Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (264)

Search Parameters:
Keywords = AuSn

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 3150 KiB  
Article
Research on the Influence Mechanism of Thermal Load on the Au-Sn Sealing Weld State on Three-Dimensional DPC Substrates
by Heran Zhao, Lihua Cao, ShiZhao Wang, He Zhang and Mingxiang Chen
Materials 2025, 18(15), 3678; https://doi.org/10.3390/ma18153678 - 5 Aug 2025
Abstract
Direct copper-plated ceramic (DPC) substrates have emerged as a favored solution for power device packaging due to their unique technical advantages. AuSn, characterized by its high hermeticity and environmental adaptability, represents the optimal sealing technology for DPC substrates. Through the application of vacuum [...] Read more.
Direct copper-plated ceramic (DPC) substrates have emerged as a favored solution for power device packaging due to their unique technical advantages. AuSn, characterized by its high hermeticity and environmental adaptability, represents the optimal sealing technology for DPC substrates. Through the application of vacuum sintering techniques and adjustment of peak temperatures (325 °C, 340 °C, and 355 °C), the morphology and composition of interfacial compounds were systematically investigated, along with an analysis of their formation mechanisms. A gradient aging experiment was designed (125 °C/150 °C/175 °C × oxygen/argon dual atmosphere × 600 h) to elucidate the synergistic effects of environmental temperature and atmosphere on the growth of intermetallic compounds (IMCs). The results indicate that the primary reaction in the sealing weld seam involves Ni interacting with Au-Sn to form (Ni, Au)3Sn2 and Au5Sn. However, upon completion of the sealing process, this reaction remains incomplete, leading to a coexistence state of (Ni, Au)3Sn2, Au5Sn, and AuSn. Additionally, Ni diffuses into the weld seam center via dendritic fracture and locally forms secondary phases such as δ(Ni) and ζ’(Ni). These findings suggest that the weld seam interface exhibits a complex, irregular, and asymmetric microstructure comprising multiple coexisting compounds. It was determined that Tpeak = 325 °C to 340 °C represents the ideal welding temperature range, where the weld seam morphology, width, and Ni diffusion degree achieve optimal states, ensuring excellent device hermeticity. Aging studies further demonstrate that IMC growth remains within controllable limits. These findings address critical gaps in the understanding of the microstructural evolution and interface characteristics of asymmetric welded joints formed by multi-material systems. Full article
Show Figures

Graphical abstract

14 pages, 3520 KiB  
Article
Design and Fabrication of Embedded Microchannel Cooling Solutions for High-Power-Density Semiconductor Devices
by Yu Fu, Guangbao Shan, Xiaofei Zhang, Lizheng Zhao and Yintang Yang
Micromachines 2025, 16(8), 908; https://doi.org/10.3390/mi16080908 (registering DOI) - 4 Aug 2025
Viewed by 66
Abstract
The rapid development of high-power-density semiconductor devices has rendered conventional thermal management techniques inadequate for handling their extreme heat fluxes. This manuscript presents and implements an embedded microchannel cooling solution for such devices. By directly integrating micropillar arrays within the near-junction region of [...] Read more.
The rapid development of high-power-density semiconductor devices has rendered conventional thermal management techniques inadequate for handling their extreme heat fluxes. This manuscript presents and implements an embedded microchannel cooling solution for such devices. By directly integrating micropillar arrays within the near-junction region of the substrate, efficient forced convection and flow boiling mechanisms are achieved. Finite element analysis was first employed to conduct thermo–fluid–structure simulations of micropillar arrays with different geometries. Subsequently, based on our simulation results, a complete multilayer microstructure fabrication process was developed and integrated, including critical steps such as deep reactive ion etching (DRIE), surface hydrophilic/hydrophobic functionalization, and gold–stannum (Au-Sn) eutectic bonding. Finally, an experimental test platform was established to systematically evaluate the thermal performance of the fabricated devices under heat fluxes of up to 1200 W/cm2. Our experimental results demonstrate that this solution effectively maintains the device operating temperature at 46.7 °C, achieving a mere 27.9 K temperature rise and exhibiting exceptional thermal management capabilities. This manuscript provides a feasible, efficient technical pathway for addressing extreme heat dissipation challenges in next-generation electronic devices, while offering notable references in structural design, micro/nanofabrication, and experimental validation for related fields. Full article
Show Figures

