
V0 | 0.72 ± 0.07 e | 0.91 ± 0.02 e |
VCT10 | 3.06 ± 0.2 d | 6.52 ± 0.02 a |
VCT20 | 6.00 ± 0.4 a | 5.81 ± 0.02 c |
VCT40 | 5.71 ± 0.3 ab | 6.38 ± 0.02 b |
VC1 + VCT10 | 5.29 ± 0.2 b | 6.57 ± 0.02 a |
VC1 + VCT20 | 4.52 ± 0.2 c | 2.76 ± 0.02 c |
VC1 + VCT40 | 3.63 ± 0.2 d | 5.39 ± 0.02 d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oyege, I.; Balaji Bhaskar, M.S. The Role of Vermicompost and Vermicompost Tea in Sustainable Corn Production and Fall Armyworm Suppression. Agriculture 2025, 15, 1433. https://doi.org/10.3390/agriculture15131433
Oyege I, Balaji Bhaskar MS. The Role of Vermicompost and Vermicompost Tea in Sustainable Corn Production and Fall Armyworm Suppression. Agriculture. 2025; 15(13):1433. https://doi.org/10.3390/agriculture15131433
Chicago/Turabian StyleOyege, Ivan, and Maruthi Sridhar Balaji Bhaskar. 2025. "The Role of Vermicompost and Vermicompost Tea in Sustainable Corn Production and Fall Armyworm Suppression" Agriculture 15, no. 13: 1433. https://doi.org/10.3390/agriculture15131433
APA StyleOyege, I., & Balaji Bhaskar, M. S. (2025). The Role of Vermicompost and Vermicompost Tea in Sustainable Corn Production and Fall Armyworm Suppression. Agriculture, 15(13), 1433. https://doi.org/10.3390/agriculture15131433