“Super Sandwich” Assay Using Phenylboronic Acid for the Detection of E. coli Contamination: Methods for Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Synthesis of APBA Conjugates with BSA and STP
2.2.2. Biotinylation of Proteins
2.2.3. Determination of Free Amino Groups in the Synthesized Conjugates
2.2.4. Characterization of the Conjugates by FT-IR Spectroscopy
2.2.5. Bacterial Strain and Cultivation Conditions in Cultural Media
2.2.6. Microscopy of E. coli Cells
2.2.7. Enzyme-Linked Sorbent Assay (ELSA) for E. coli ATCC 25922 Detection
2.2.8. Pathogen Detection by ELSA
3. Results and Discussion
3.1. Proposed Scheme
3.2. Preparation and Characterization of Conjugates with Aminophenylboronic Acid
3.3. Optimization of Assay Conditions
3.3.1. Selection of a BSA-APBA Conjugate for Immobilization
3.3.2. Selecting Conditions for Interactions
3.3.3. Bacteria Inactivation (Storage) Method
3.4. Calibration Curve Analysis
3.5. Application of Developed Technique for Detection of Pathogenic E. coli Strains
3.6. Evaluation of E. coli Cells Grown on Selective Media
3.7. Selectivity Management and Evaluation of the Capability of the Proposed Scheme in Detecting Bacterial Cells
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Geurtsen, J.; de Been, M.; Weerdenburg, E.; Zomer, A.; McNally, A.; Poolman, J. Genomics and pathotypes of the many faces of Escherichia coli. FEMS Microbiol. Rev. 2022, 46, fuac031. [Google Scholar] [CrossRef]
- Yu, D.; Banting, G.; Neumann, N.F. A review of the taxonomy, genetics, and biology of the genus Escherichia and the type species Escherichia coli. Can. J. Microbiol. 2021, 67, 553–571. [Google Scholar] [CrossRef]
- Denamur, E.; Clermont, O.; Bonacorsi, S.; Gordon, D. The population genetics of pathogenic Escherichia coli. Nat. Rev. Microbiol. 2021, 19, 37–54. [Google Scholar] [CrossRef]
- Tenaillon, O.; Skurnik, D.; Picard, B.; Denamur, E. The population genetics of commensal Escherichia coli. Nat. Rev. Microbiol. 2010, 8, 207–217. [Google Scholar] [CrossRef]
- Ormsby, M.J.; White, H.L.; Metcalf, R.; Oliver, D.M.; Quilliam, R.S. Clinically important E. coli strains can persist, and retain their pathogenicity, on environmental plastic and fabric waste. Environ. Pollut. 2023, 326, 121466. [Google Scholar] [CrossRef]
- Alhadlaq, M.A.; Aljurayyad, O.I.; Almansour, A.; Al-Akeel, S.I.; Alzahrani, K.O.; Alsalman, S.A.; Yahya, R.; Al-Hindi, R.R.; Hakami, M.A.; Alshahrani, S.D. Overview of pathogenic Escherichia coli, with a focus on Shiga toxin-producing serotypes, global outbreaks (1982–2024) and food safety criteria. Gut Pathog. 2024, 16, 57. [Google Scholar] [CrossRef]
- Kaper, J.B.; Nataro, J.P.; Mobley, H.L. Pathogenic escherichia coli. Nat. Rev. Microbiol. 2004, 2, 123–140. [Google Scholar] [CrossRef]
- Singha, S.; Thomas, R.; Viswakarma, J.N.; Gupta, V.K. Foodborne illnesses of Escherichia coli O157origin and its control measures. J. Food Sci. Technol. 2023, 60, 1274–1283. [Google Scholar] [CrossRef] [PubMed]
- Pluym, T.; Waegenaar, F.; De Gusseme, B.; Boon, N. Microbial drinking water monitoring now and in the future. Microb. Biotechnol. 2024, 17, e14532. [Google Scholar] [CrossRef] [PubMed]
