Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (244)

Search Parameters:
Keywords = BSA assay

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 3229 KB  
Article
Antitumor Activity of All-Trans Retinoic Acid and Curcumin-Loaded BSA Nanoparticles Against U87 Glioblastoma Cells
by Ceyda Sonmez, Aleyna Baltacioglu, Julide Coskun, Gulen Melike Demirbolat, Ozgul Gok and Aysel Ozpinar
Life 2026, 16(1), 131; https://doi.org/10.3390/life16010131 - 15 Jan 2026
Viewed by 215
Abstract
Glioblastoma (GBM) is a highly aggressive brain tumor characterized by invasive growth, intrinsic drug resistance, and the presence of the blood–brain barrier. All of these features make treatment extremely challenging and underscore the need for developing effective combination strategies and advanced drug delivery [...] Read more.
Glioblastoma (GBM) is a highly aggressive brain tumor characterized by invasive growth, intrinsic drug resistance, and the presence of the blood–brain barrier. All of these features make treatment extremely challenging and underscore the need for developing effective combination strategies and advanced drug delivery systems. This study aimed to develop a bovine serum albumin (BSA) nanoparticle (NP)-based delivery system to overcome the poor bioavailability and pharmacokinetic limitations of two potent anti-tumor agents, all-trans retinoic acid (ATRA) and curcumin (CURC), and to evaluate their antitumor activity in U87-MG GBM cells. Drug-free and ATRA/CURC-loaded BSA-NPs were synthesized using an optimized desolvation method and characterized in terms of particle size, polydispersity index, morphology, drug encapsulation efficiency, and release behavior. The cytotoxic, anti-migratory, and pro-apoptotic effects of the NPs on U87-MG GBM cells were assessed using real-time proliferation and migration assays and Annexin V/PI staining followed by flow cytometry. Collectively, the findings indicated that the co-delivery of ATRA and CURC using BSA-NPs showed enhanced antiproliferative, antimigratory, and pro-apoptotic effects. With its controlled release profile, high loading capacity, and favorable nanoscale dimensions, the ATRA-CURC-BSA–NP system represents a promising nanoplatform for GBM therapy that warrants further in vivo investigation. To the best of our knowledge, this is the first study demonstrating the inhibition of glioblastoma cell growth through the co-delivery of all-trans retinoic acid and curcumin using a bovine serum albumin-based nanoparticle system. Full article
(This article belongs to the Section Pharmaceutical Science)
Show Figures

Figure 1

14 pages, 1487 KB  
Article
Sexual Hormones Determination in Biofluids by In-Vial Polycaprolactone Thin-Film Microextraction Coupled with HPLC-MS/MS
by Francesca Merlo, Silvia Anselmi, Andrea Speltini, Clàudia Fontàs, Enriqueta Anticó and Antonella Profumo
Molecules 2026, 31(2), 255; https://doi.org/10.3390/molecules31020255 - 12 Jan 2026
Viewed by 179
Abstract
The in-vial microextraction technique is emerging as an alternative sample treatment, as it integrates sorbent preparation, adsorption, and desorption of analytes in a single device before instrumental analysis. In this work, the applicability of polycaprolactone polymeric film, recently used for the in-vial microextraction [...] Read more.
The in-vial microextraction technique is emerging as an alternative sample treatment, as it integrates sorbent preparation, adsorption, and desorption of analytes in a single device before instrumental analysis. In this work, the applicability of polycaprolactone polymeric film, recently used for the in-vial microextraction of sex hormones from environmental waters, is studied in a low-capacity format for unconjugated sex hormones determination in biological samples by HPLC-MS/MS. Its performance was evaluated in urine and serum, achieving extraction in a short time (10 and 30 min, in turn) and satisfactory elution with ethanol, with recovery in the range of 65–111% in urine, 55–122% in bovine serum albumin (BSA) solution, and 66–121% in fetal bovine serum (FBS). In the case of protein matrices, a dilution to 20 g L−1 protein content and washing step (3 × 1 mL ultrapure water) afore the elution are required to achieve clean extract, as verified by a Bradford assay. Matrix-matched calibration was used for quantification, obtaining correlation coefficients greater than 0.9929; limits of detection and quantification were in the range of 0.01–0.65 and 0.03–1.96 ng mL−1 in urine, 0.02–0.8 and 0.05–2.5 ng mL−1 in BSA, and 0.02–1.0 and 0.06–3.0 g mL−1 in FBS, respectively. The in-vial polycaprolactone film proved to be reusable for several cycles (up to ten), and the greenness assessment revealed a good adhesion to green sample preparation principles. All these achievements further strengthen its feasibility for efficient extraction/clean-up of trace sex hormones in complex biological samples. Full article
Show Figures