Figure 1

20 pages, 7766 KiB  
Article
Mineral Exploration in the Central Xicheng Ore Field, China, Using the Tectono-Geochemistry, Staged Factor Analysis, and Fractal Model
by Qiang Wang, Zhizhong Cheng, Hongrui Li, Tao Yang, Tingjie Yan, Mingming Bing, Huixiang Yuan and Chenggui Lin
Minerals 2025, 15(7), 691; https://doi.org/10.3390/min15070691 - 28 Jun 2025
Viewed by 262
Abstract
As China’s third-largest lead–zinc ore field, the Xicheng Ore Field has significant potential for discovering concealed deposits. In this study, a tectono-geochemical survey was conducted, and 1329 composite samples (comprising 5614 subsamples) were collected from the central part of the field. The dataset [...] Read more.
As China’s third-largest lead–zinc ore field, the Xicheng Ore Field has significant potential for discovering concealed deposits. In this study, a tectono-geochemical survey was conducted, and 1329 composite samples (comprising 5614 subsamples) were collected from the central part of the field. The dataset was analyzed using staged factor analysis (SFA) and concentration–area (C–A) fractal model. Four geochemical factors were extracted from centered log-ratio (CLR)-transformed data: F2-1 (Ag–Pb–Sb–Hg), F2-2 (Mo–Sb–(Zn)), F2-3 (Au–Bi), and F2-4 (W–Sn). Known Pb–Zn deposits coincide with positive F2-1 and negative F2-2 anomalies, as identified by the C–A fractal model, suggesting these factors are reliable indicators of Pb–Zn mineralization. Five Pb–Zn exploration targets were delineated. Statistical analysis and anomaly maps for F2-3 and F2-4 also indicate the potential for Au and W mineralization. Notably, some anomalies from different factors spatially overlap, indicating the possibility of epithermal Pb–Zn mineralization at shallow depths and mesothermal to hyperthermal Au and W mineralization at great depths. Overall, the integration of tectono-geochemistry, targeted and composite sampling, SFA, and C–A fractal modeling proves to be an effective and economical approach for identifying and enhancing ore-related geochemical anomalies. Full article
(This article belongs to the Section Mineral Exploration Methods and Applications)
Show Figures

Figure 1

19 pages, 3823 KiB  
Article
Theoretical Performance of BaSnO3-Based Perovskite Solar Cell Designs Under Variable Light Intensities, Temperatures, and Donor and Defect Densities
by Nouf Alkathran, Shubhranshu Bhandari and Tapas K. Mallick
Designs 2025, 9(3), 76; https://doi.org/10.3390/designs9030076 - 18 Jun 2025
Viewed by 407
Abstract
Barium stannate (BaSnO3) has emerged as a promising alternative electron transport material owing to its superior electron mobility, resistance to UV degradation, and energy bandgap tunability, yet BaSnO3-based perovskite solar cells have not reached the efficiency levels of TiO [...] Read more.
Barium stannate (BaSnO3) has emerged as a promising alternative electron transport material owing to its superior electron mobility, resistance to UV degradation, and energy bandgap tunability, yet BaSnO3-based perovskite solar cells have not reached the efficiency levels of TiO2-based designs. This theoretical study presents a design-driven evaluation of BaSnO3-based perovskite solar cell architectures, incorporating MAPbI3 or FAMAPbI3 perovskite materials, Spiro-OMeTAD, or Cu2O hole transport materials as well as hole-free configurations, under varying light intensity. Using a systematic device modelling approach, we explore the influence of key design variables—such as layer thickness, donor density, and interface defect concentration—of BaSnO3 and operating temperature on the power conversion efficiency (PCE). Among the proposed designs, the FTO/BaSnO3/FAMAPbI3/Cu2O/Au heterostructure exhibits an exceptionally effective arrangement with PCE of 38.2% under concentrated light (10,000 W/m2, or 10 Sun). The structure also demonstrates strong thermal robustness up to 400 K, with a low temperature coefficient of −0.078% K−1. These results underscore the importance of material and structural optimisation in PSC design and highlight the role of high-mobility, thermally stable inorganic transport layers—BaSnO3 as the electron transport material (ETM) and Cu2O as the hole transport material (HTM)—in enabling efficient and stable photovoltaic performance under high irradiance. The study contributes valuable insights into the rational design of high-performance PSCs for emerging solar technologies. Full article
Show Figures