- Di Lorenzo, F.; Duda, K.A.; Lanzetta, R.; Silipo, A.; De Castro, C.; Molinaro, A. A Journey from Structure to Function of Bacterial Lipopolysaccharides. Chem. Rev. 2022, 122, 15767–15821. [Google Scholar] [CrossRef] [PubMed]
- Arconada Nuin, E.; Vilken, T.; Xavier, B.B.; Doua, J.; Morrow, B.; Geurtsen, J.; Go, O.; Spiessens, B.; Sarnecki, M.; Poolman, J.; et al. A microbiological and genomic perspective of globally collected Escherichia coli from adults hospitalized with invasive E. coli disease. J. Antimicrob. Chemother. 2024, 79, 2142–2151. [Google Scholar] [CrossRef] [PubMed]
- Osińska, A.; Korzeniewska, E.; Korzeniowska-Kowal, A.; Wzorek, A.; Harnisz, M.; Jachimowicz, P.; Buta-Hubeny, M.; Zieliński, W. The challenges in the identification of Escherichia coli from environmental samples and their genetic characterization. Environ. Sci. Pollut. Res. 2023, 30, 11572–11583. [Google Scholar] [CrossRef]
- Gonçalves, A.A.M.; Ribeiro, A.J.; Resende, C.A.A.; Couto, C.A.P.; Gandra, I.B.; dos Santos Barcelos, I.C.; da Silva, J.O.; Machado, J.M.; Silva, K.A.; Silva, L.S.; et al. Recombinant multiepitope proteins expressed in Escherichia coli cells and their potential for immunodiagnosis. Microb. Cell Factories 2024, 23, 145. [Google Scholar] [CrossRef]
- Saldaña-Ahuactzi, Z.; Gutiérrez-Flores, J.H.; Luna-Pineda, V.M.; Cortés-Sarabia, K.; Avelino-Flores, F.; Orduña-Díaz, A. Development and Characterization of a Polyvalent Polyclonal Antibody as a Common Capture Antibody for the Detection of Enterotoxigenic Escherichia coli in a Sandwich ELISA. Curr. Microbiol. 2025, 82, 177. [Google Scholar] [CrossRef] [PubMed]
- Xue, X.; He, M.; Wang, P.; Zhang, Y. Current status of detection strategies for pathogenic Escherichia coli: A brief review and summary. Anal. Sci. 2025, 41, 1575–1584. [Google Scholar] [CrossRef]
- Cossettini, A.; Vidic, J.; Maifreni, M.; Marino, M.; Pinamonti, D.; Manzano, M. Rapid detection of Listeria monocytogenes, Salmonella, Campylobacter spp., and Escherichia coli in food using biosensors. Food Control 2022, 137, 108962. [Google Scholar] [CrossRef]
- Basauri, A.; González-Fernández, C.; Fallanza, M.; Bringas, E.; Fernandez-Lopez, R.; Giner, L.; Moncalián, G.; de la Cruz, F.; Ortiz, I. Biochemical interactions between LPS and LPS-binding molecules. Crit. Rev. Biotechnol. 2020, 40, 292–305. [Google Scholar] [CrossRef]
- Kumar, P.; Schroder, E.A.; Rajaram, M.V.S.; Harris, E.N.; Ganesan, L.P. The Battle of LPS Clearance in Host Defense vs. Inflammatory Signaling. Cells 2024, 13, 1590. [Google Scholar] [CrossRef]
- Wang, Z.; Yao, X.; Zhang, Y.; Wang, R.; Ji, Y.; Sun, J.; Zhang, D.; Wang, J. Functional nanozyme mediated multi-readout and label-free lateral flow immunoassay for rapid detection of Escherichia coli O157:H7. Food Chem. 2020, 329, 127224. [Google Scholar] [CrossRef]
- Cui, F.; Xu, Y.; Wang, R.; Liu, H.; Chen, L.; Zhang, Q.; Mu, X. Label-free impedimetric glycan biosensor for quantitative evaluation interactions between pathogenic bacteria and mannose. Biosens. Bioelectron. 2018, 103, 94–98. [Google Scholar] [CrossRef] [PubMed]