Figure 1

18 pages, 1824 KB  
Article
Chemical Characterization of Phenol-Rich Olive Leaf Extract (Olea europaea L. cv. Ogliarola) and Its Neuro-Protective Effects on SH-SY5Y Cells from Oxidative Stress, Lipid Peroxidation, and Glycation
by Maria Giovanna Rizzo, Benedetta Pizziconi, Kristian Riolo, Giovanna Cafeo, Alessia Giannetto, Marina Russo, Caterina Faggio and Laura Dugo
Foods 2026, 15(1), 43; https://doi.org/10.3390/foods15010043 - 23 Dec 2025
Viewed by 395
Abstract
Olive leaf phenols are recognized for their antioxidant and anti-inflammatory properties. A hydroalcoholic extract of Olea europaea L. cv. Ogliarola leaves was recovered with an ultrasound-assisted extraction using green solvents. Phenol content was investigated by means of liquid chromatography coupled with photodiode array [...] Read more.
Olive leaf phenols are recognized for their antioxidant and anti-inflammatory properties. A hydroalcoholic extract of Olea europaea L. cv. Ogliarola leaves was recovered with an ultrasound-assisted extraction using green solvents. Phenol content was investigated by means of liquid chromatography coupled with photodiode array and mass spectrometer detectors. Extract cytotoxicity was determined in SH-SY5Y neuroblastoma cells by the MTT assay to establish non-cytotoxic concentrations. The effects of the extract under lipopolysaccharide-induced conditions were investigated by assessing oxidative stress and lipid peroxidation through malondialdehyde quantification using the thiobarbituric acid assay. Antiglycation capacity was examined with a BSA methylglyoxal model. In parallel, quantitative real-time PCR was employed to assess the modulation of inflammation- and oxidative stress-related genes (TLR4, NF-κB, IL-6, IL-8, Nrf2, and HO-1), providing molecular insights into the extract’s bioactivity. The extract did not exert cytotoxic effects at the selected concentrations and with modulated oxidative stress, lipid peroxidation, protein glycation, and gene expression profiles associated with inflammatory and redox pathways in neuronal cells. These data demonstrated that olive leaf extract, rich in phenols, influenced multiple biochemical and molecular endpoints relevant to neuronal physiology, supporting its potential application as a nutraceutical ingredient for the modulation of oxidative and glycation-related processes. Full article
(This article belongs to the Section Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Figure 1

18 pages, 2816 KB  
Article
Electrochemical Detection of Aβ42 and Aβ40 at Attomolar Scale via Optimised Antibody Loading on Pyr-NHS-Functionalised 3D Graphene Foam Electrodes
by Muhsin Dogan, Sophia Nazir, David Jenkins, Yinghui Wei and Genhua Pan
Biosensors 2025, 15(12), 806; https://doi.org/10.3390/bios15120806 - 10 Dec 2025
Viewed by 517
Abstract
Alzheimer’s Disease (AD) is one of the most commonly seen neurodegenerative disorders, where early detection of its biomarkers is crucial for effective management. Conventional diagnostic methods are often expensive, time-consuming, and highly complex, which highlights an urgent need for point-of-care biosensing technology. In [...] Read more.
Alzheimer’s Disease (AD) is one of the most commonly seen neurodegenerative disorders, where early detection of its biomarkers is crucial for effective management. Conventional diagnostic methods are often expensive, time-consuming, and highly complex, which highlights an urgent need for point-of-care biosensing technology. In this work, we developed assays on three-dimensional (3D) graphene foam electrodes by functionalising them with a 1-Pyrenebutyric acid N-hydroxysuccinimide ester (Pyr-NHS) to enable effective antibody immobilisation for the detection of amyloid beta peptides (Aβ42 and Aβ40), key biomarkers for AD. Pyr-NHS linkers were used for stable functionalisation, followed by binding with Aβ42 and Aβ40 antibodies, and then bovine serum albumin (BSA) was employed as a blocking agent to minimise non-specific bindings on the electrode surface. Differential Pulse Voltammetry (DPV) measurements showed satisfactory stability over 12 days (RDS upper limit was <10%) and highly sensitive and specific detection of Aβ42 and Aβ40, with insignificant interference of tau217 protein. The biosensor exhibited a low limit of detection (LOD) with 252 aM for Aβ42 and 395 aM for Aβ40, covering 0.125 fM–1 nM and 0.125 fM–100 pM linear ranges, respectively. Further validation was conducted on spiked-diluted human plasma. This excellent analytical performance was attributed to the stable Pyr-NHS functionalisation, the 3D graphene foam enabling superior conductivity and a larger surface area on the working electrode, and the optimisation of antibody concentration for immobilisation. These promising results suggest that 3D graphene foam-based biosensors have considerable potential for early detection of AD biomarkers and developing cost-effective, portable, and reliable point-of-care devices. Full article
(This article belongs to the Section Biosensor and Bioelectronic Devices)
Show Figures