Graphical abstract

14 pages, 1591 KiB  
Article
Synergistic Control of Liquid Crystallinity and Phosphorescence in Gold(I) Complexes via Strategic Alkyl Chain Design
by Arushi Rawat, Kohsuke Matsumoto, Ganesan Prabusankar and Osamu Tsutsumi
Crystals 2025, 15(6), 554; https://doi.org/10.3390/cryst15060554 - 10 Jun 2025
Viewed by 1221
Abstract
Liquid crystals exhibit unique properties that can be tailored in response to external stimuli. Significant research is directed toward the development of luminescent materials exhibiting liquid crystallinity for various applications. The present work reports Au(I) complexes featuring N-heterocyclic carbene and phenyl acetylide ligands. [...] Read more.
Liquid crystals exhibit unique properties that can be tailored in response to external stimuli. Significant research is directed toward the development of luminescent materials exhibiting liquid crystallinity for various applications. The present work reports Au(I) complexes featuring N-heterocyclic carbene and phenyl acetylide ligands. Metal complexes enable the utilization of the triplet excitons through their inherent spin–orbit coupling, promoting intersystem crossing from singlet (Sn) to triplet (Tn) states to observe room-temperature phosphorescence (RTP). The strong bonds between carbene and Au enhance the thermal stability, and the substituted benzimidazole ring alters the thermodynamic and photophysical properties of the complexes. Incorporating the acetylide ligands with long alkoxy chains led to the formation of liquid crystalline (LC) phases, which exhibited stability over a wide temperature range. Additionally, the luminescence behavior was affected by the ethynyl ligands, and high quantum yields of RTP were observed. This study establishes the development of LC Au(I) complexes with a thermodynamically stable LC mesophase over a wide temperature range for applications in the field of light-emitting functional materials. Full article
(This article belongs to the Special Issue State-of-the-Art Liquid Crystals Research in Japan (2nd Edition))
Show Figures

Figure 1

12 pages, 9594 KiB  
Article
An Electrochemical Sensor Based on AuNPs@Cu-MOF/MWCNTs Integrated Microfluidic Device for Selective Monitoring of Hydroxychloroquine in Human Serum
by Xuanlin Feng, Jiaqi Zhao, Shiwei Wu, Ying Kan, Honemei Li and Weifei Zhang
Chemosensors 2025, 13(6), 200; https://doi.org/10.3390/chemosensors13060200 - 1 Jun 2025
Viewed by 730
Abstract
Hydroxychloroquine (HCQ), a cornerstone therapeutic agent for autoimmune diseases, requires precise serum concentration monitoring due to its narrow therapeutic window. Current HCQ monitoring methods such as HPLC and LC-MS/MS are sensitive but costly and complex. While electrochemical sensors offer rapid, cost-effective detection, their [...] Read more.
Hydroxychloroquine (HCQ), a cornerstone therapeutic agent for autoimmune diseases, requires precise serum concentration monitoring due to its narrow therapeutic window. Current HCQ monitoring methods such as HPLC and LC-MS/MS are sensitive but costly and complex. While electrochemical sensors offer rapid, cost-effective detection, their large chambers and high sample consumption hinder point-of-care use. To address these challenges, we developed a microfluidic electrochemical sensing platform based on a screen-printed carbon electrode (SPCE) modified with a hierarchical nanocomposite of gold nanoparticles (AuNPs), copper-based metal–organic frameworks (Cu-MOFs), and multi-walled carbon nanotubes (MWCNTs). The Cu-MOF provided high porosity and analyte enrichment, MWCNTs established a 3D conductive network to enhance electron transfer, and AuNPs further optimized catalytic activity through localized plasmonic effects. Structural characterization (SEM, XRD, FT-IR) confirmed the successful integration of these components via π-π stacking and metal–carboxylate coordination. Electrochemical analyses (CV, EIS, DPV) revealed exceptional performance, with a wide linear range (0.05–50 μM), a low detection limit (19 nM, S/N = 3), and a rapid response time (<5 min). The sensor exhibited outstanding selectivity against common interferents, high reproducibility (RSD = 3.15%), and long-term stability (98% signal retention after 15 days). By integrating the nanocomposite-modified SPCE into a microfluidic chip, we achieved accurate HCQ detection in 50 μL of serum, with recovery rates of 95.0–103.0%, meeting FDA validation criteria. This portable platform combines the synergistic advantages of nanomaterials with microfluidic miniaturization, offering a robust and practical tool for real-time therapeutic drug monitoring in clinical settings. Full article
(This article belongs to the Special Issue Feature Papers on Luminescent Sensing (Second Edition))
Show Figures