- Spaulding, C.N.; Klein, R.D.; Ruer, S.; Kau, A.L.; Schreiber, H.L.; Cusumano, Z.T.; Dodson, K.W.; Pinkner, J.S.; Fremont, D.H.; Janetka, J.W.; et al. Selective depletion of uropathogenic E. coli from the gut by a FimH antagonist. Nature 2017, 546, 528–532. [Google Scholar] [CrossRef]
- Spaulding, C.N.; Schreiber IV, H.L.; Zheng, W.; Dodson, K.W.; Hazen, J.E.; Conover, M.S.; Wang, F.; Svenmarker, P.; Luna-Rico, A.; Francetic, O. Functional role of the type 1 pilus rod structure in mediating host-pathogen interactions. eLlife 2018, 7, e31662. [Google Scholar] [CrossRef]
- Jung, H.-J.; Pamer, E.G. A spoonful of sugar could be the medicine. Nature 2017, 546, 479–480. [Google Scholar] [CrossRef]
- Schwartz, D.J.; Kalas, V.; Pinkner, J.S.; Chen, S.L.; Spaulding, C.N.; Dodson, K.W.; Hultgren, S.J. Positively selected FimH residues enhance virulence during urinary tract infection by altering FimH conformation. Proc. Natl. Acad. Sci. USA 2013, 110, 15530–15537. [Google Scholar] [CrossRef]
- Silva, M.P.; Saraiva, L.; Pinto, M.; Sousa, M.E. Boronic Acids and Their Derivatives in Medicinal Chemistry: Synthesis and Biological Applications. Molecules 2020, 25, 4323. [Google Scholar] [CrossRef]
- Hall, D.G. Structure, properties, and preparation of boronic acid derivatives. Overview of their reactions and applications. In Boronic Acids: Preparation and Applications in Organic Synthesis and Medicine; Wiley: New York, NY, USA, 2005; pp. 1–99. [Google Scholar]
- Fujita, T.; Matsushita, M.; Endo, Y. The lectin-complement pathway—Its role in innate immunity and evolution. Immunol. Rev. 2004, 198, 185–202. [Google Scholar] [CrossRef]
- Silva, N.R.G.; Araújo, F.N.d. Antibacterial activity of plant lectins: A review. Braz. Arch. Biol. Technol. 2021, 64, e21200631. [Google Scholar] [CrossRef]
- De Coninck, T.; Van Damme, E.J.M. Plant lectins: Handymen at the cell surface. Cell Surf. 2022, 8, 100091. [Google Scholar] [CrossRef] [PubMed]
- Adamczyk-Woźniak, A.; Komarovska-Porokhnyavets, O.; Misterkiewicz, B.; Novikov, V.P.; Sporzyński, A. Biological activity of selected boronic acids and their derivatives. Appl. Organomet. Chem. 2012, 26, 390–393. [Google Scholar] [CrossRef]
- Brooks, W.L.A.; Sumerlin, B.S. Synthesis and Applications of Boronic Acid-Containing Polymers: From Materials to Medicine. Chem. Rev. 2016, 116, 1375–1397. [Google Scholar] [CrossRef] [PubMed]
- Peters, J.A. Interactions between boric acid derivatives and saccharides in aqueous media: Structures and stabilities of resulting esters. Coord. Chem. Rev. 2014, 268, 1–22. [Google Scholar] [CrossRef]
- Pappin, B.; Kiefel, M.J.; Houston, T.A. Boron-carbohydrate interactions. In Carbohydrates-Comprehensive Studies on Glycobiology and Glycotechnology; BoD–Books on Demand: Norderstedt, Germany, 2012; pp. 37–54. [Google Scholar]
- Tamerat, N.; Muktar, Y.; Shiferaw, D. Application of molecular diagnostic techniques for the detection of E. coli O157:H7: A review. J. Vet. Sci. Technol. 2016, 7, 1–9. [Google Scholar] [CrossRef]
- Petronella, F.; De Biase, D.; Zaccagnini, F.; Verrina, V.; Lim, S.-I.; Jeong, K.-U.; Miglietta, S.; Petrozza, V.; Scognamiglio, V.; Godman, N.P. Label-free and reusable antibody-functionalized gold nanorod arrays for the rapid detection of Escherichia coli cells in a water dispersion. Environ. Sci. Nano 2022, 9, 3343–3360. [Google Scholar] [CrossRef]