Figure 1

17 pages, 1878 KB  
Article
Label-Free Electrochemical Genosensor for Klotho Detection Based on Gold Nanoparticle-Modified Electrodes and Mixed Self-Assembled Monolayers
by Juan Pablo Hervás-Pérez, Laura Martín-Carbajo and Marta Sánchez-Paniagua
Analytica 2025, 6(4), 57; https://doi.org/10.3390/analytica6040057 - 9 Dec 2025
Viewed by 340
Abstract
Alterations in the expression of the Klotho gene have been associated with chronic kidney disease (CKD), and its potential as an early diagnostic biomarker is currently under active investigation. In this work, we report the development of a highly sensitive, label-free electrochemical DNA-based [...] Read more.
Alterations in the expression of the Klotho gene have been associated with chronic kidney disease (CKD), and its potential as an early diagnostic biomarker is currently under active investigation. In this work, we report the development of a highly sensitive, label-free electrochemical DNA-based biosensor for the detection of a 100 mer DNA fragment corresponding to a partial region of Klotho mRNA. The proposed bioplatform integrates mixed self-assembled monolayers (SAMs) and gold nanoparticles for efficient DNA immobilization within a sandwich-type configuration, coupled with impedimetric detection. Different SAM architectures were evaluated by cyclic voltammetry and electrochemical impedance spectroscopy, with the binary monolayer composed of 1-hexadecanethiol (HDT) and the capture probe (CP) exhibiting the best analytical performance. The use of gold nanoparticle-modified screen-printed carbon electrodes (AuNPs–SPCEs) resulted in a 1.4-fold increase in the signal-to-noise ratio compared to screen-printed gold electrodes. Additionally, the incorporation of a blocking step using bovine serum albumin (BSA–HDT–CP–AuNPs–SPCE) enhanced the sensitivity by 1.6-fold compared to the unblocked system. The genosensor displayed a linear response in the concentration range of 3 × 10−10 to 7.5 × 10−8 M, achieving a detection limit of 0.09 nM. Relative standard deviations below 7.5% were obtained for different Klotho concentrations, confirming high intra-assay and intermediary precision. Selectivity assays demonstrated negligible signals for non-complementary sequences, while recovery experiments in spiked human serum samples yielded satisfactory values between 96.5% and 103.4%. Full article
Show Figures

Figure 1

12 pages, 1011 KB  
Article
Comparison of Antigen Conjugation to a Peptidic Carrier or to Bovine Serum Albumin in the Serodiagnosis of Canine Visceral Leishmaniasis via Suspension Array Technology
by Thais Stelzer Toledo, Pauline Martins Cunha, Josué da Costa Lima-Junior, Monique Paiva De Campos, Alinne R. S. Renzetti, Fabiano Borges Figueiredo, Fernanda Nazaré Morgado, Renato Porrozzi, Fatima da Conceição-Silva, Marta de Almeida Santiago and Paula Mello De Luca
Antibodies 2025, 14(4), 103; https://doi.org/10.3390/antib14040103 - 4 Dec 2025
Viewed by 510
Abstract
Backgroud/Objectives: Canine Visceral Leishmaniasis (CVL), caused by Leishmania infantum, is a significant public health concern due to dogs serving as reservoirs for human infection. An accurate and rapid diagnostic method to distinguish symptomatic and asymptomatic CVL from healthy and vaccinated animals [...] Read more.
Backgroud/Objectives: Canine Visceral Leishmaniasis (CVL), caused by Leishmania infantum, is a significant public health concern due to dogs serving as reservoirs for human infection. An accurate and rapid diagnostic method to distinguish symptomatic and asymptomatic CVL from healthy and vaccinated animals is essential for controlling canine and human disease. Developing innovative antibody detection techniques and exploring new antigens are essential for enhancing CVL testing efficiency. Our study focuses on a multiplex flow cytometry technique to detect Leishmania-specific antibodies in canine serum. This involved conjugating small peptides with carrier proteins or peptide tags, sequences designed to facilitate bead coupling. Methods: A peptide from the L. infantum A2 protein was coupled to beads in three forms: unconjugated, conjugated with BSA, and conjugated with a C-terminal β-alanine–lysine (x4)–cysteine TAG. This TAG was previously designed to enhance peptide solubility, improve binding efficiency, and provide functional groups for covalent attachment to the beads, ensuring stable immobilization in the multiplex assay. Results: Our results suggest that the multiplex approach shows promise as a rapid serological test for CVL, particularly with TAG-conjugated peptides, which optimize bead coupling. However, peptide/BSA conjugation revealed anti-BSA antibodies in samples from healthy and CVL dogs. Conclusions: In conclusion, our findings highlight the potential of multiplex methodologies to enhance CVL diagnostics and caution against using BSA as a bead coupling agent in serological tests for canine samples due to its impact on test specificity and sensitivity. Full article
(This article belongs to the Special Issue Antibodies in Laboratory Diagnostic Techniques)
Show Figures