Figure 1

29 pages, 5916 KiB  
Article
Metal Fingerprints of Eocene Rhyolite Magmas Coincident with Carlin-Type Gold Deposition in Nevada USA
by Celestine N. Mercer, Hannah R. Babel, Cameron M. Mercer and Albert H. Hofstra
Minerals 2025, 15(5), 479; https://doi.org/10.3390/min15050479 - 4 May 2025
Viewed by 577
Abstract
Eocene magmatic systems contemporaneous with world-class Carlin-type Au deposits in Nevada (USA) have been proposed by some researchers as a key ingredient for Au mineralization, though evidence conclusively demonstrating their genetic relationship remains tenuous. This study provides the first direct evidence of the [...] Read more.
Eocene magmatic systems contemporaneous with world-class Carlin-type Au deposits in Nevada (USA) have been proposed by some researchers as a key ingredient for Au mineralization, though evidence conclusively demonstrating their genetic relationship remains tenuous. This study provides the first direct evidence of the pre-eruptive metal budget of volatile- and metal-charged silicic magmas coincident in time (~41 to 34 Ma) and space (within 5 km) with Carlin-type Au deposits. We characterize the pre-eruptive metal fingerprints of these diverse magmatic systems to assess their potential as sources of metals for Carlin-type Au mineralization. Metal abundances from quartz-hosted melt inclusions (Au, Te, Ag, Sb, Tl, Mo, W, Sn, As, Pb, Co, Cu, Ni, and Zn) characterized in situ by SHRIMP-RG and LA-ICP-MS represent our best (and only) estimates for the pre-eruptive metal budget in these systems. Median metal concentrations are generally within one order of magnitude of average upper crust and average continental rhyolite values. But there are two notable exceptions, with median Au contents extending >1 order of magnitude higher than average upper crust and median Cu contents ranging >1 order of magnitude lower than upper crust. Despite this, melts contain lower Au/Cu (<0.1), Au/Ag (<5), and Au/Tl (<0.3) than most ore-grade Carlin-type rock samples and quartz-hosted fluid inclusions, regardless of their age and timing relative to nearby Carlin-type Au mineralization. The metal fingerprints of these magmatic systems, defined both by traditional and multivariate compositional data analysis techniques, are distinct from one another. Yet none are particularly specialized, e.g., high Au/Cu, in terms of being ideal ingredients as postulated by magmatic models for Carlin-type Au mineralization. Magmatic Au contents do not appear to be correlated with rhyolite “flavors” in the way that Cu, Sn, and Nb contents are. Fluid/melt partitioning modeling and magma volume estimates support the idea that a diverse array of non-specialized silicic magmas could feasibly contribute some or potentially all of the Au, Ag, and Cu in Carlin-type systems. The compositional diversity among contemporaneous magmatic systems could possibly contribute to some of the diversity observed across Carlin-type Au districts in Nevada. Full article
Show Figures