- Chorro, L.; Ndreu, D.; Patel, A.; Kodali, S.; Li, Z.; Keeney, D.; Dutta, K.; Sasmal, A.; Illenberger, A.; Torres, C.L. Preclinical validation of an Escherichia coli O-antigen glycoconjugate for the prevention of serotype O1 invasive disease. Microbiol. Spectr. 2024, 12, e04213-23. [Google Scholar] [CrossRef]
- Naini, A.; Bartetzko, M.P.; Sanapala, S.R.; Broecker, F.; Wirtz, V.; Lisboa, M.P.; Parameswarappa, S.G.; Knopp, D.; Przygodda, J.; Hakelberg, M. Semisynthetic glycoconjugate vaccine candidates against Escherichia coli O25B induce functional IgG antibodies in mice. JACS Au 2022, 2, 2135–2151. [Google Scholar] [CrossRef] [PubMed]
- Caillava, A.J.; Melli, L.J.; Landoni, M.; Landivar, S.M.; Chinen, I.; Couto, A.S.; Rivas, M.; Ugalde, J.E.; Comerci, D.J.; Ciocchini, A.E. Development of a set of bacterial engineered glycoconjugates as novel serogroup-specific antigens for the serodiagnosis of Escherichia coli O26, O111, O103 and O45 infections associated to hemolytic uremic syndrome. Microb. Cell Factories 2025, 24, 116. [Google Scholar] [CrossRef] [PubMed]
- Tamura, H.; Reich, J.; Nagaoka, I. Outstanding contributions of LAL technology to pharmaceutical and medical science: Review of methods, progress, challenges, and future perspectives in early detection and management of bacterial infections and invasive fungal diseases. Biomedicines 2021, 9, 536. [Google Scholar] [CrossRef]
- Dyatlov, I.A.; Svetoch, E.A.; Mironenko, A.A.; Eruslanov, B.V.; Firstova, V.V.; Fursova, N.K.; Kovalchuk, A.L.; Lvov, V.L.; Aparin, P.G. Molecular lipopolysaccharide di-vaccine protects from Shiga-toxin producing epidemic strains of Escherichia coli O157:H7 and O104:H4. Vaccines 2022, 10, 1854. [Google Scholar] [CrossRef]
- Sata, S.; Osawa, R.; Asai, Y.; Yamai, S. Growth of starved Escherichia coli O157 cells in selective and non-selective media. Microbiol. Immunol. 1999, 43, 217–227. [Google Scholar] [CrossRef]
- Bonnet, M.; Lagier, J.C.; Raoult, D.; Khelaifia, S. Bacterial culture through selective and non-selective conditions: The evolution of culture media in clinical microbiology. New Microbes New Infect. 2020, 34, 100622. [Google Scholar] [CrossRef] [PubMed]
- Wright, K.M.; Wright, P.J.; Holden, N.J. MacConkey broth purple provides an efficient MPN estimation method for Shigatoxigenic Escherichia coli. J. Microbiol. Methods 2021, 181, 106132. [Google Scholar] [CrossRef]
- Berlina, A.N.; Komova, N.S.; Zherdev, A.V.; Dzantiev, B.B. Combination of phenylboronic acid and oligocytosine for selective and specific detection of lead (ii) by lateral flow test strip. Anal. Chim. Acta 2021, 1155, 338318. [Google Scholar] [CrossRef] [PubMed]
- Nakajima, N.; Ikada, Y. Mechanism of amide formation by carbodiimide for bioconjugation in aqueous media. Bioconjug. Chem. 1995, 6, 123–130. [Google Scholar] [CrossRef]
- Khatami, M.; Angeletti, R.; Rockey, J. Amino acid sequence adjacent to a sulfhydryl group exposed on illumination of bovine rhodopsin. J. Biol. Chem. 1981, 256, 9826–9829. [Google Scholar] [CrossRef]