Figure 1

23 pages, 3358 KB  
Article
“Super Sandwich” Assay Using Phenylboronic Acid for the Detection of E. coli Contamination: Methods for Application
by Anna N. Berlina, Svetlana I. Kasatkina, Margarita O. Shleeva, Anatoly V. Zherdev and Boris B. Dzantiev
Microorganisms 2025, 13(12), 2745; https://doi.org/10.3390/microorganisms13122745 - 2 Dec 2025
Viewed by 581
Abstract
This paper proposes a method for E. coli detection in a microplate format using low-molecular-weight compounds that specifically interact with the lipopolysaccharides (LPSs) of E. coli cell walls. These compounds can amplify analytical signals by binding to multiple repeating cell surface structures, while [...] Read more.
This paper proposes a method for E. coli detection in a microplate format using low-molecular-weight compounds that specifically interact with the lipopolysaccharides (LPSs) of E. coli cell walls. These compounds can amplify analytical signals by binding to multiple repeating cell surface structures, while the selectivity for E. coli is ensured by preliminary cultivation on selective media, such as Endo or MacConkey agar. 3-Aminophenylboronic acid (APBA) was selected as the binding reagent for detecting E. coli LPSs. Conjugates of streptavidin (STP) and bovine serum albumin (BSA) with APBA and conjugates of biotin and soybean trypsin inhibitor (STI) and BSA were synthesized. The conditions for the sequential formation of “sandwich” type complexes (BSA-APBA conjugate/E. coli/STP-APBA/STI–biotin/STP–peroxidase) and their colorimetric detection using chromogenic peroxidase substrate were determined. The detection limit was 3 × 102 cells/mL, and the range of quantitative determination covered five orders of magnitude—from 103 to 108 cells/mL. The developed assay was successfully tested using inactivated cells of pathogenic E. coli strains, confirming its potential for application. The assay was demonstrated to have universality, with the ability to detect E. coli, other bacterial pathogens, and LPS alone. This method could be adopted for the quantitative determination of different specific bacterial species using different selective media. Full article
(This article belongs to the Special Issue Detection and Identification of Emerging and Re-Emerging Pathogens)
Show Figures

Figure 1

15 pages, 1515 KB  
Article
Dual-Function Role of Phenolated Albumin in Hemin-Mediated Hydrogel Formation
by Shinji Sakai, Yuki Kitatani, Maasa Shiba, Thotage Asanka Vishwanath, Kelum Chamara Manoj Lakmal Elvitigala, Wildan Mubarok and Kousuke Moriyama
Gels 2025, 11(11), 912; https://doi.org/10.3390/gels11110912 - 15 Nov 2025
Viewed by 469
Abstract
Enzymatically crosslinked hydrogels are important in biomedical applications. However, conventional horseradish peroxidase (HRP)-based systems are expensive, unstable, and potentially immunogenic. Herein, we introduce hemin/albumin complexes as cost-effective and biocompatible catalysts for phenol-mediated hydrogel formation. Phenolated bovine serum albumins (BSA-LPh, -MPh, and-HPh) with different [...] Read more.
Enzymatically crosslinked hydrogels are important in biomedical applications. However, conventional horseradish peroxidase (HRP)-based systems are expensive, unstable, and potentially immunogenic. Herein, we introduce hemin/albumin complexes as cost-effective and biocompatible catalysts for phenol-mediated hydrogel formation. Phenolated bovine serum albumins (BSA-LPh, -MPh, and-HPh) with different degrees of substitution were synthesized and complexed with hemin. Spectroscopic analysis demonstrated that phenol modification altered the hemin microenvironment, resulting in distinct shifts in the Soret band. Functional assays revealed that albumin complexation enhanced catalytic activity compared to hemin alone. Moderate phenol modification provided an optimal balance between catalytic efficiency and hydrogel integration, whereas excessive modification reduced the performance of the enzyme. Hydrogels containing hemin/BSA-Ph complexes exhibited controllable protein retention and high cytocompatibility (>90%) with mouse fibroblast 10T1/2 cells. These findings demonstrate that hemin/albumin complexes are promising, cost-effective, and cytocompatible alternatives to HRP systems for hydrogel-based biomedical and nonclinical applications. Full article
(This article belongs to the Special Issue Novel Functional Gels for Biomedical Applications (2nd Edition))
Show Figures