Graphical abstract

17 pages, 1411 KiB  
Article
Mineral Composition of Chelidonium majus L. and Soils in Urban Areas
by Oimahmad Rahmonov, Dorota Środek, Sławomir Pytel, Teobald Kupka and Natalina Makieieva
Appl. Sci. 2025, 15(9), 4718; https://doi.org/10.3390/app15094718 - 24 Apr 2025
Viewed by 639
Abstract
Chelidonium majus L. is a species with a wide medicinal use, commonly found in anthropogenically degraded habitats, forest edges, and urban parks. This study aimed to determine the chemical composition of the leaves, stems, and roots of Ch. majus and the soil in [...] Read more.
Chelidonium majus L. is a species with a wide medicinal use, commonly found in anthropogenically degraded habitats, forest edges, and urban parks. This study aimed to determine the chemical composition of the leaves, stems, and roots of Ch. majus and the soil in its rhizosphere in terms of the content of the main elements (Fe, Ca, P, Mg, Al, Na, K, S), trace elements and rare earth minerals (Ti, Mo, Ag, U, Au, Th, Sb, Bi, V, La, B, W, Sc, Tl, Se, Te, Ga, Cs, Ge, Hf, Nb, Rb, Sn, Ta, Zr, Y, Ce, In, Be, and Li), and their comparison in the parts analyzed. The study was conducted in five urban parks in southern Poland in a historically industrialized area. The results showed that Ca has the highest content among the macroelements. Its leaf content ranges from 24,700 to 40,700 mg·kg−1, while in soil, it ranges from 6500 to 15,000 mg·kg−1. In leaves, low values of Al (100–500 mg·kg−1) and Na (100 mg·kg−1) were found in comparison to the other elements tested, while high values of Al (5100–9800 mg·kg−1) were found in soils. Among the macroelements in the Ch. majus stems, K showed the highest concentration (>100,000 mg·kg−1), while the Ca content was 3–4 times lower in the stems than in the leaves. Rhizomes of Ch. majus accumulate the most K and Ca, in the range of 22,800–29,900 mg·kg−1 and 5400–8900 mg·kg−1, respectively. Fe and Al in all locations have higher values in the soil than in the tissues. In turn, the content of Ca, P, Mg, K, and S is higher in plants than in the soil. Determining the elemental content of medicinal plants is important information, as the plant draws these elements from the soil, and, at higher levels of toxicity, it may indicate that the plant should not be taken from this habitat for medicinal purposes. Full article
(This article belongs to the Section Environmental Sciences)
Show Figures

Figure 1

16 pages, 2027 KiB  
Article
Effective Recovery of Gold from Chloride Multi-Metal Solutions Through Anion Exchange
by Isabel F. F. Neto, Márcia A. D. Silva and Helena M. V. M. Soares
Recycling 2025, 10(2), 64; https://doi.org/10.3390/recycling10020064 - 7 Apr 2025
Viewed by 756
Abstract
Leachates from electronic waste, slag dusts generated during the processing of electronic waste, sweeping jewelry, and municipal solid-waste incineration residues contain a myriad of base metals, such as aluminum (Al: 10–2000 mg/L), copper (Cu: 10–1000 mg/L), iron (Fe: 10–500 mg/L), nickel (Ni: 0.1–500 [...] Read more.
Leachates from electronic waste, slag dusts generated during the processing of electronic waste, sweeping jewelry, and municipal solid-waste incineration residues contain a myriad of base metals, such as aluminum (Al: 10–2000 mg/L), copper (Cu: 10–1000 mg/L), iron (Fe: 10–500 mg/L), nickel (Ni: 0.1–500 mg/L), lead (Pb: 1–500 mg/L), tin (Sn: 1–100 mg/L), and zinc (Zn: 5–500 mg/L), which are present at much higher quantities than Au (0.01–10 mg/L), which raises several drawbacks to the efficient recycling of Au with high purity using hydrometallurgical strategies. The aim of this work was to study the efficiency and selectivity of two strong basic anion exchange (DOWTM XZ-91419.00 and PurogoldTM A194) resins to recover Au from a chloride multi-metal solution containing these metals. For both resins, the adsorption kinetic and equilibrium parameters for Au(III), determined at 1.12 mol/L HCl, Eh = 1.1 V, and 25 °C, proceeded according to a pseudo-second order and a Langmuir isotherm (qmax was 0.94 and 1.70 mmol/g for DOWTM XZ-91419.00 and PurogoldTM A194 resins, respectively), respectively. Continuous adsorption experiments of Au (48 µmol/L; 2.0%) from a chloride multi-metal solution evidenced high Au retention capacity and selectivity to Au over Al, Cu, Fe, Ni, and Zn but low selectivity to Au over Ag and Sn for both resins. Concentrated (>3.3 mmol/L) and pure (>94%) Au eluates were obtained for both resins. Full article
Show Figures