- Hyre, D.E.; Le Trong, I.; Freitag, S.; Stenkamp, R.E.; Stayton, P.S. Ser45 plays an important role in managing both the equilibrium and transition state energetics of the streptavidin-biotin system. Protein Sci. 2000, 9, 878–885. [Google Scholar] [CrossRef]
- Welinder, K.G. Covalent structure of the glycoprotein horseradish peroxidase (EC 1.11. 1.7). FEBS Lett. 1976, 72, 19–23. [Google Scholar] [CrossRef] [PubMed]
- Habeeb, A.F.S.A. Determination of free amino groups in proteins by trinitrobenzenesulfonic acid. Anal. Biochem. 1966, 14, 328–336. [Google Scholar] [CrossRef] [PubMed]
- Bujacz, A. Structures of bovine, equine and leporine serum albumin. Biol. Crystallogr. 2012, 68, 1278–1289. [Google Scholar] [CrossRef]
- Guerra, Y.; Valiente, P.A.; Pons, T.; Berry, C.; Rudiño-Piñera, E. Structures of a bi-functional Kunitz-type STI family inhibitor of serine and aspartic proteases: Could the aspartic protease inhibition have evolved from a canonical serine protease-binding loop? J. Struct. Biol. 2016, 195, 259–271. [Google Scholar] [CrossRef]
- Berlina, A.N.; Komova, N.S.; Serebrennikova, K.V.; Zherdev, A.V.; Dzantiev, B.B. Comparison of Conjugates Obtained Using DMSO and DMF as Solvents in the Production of Polyclonal Antibodies and ELISA Development: A Case Study on Bisphenol A. Antibodies 2024, 13, 89. [Google Scholar] [CrossRef]
- Hermanson, G.T. Chapter 3—The Reactions of Bioconjugation. In Bioconjugate Techniques, 3rd ed.; Audet, J., Preap, M., Eds.; Academic Press: Cambridge, MA, USA, 2013; pp. 229–258. [Google Scholar]
- Faniran, J.; Shurvell, H. Infrared spectra of phenylboronic acid (normal and deuterated) and diphenyl phenylboronate. Can. J. Chem. 1968, 46, 2089–2095. [Google Scholar] [CrossRef]
- Hermanson, G.T. Chapter 4—Zero Length Crosslinkers. In Bioconjugate Techniques, 3rd ed.; Audet, J., Preap, M., Eds.; Academic Press: Cambridge, MA, USA, 2013; pp. 259–265. [Google Scholar]
- Lim, C.Y.; Owens, N.A.; Wampler, R.D.; Ying, Y.; Granger, J.H.; Porter, M.D.; Takahashi, M.; Shimazu, K. Succinimidyl ester surface chemistry: Implications of the competition between aminolysis and hydrolysis on covalent protein immobilization. Langmuir 2014, 30, 12868–12878. [Google Scholar] [CrossRef] [PubMed]
- Kratzer, U.; Sommersdorf, C.; Maier, S.; Wagner, T.R.; Templin, M.; Joos, T.O.; Rothbauer, U.; Zeck, A.; Poetz, O. Tris(hydroxymethyl)aminomethane Compatibility with N-Hydroxysuccinimide Ester Chemistry: Biotinylation of Peptides and Proteins in TRIS Buffer. Bioconjugate Chem. 2021, 32, 1960–1965. [Google Scholar] [CrossRef]
- Shleeva, M.; Savitsky, A.; Nikitushkin, V.; Soloviev, I.; Trutneva, K.; Keruchenko, Y.S.; Kaprelyants, A. Effect of photodynamic inactivation against dormant forms and active growing cells of Mycobacterium smegmatis. Appl. Biochem. Microbiol. 2020, 56, 285–291. [Google Scholar] [CrossRef]
- Laffont, C.; Wechsler, T.; Kümmerli, R. Interactions between Pseudomonas aeruginosa and six opportunistic pathogens cover a broad spectrum from mutualism to antagonism. Environ. Microbiol. Rep. 2024, 16, e70015. [Google Scholar] [CrossRef]
- Jung, B.; Hoilat, G.J. MacConkey Medium. In StatPearls; StatPearls Publishing LLC.: Treasure Island, FL, USA, 2025. [Google Scholar]