Graphical abstract

21 pages, 4404 KB  
Article
Exploring the Antidiabetic Properties of Polyalthia longifolia Leaf and Stem Extracts: In Vitro α-Glucosidase and Glycation Inhibition
by Guglielmina Froldi, Marguerite Kamdem Simo, Laura Tomasi, Giulia Tadiotto, Francine Medjiofack Djeujo, Xavier Gabriel Fopokam, Emmanuel Souana, Modeste Lambert Sameza, Pierre Michel Jazet and Fabrice Fekam Boyom
Molecules 2025, 30(21), 4264; https://doi.org/10.3390/molecules30214264 - 31 Oct 2025
Viewed by 710
Abstract
Polyalthia longifolia, a member of the Annonaceae family, is traditionally used for its medicinal properties, including as an antidiabetic remedy, primarily in Asia and sub-Saharan Africa. This study investigated the potential of six P. longifolia extracts in counteracting hyperglycemia and diabetes-related complications. [...] Read more.
Polyalthia longifolia, a member of the Annonaceae family, is traditionally used for its medicinal properties, including as an antidiabetic remedy, primarily in Asia and sub-Saharan Africa. This study investigated the potential of six P. longifolia extracts in counteracting hyperglycemia and diabetes-related complications. Aqueous, ethanol, and methanol extracts from leaves and stems were evaluated for their antihyperglycemic, antiglycation, and antiradical properties using α-glucosidase, BSA, and ORAC assays, respectively. Phytochemical characterization was conducted using TPC and TFC assays, and HPLC analysis identified specific bioactive compounds, including various phenolic compounds (gallic acid, (+)-catechin, epicatechin, caffeic acid, ellagic acid and rosmarinic acid) and flavonoids (luteolin, kaempferol and baicalein). The MTT assay on the human cell line HT-29 assessed the activity of extracts on cell viability, showing slight cytotoxicity. Results demonstrated significant antidiabetic activity of the ethanol and methanol extracts from P. longifolia leaves. This study provides new insights into the potential use of P. longifolia in diabetes mellitus and supports the valorization of traditional medicinal plants. Full article
(This article belongs to the Special Issue Bioactivity of Natural Compounds: From Plants to Humans, 2nd Edition)
Show Figures

Graphical abstract

16 pages, 1334 KB  
Article
Development of a Paper-Based Electrochemical Immunosensor for Cardiac Troponin I Determination Using Gold Nanoparticle-Modified Screen-Printed Electrodes
by Mayra Asevedo Campos de Resende, Ana Elisa Ferreira Oliveira, Thaís Cristina de Oliveira Cândido, Daniela Nunes da Silva, Scarlat Ohanna Dávila da Trindade, Lucas Franco Ferreira and Arnaldo César Pereira
Chemosensors 2025, 13(11), 383; https://doi.org/10.3390/chemosensors13110383 - 31 Oct 2025
Cited by 1 | Viewed by 1300
Abstract
Acute Myocardial Infarction (AMI) is a critical cardiac condition that poses a substantial threat to myocardial function. Expedient diagnosis of AMI is paramount and relies on serological assays for rapid and accurate quantification of relevant biomarkers. Electrochemical sensors have emerged as promising candidates [...] Read more.
Acute Myocardial Infarction (AMI) is a critical cardiac condition that poses a substantial threat to myocardial function. Expedient diagnosis of AMI is paramount and relies on serological assays for rapid and accurate quantification of relevant biomarkers. Electrochemical sensors have emerged as promising candidates for this application, owing to their accessibility, operational simplicity, and high specificity. In this study, we developed a paper-based electrochemical immunosensor to detect cardiac troponin I in serum and saliva specimens. The electrode was fabricated using screen-printing technology with photographic paper as the substrate, employing graphite-based ink, nail polish, and acetone as the solvent. A quasi-reference electrode was constructed using silver powder-based ink, nail polish, and acetone. The immunosensor was prepared by modifying the working electrode with gold nanoparticles (AuNP) functionalized with cardiac troponin I antibodies (anti-cTnI) and bovine serum albumin (BSA). This modified electrode was subsequently used to detect the troponin I antigen. The analyses were performed in 0.1 mol L−1 phosphate buffer medium, pH 7.00, in the presence of 5.0 mmol L−1 of the potassium ferrocyanide probe. The immunosensor exhibited a sensitivity of 0.006 µA/fg mL−1, a limit of detection of 9.83 fg mL−1, and a limit of quantification of 32.79 fg mL−1. Specificity studies conducted in the presence of other macromolecules demonstrated minimal interference, with relative standard deviations (RSD) below 5.00%, indicating a specific interaction with troponin I. Furthermore, the immunosensor demonstrated excellent reproducibility and stability. Upon application to serum and saliva samples, the immunosensor presented recoveries of approximately 99–105%, suggesting its potential applicability in clinical analyses. Full article
Show Figures