- Vection, S.; Laine, C.G.; Arenas-Gamboa, A.M. What do we really know about brucellosis diagnosis in livestock worldwide? A systematic review. PLoS Neglected Trop. Dis. 2025, 19, e0013185. [Google Scholar] [CrossRef]
- Makdasi, E.; Atiya-Nasagi, Y.; Gur, D.; Glinert, I.; Shmaya, S.; Milrot, E.; Chitlaru, T.; Mamroud, E.; Laskar, O.; Schuster, O. Iron-Modified Blood Culture Media Allow for the Rapid Diagnosis and Isolation of the Slow-Growing Pathogen Francisella tularensis. Microbiol. Spectr. 2022, 10, e02415-22. [Google Scholar] [CrossRef]
- Wheatley, R.; Diaz Caballero, J.; Kapel, N.; De Winter, F.H.; Jangir, P.; Quinn, A.; del Barrio-Tofino, E.; Lopez-Causape, C.; Hedge, J.; Torrens, G. Rapid evolution and host immunity drive the rise and fall of carbapenem resistance during an acute Pseudomonas aeruginosa infection. Nat. Commun. 2021, 12, 2460. [Google Scholar] [CrossRef]
- Bertelloni, F.; Cagnoli, G.; Ebani, V.V. Survey on the Occurrence of Zoonotic Bacterial Pathogens in the Feces of Wolves (Canis lupus italicus) Collected in a Protected Area in Central Italy. Microorganisms 2024, 12, 2367. [Google Scholar] [CrossRef] [PubMed]












| Parameter | STI | STI–Biotin | BSA |
|---|---|---|---|
| Fluorescence intensity | 7915 | 5662 | 15,636 |
| Number of free amino groups | 11 [51] | 8 | 59 (about 30 available NH2 groups) [50]) |
| BSA-APBA-4.0 (Tris) | BSA-APBA-4.0 (MES) | BSA–Biotin | |
| Fluorescence intensity | 12,652 | 3143 | 11,966 |
| Number of free amino groups | 48 (24 available) | 12 (6 available) | 46 (23 available) |
| STP | STP-APBA (Tris) | STP-APBA (MES) | |
| Fluorescence intensity | 15,563 | 6621 | 9083 |
| Number of free amino groups | 32 | 14 | 19 |
| Cell Concentration Added | Cell Concentration Detected | Recovery, % |
|---|---|---|
| 5 × 104 | 6 × 104 | 120 ± 8.8 |
| 5 × 105 | 4.8 × 105 | 96 ± 11.2 |
| 5 × 106 | 5.7 × 104 | 114 ± 12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Berlina, A.N.; Kasatkina, S.I.; Shleeva, M.O.; Zherdev, A.V.; Dzantiev, B.B. “Super Sandwich” Assay Using Phenylboronic Acid for the Detection of E. coli Contamination: Methods for Application. Microorganisms 2025, 13, 2745. https://doi.org/10.3390/microorganisms13122745
Berlina AN, Kasatkina SI, Shleeva MO, Zherdev AV, Dzantiev BB. “Super Sandwich” Assay Using Phenylboronic Acid for the Detection of E. coli Contamination: Methods for Application. Microorganisms. 2025; 13(12):2745. https://doi.org/10.3390/microorganisms13122745
Chicago/Turabian StyleBerlina, Anna N., Svetlana I. Kasatkina, Margarita O. Shleeva, Anatoly V. Zherdev, and Boris B. Dzantiev. 2025. "“Super Sandwich” Assay Using Phenylboronic Acid for the Detection of E. coli Contamination: Methods for Application" Microorganisms 13, no. 12: 2745. https://doi.org/10.3390/microorganisms13122745
APA StyleBerlina, A. N., Kasatkina, S. I., Shleeva, M. O., Zherdev, A. V., & Dzantiev, B. B. (2025). “Super Sandwich” Assay Using Phenylboronic Acid for the Detection of E. coli Contamination: Methods for Application. Microorganisms, 13(12), 2745. https://doi.org/10.3390/microorganisms13122745