Graphical abstract

24 pages, 1579 KB  
Article
Microwave-Assisted Extraction of Pleurotus Mushrooms Cultivated on ‘Nero di Troia’ Grape Pomace and Evaluation of the Antioxidant and Antiacetylcholinesterase Activities
by Gaetano Balenzano, Anna Spagnoletta, Giovanni Lentini, Gennaro Brunetti, Francesco De Mastro, Mariagrazia Rullo, Leonardo Pisani, Fortunato Cirlincione, Maria Letizia Gargano and Maria Maddalena Cavalluzzi
J. Fungi 2025, 11(11), 783; https://doi.org/10.3390/jof11110783 - 30 Oct 2025
Viewed by 1335
Abstract
The sustainable management of winery residues could represent a cornerstone for promoting environmental and economic sustainability from a circular economy perspective. In this context, our study aimed to evaluate Vitis vinifera L. ‘Nero di Troia’ cultivar grape pomace as a valuable waste product [...] Read more.
The sustainable management of winery residues could represent a cornerstone for promoting environmental and economic sustainability from a circular economy perspective. In this context, our study aimed to evaluate Vitis vinifera L. ‘Nero di Troia’ cultivar grape pomace as a valuable waste product for the cultivation of Pleurotus mushroom, in comparison with traditional wheat straw-based cultivation. Mushroom extracts were prepared through the eco-friendly microwave-assisted extraction technique, using green solvents with different polarity degrees. Total protein content, total polyphenol content, and antioxidant activity (FRAP and DPPH assays) were assessed for the water and EtOH hydrophilic extracts. Grape pomace often gave higher values than wheat straw, especially for the P. eryngii var. eryngii water extract protein content, which was 3.5-fold higher (0.68 ± 0.14 mg BSA/mL and 0.192 ± 0.025 mg BSA/mL, respectively). The ethyl acetate extracts of both mushroom species gave biologically relevant results in terms of inhibiting activity against acetylcholinesterase, an enzyme involved in the pathogenesis of Alzheimer’s disease (50% inhibitory activity at concentrations ≤ 1.5 mg/mL), thus paving the way for more in-depth investigation. The extract’s metabolic profile was investigated through GC-MS analysis. The results show that incorporating grape pomace into mushroom production represents a concrete step toward more sustainable biotechnological processes. Full article
Show Figures

Figure 1

23 pages, 2482 KB  
Article
Facile Synthesis of N-vinylindoles via Knoevenagel Condensation: Molecular Features and Biological Activities
by Anita Kornicka, Justyna Stefanowicz-Hajduk, Katarzyna Turecka, Christophe Furman, Maria Gdaniec and Łukasz Balewski
Int. J. Mol. Sci. 2025, 26(20), 10149; https://doi.org/10.3390/ijms262010149 - 18 Oct 2025
Viewed by 743
Abstract
N-vinylindoles have attracted attention for their promising role in medicinal chemistry. Therefore, developing new synthetic methods that enable access to diverse functionalized N-vinylindoles with potential pharmacological properties is highly valuable. 1-[2-aryl-1-(4,5-dihydro-1H-imidazol-2-yl)vinyl]-1H-indoles 2a-i were prepared via [...] Read more.
N-vinylindoles have attracted attention for their promising role in medicinal chemistry. Therefore, developing new synthetic methods that enable access to diverse functionalized N-vinylindoles with potential pharmacological properties is highly valuable. 1-[2-aryl-1-(4,5-dihydro-1H-imidazol-2-yl)vinyl]-1H-indoles 2a-i were prepared via Knoevenagel condensation promoted by 1H-benzotriazole, and characterized by IR, NMR, and MS spectroscopic data as well as a single-crystal X-ray diffraction-based study of the representative derivative 2g. The obtained compounds 2a-i were screened for their cytotoxic potency against human cancer cell lines (HeLa, SKOV-3, AGS) and non-cancerous cell line (HaCaT) using the MTT assay. Additional apoptosis analysis and cell cycle assay on SKOV-3 cells were conducted. Their antimicrobial activity was determined using reference strains of S. aureus, E. coli, C. albicans, and C. glabrata. The potent inhibitory activity against AGE2-BSA/sRAGE interaction of selected N-vinylindoles 2b, 2d-f, and 2h-i was evaluated by ELISA assay. A facile approach has been developed for the synthesis of a novel class of N-vinylindoles. The preliminary structure–activity considerations indicated that the presence of substituents R, such as 4-bromophenyl (compound 2f) or 2-naphthyl (compound 2i) is optimal for anticancer activity and the AGE2-BSA/sRAGE interaction inhibition. The most prominent (Z)-1-[1-(4,5-dihydro-1H-imidazol-2-yl)-2-(naphthalen-2-yl)vinyl]-1H-indole (2i) was found to strongly arrest cell cycle in the SKOV-3 cell line in the subG0 phase, inducing apoptosis. Notably, derivative 2i also exhibited the highest activity against S. aureus and C. albicans strains within the tested series. These findings highlight the substantial potential of N-vinylindole derivative 2i as a lead compound for the development of anticancer drugs with additional inhibitory activity on the AGE/RAGE interaction. Full article
(This article belongs to the Special Issue Advances in the Synthesis and Study of Novel Bioactive Molecules)
Show Figures

Figure 1

32 pages, 9810 KB  
Article
Silver(I) Complexes Bearing S-Alkyl Thiosalicylic Acid Derivatives: DNA/BSA Binding and Antitumor Activity In Vitro and In Vivo
by Jovana Marinković, Milena Jurišević, Marina Jovanović, Miloš Milosavljević, Ivan Jovanović, Snežana Jovanović Stević, Marina Vesović, Miloš Nikolić, Nikola Nedeljković, Ana Živanović, Dušan Tomović, Andriana Bukonjić, Gordana Radić and Nevena Gajović
Pharmaceutics 2025, 17(10), 1340; https://doi.org/10.3390/pharmaceutics17101340 - 16 Oct 2025
Viewed by 816
Abstract
Background/Objectives: In recent years, silver complexes have shown strong antibacterial, antifungal, and antitumor activity with high selectivity toward cancer cells. Their cytotoxic effects are mainly linked to apoptosis induction, DNA damage, and enzyme inhibition, while the antitumor activity of silver(I) complexes with S-alkyl [...] Read more.
Background/Objectives: In recent years, silver complexes have shown strong antibacterial, antifungal, and antitumor activity with high selectivity toward cancer cells. Their cytotoxic effects are mainly linked to apoptosis induction, DNA damage, and enzyme inhibition, while the antitumor activity of silver(I) complexes with S-alkyl thiosalicylic acid derivatives remains unexplored. Methods: Silver(I) complexes with S-alkyl derivatives of thiosalicylic acid (C1C5) were obtained through the direct reaction of silver(I) nitrate, the corresponding ligand of thiosalicylic acid, and a sodium hydroxide solution. The interactions between the complexes and CT-DNA/BSA were studied using UV-Vis, fluorescence spectroscopy, and molecular docking studies. The cytotoxic capacity of the newly synthesized complexes was assessed by an MTT assay. Results: Complexes C1C5 exhibited strong cytotoxicity against murine and human breast (4T1, MDA-MB-468), colon (CT26, HCT116), and lung (LLC1, A549) cancer cell lines. The C3 complex significantly diminished tumor progression in an orthotropic mammary carcinoma model while demonstrating good systemic tolerance. Conclusions: The tested complex C3 triggered apoptosis in 4T1 cells by altering the delicate balance between pro- and anti-apoptotic Bcl-2 family members, increasing reactive oxygen species (ROS) levels, and reducing mitochondrial membrane depolarization. Moreover, the C3 arrested the 4T1 cell cycle in G0/G1 phase, decreasing the expression of cyclin D3 and increasing the expression of p16, p21, and p27. Full article
(This article belongs to the Section Drug Targeting and Design)
Show Figures

Figure 1

13 pages, 621 KB  
Article
5-Hydroxymethylfurfural: A Particularly Harmful Molecule Inducing Toxic Lipids and Proteins?
by Joachim Greilberger, Georg Feigl, Matthias Greilberger, Simona Bystrianska and Michaela Greilberger
Molecules 2025, 30(19), 3897; https://doi.org/10.3390/molecules30193897 - 26 Sep 2025
Viewed by 1732
Abstract
Introduction: 5-HMF is a molecule found in carbohydrate-rich foods that is associated not only with cancer and anaphylactic reactions, but also with anti-oxidant properties. Questions arose as to whether 5-HMF exhibited a catalytic effect in relation to lipid peroxidation and lipoprotein oxidation in [...] Read more.
Introduction: 5-HMF is a molecule found in carbohydrate-rich foods that is associated not only with cancer and anaphylactic reactions, but also with anti-oxidant properties. Questions arose as to whether 5-HMF exhibited a catalytic effect in relation to lipid peroxidation and lipoprotein oxidation in presence of metals and/or radicals. Methods: Peroxynitrite (ONOO)-induced chemiluminescence and ONOO nitration of tyrosine residues on BSA using anti-nitro-tyrosine-antibodies were used to measure the protection of 5-HMF against peroxides or nitration compared to vitamin C (VitC). The reductive potential of 5-HMF or VitC on Cu2+ or Fe3 was estimated using the bicinchoninic acid (BCA) or Fenton-complex method. Human plasma was used to measure the generation of malondialdehyde (MDA), 4-hydroxynonenal (HNE), and total thiols after Fe2+/H2O2 oxidation in the presence of different concentrations of 5-HMF or VitC. Finally, Cu2+ oxidation of LDL after 4 h was carried out with 5-HMF or VitC, measuring the concentration of MDA in LDL with the thiobarbituric assay (TBARS). Results: VitC was 4-fold more effective than 5-HMF in scavenging ONOO to nearly 91.5% at 4 mM, with the exception of 0.16 mM, where the reduction of ONOO by VitC was 3.3-fold weaker compared to 0.16 mM 5-HMF. VitC or 5-HMF at a concentration of 6 mM inhibited the nitration of tyrosine residues on BSA to nearly 90% with a similar course. While 5-HMF reduced free Fe3+ in presence of phenanthroline, forming Fe2+ (phenantroleine)3 [Fe2+(phe)3] or complexed Cu2+(BCA)4 to Cu+(BCA)4 weakly, VitC was 7- to 19-fold effective in doing so over all the used concentrations (0–25 mM). A Fe2+—H2O2 solution mixed with human plasma showed a 6–10 times higher optical density (OD) of MDA or HNE in the presence of 5-HMF compared to VitC. The level of thiols was significantly decreased in the presence of higher VitC levels (1 mM: 198.4 ± 7.7 µM; 2 mM: 160.0 ± 13.4 µM) compared to equal 5-HMF amounts (2562 ± 7.8 µM or 242.4 ± 2.5 µM), whereas the usage of lower levels at 0.25 µM 5-HMF resulted in a significant decrease in thiols (272.4 ± 4.0 µM) compared to VitC (312.3 ± 19.7 µM). Both VitC and 5-HMF accelerated copper-mediated oxidation of LDL equally: while the TBARS levels from 4 h oxidized LDL reached 137.7 ± 12.3 nmol/mg, it was 1.7-fold higher using 6 mM VitC (259.9 ± 10.4 nmol/mg) or 6 mM 5-HMF (239.3 ± 10.2 nmol/mg). Conclusions: 5-HMF appeared to have more pro-oxidative potential compared to VitC by causing lipid peroxidation as well as protein oxidation. Full article
Show Figures

Figure 1

16 pages, 3270 KB  
Article
Albumin/Hyaluronic Acid Gel Nanoparticles Loaded with a Pyrimidine-Based Drug for Potent Anticancer Activity
by Sofia Teixeira, Débora Ferreira, Ligia R. Rodrigues, M. Alice Carvalho and Elisabete M. S. Castanheira
Gels 2025, 11(9), 759; https://doi.org/10.3390/gels11090759 - 21 Sep 2025
Viewed by 1019
Abstract
A pyrimidine-based compound (PP) was recently found to be a promising anticancer agent for colorectal and breast cancers. However, this compound exhibited low selectivity and poor water solubility. To address these challenges, albumin gel nanoparticles were used, where the gel matrix [...] Read more.
A pyrimidine-based compound (PP) was recently found to be a promising anticancer agent for colorectal and breast cancers. However, this compound exhibited low selectivity and poor water solubility. To address these challenges, albumin gel nanoparticles were used, where the gel matrix is formed by cross-linking of BSA molecules, allowing for a high concentration of this hydrophobic drug to be carried with no cytotoxicity to non-tumor cells. Functionalization with hyaluronic acid (HA) was employed to target CD44-overexpressing cancer cells, specifically triple-negative breast cancer (MDA-MB-231) and colorectal cancer cell lines (HCT 116). The gel nanoparticles present mean sizes below 250 nm, very low polydispersity, small aggregation tendency, and excellent colloidal stability in PBS buffer for a storage period of 30 days. Moreover, the drug-loaded particles showed high encapsulation efficiencies (above 85%) and sustained release profiles. Drug-loaded BSA/HA particles (PP-HA-BSA-NPs) revealed advantageous activity, presenting around 55% and 23% cell viability at a IC50 drug concentration for triple-negative breast cancer (the most aggressive breast cancer subtype) and colorectal cancer (second leading cause of cancer-related deaths), respectively. In conclusion, these nanoparticles outperform the ones without HA, demonstrating target capabilities, while retaining the drug’s anticancer activity and reducing the drug’s toxicity. These results are promising for future in vivo assays and clinical translational applications. Full article
(This article belongs to the Special Issue Advanced Hydrogels for Controlled Drug Delivery (2nd Edition))
Show Figures

Graphical abstract

Back to TopTop