Figure 1

13 pages, 10030 KiB  
Article
Advanced Fabrication of 56 Gbaud Electro-Absorption Modulated Laser (EML) Chips Integrated with High-Speed Silicon Photonic Substrates
by Liang Li, Yifan Xiao, Weiqi Wang, Chenggang Guan, Wengang Yao, Yuming Zhang, Xuan Chen, Qiang Wan, Chaoqiang Dong and Xinyuan Xu
Photonics 2025, 12(4), 329; https://doi.org/10.3390/photonics12040329 - 1 Apr 2025
Viewed by 673
Abstract
With the rapid growth of data center demand driven by AI, high-speed optical modules (such as 800G and 1.6T) have become critical components. Traditional 800G modules face issues such as complex processes and large sizes due to the separate packaging of EML chips, [...] Read more.
With the rapid growth of data center demand driven by AI, high-speed optical modules (such as 800G and 1.6T) have become critical components. Traditional 800G modules face issues such as complex processes and large sizes due to the separate packaging of EML chips, AlN substrates, and capacitors. This study proposes a high-speed EML module based on silicon integration, where resistors, capacitors, and AuSn soldering areas are integrated onto the silicon substrate, enabling the bonding of the EML chip, reducing packaging costs, and enhancing scalability. Key achievements include: the development of a 100G EML chip; the fabrication of a high-speed silicon integrated carrier; successful Chip-on-Carrier (COC) packaging and testing, with a laser output power of 10 mW, extinction ratio of 10 dB, and bandwidth greater than 40 GHz; and reliability verified through 500 h of aging tests. This study provides an expandable solution for next-generation high-speed optical interconnects. Full article
Show Figures

Figure 1

14 pages, 9642 KiB  
Article
Design and Process Implementation of Silicon-Based Carrier for 100 G/200 G Electro-Absorption Modulated Laser Chips
by Liang Li, Xuan Chen, Linfeng Zhan, Chenggang Guan, Wengang Yao, Yuming Zhang, Yifan Xiao, Xuelong Fan, Chen Xu and Yifeng Chen
Electronics 2025, 14(7), 1398; https://doi.org/10.3390/electronics14071398 - 30 Mar 2025
Viewed by 462
Abstract
This paper presents a highly stable and integrated silicon-based carrier with broad application prospects. Traditional 800 G optical modules employ architectures based on aluminum nitride (AlN) carriers with externally mounted capacitors. However, such AlN-based architectures suffer from issues including high process complexity, elevated [...] Read more.
This paper presents a highly stable and integrated silicon-based carrier with broad application prospects. Traditional 800 G optical modules employ architectures based on aluminum nitride (AlN) carriers with externally mounted capacitors. However, such AlN-based architectures suffer from issues including high process complexity, elevated costs, poor environmental temperature adaptability, and difficulties in systematic crosstalk optimization. To address these challenges, this study conducted research on coplanar waveguide (CPW) transmission line structure design and optimization, high-density capacitor design and process implementation, and multi-channel crosstalk suppression. Based on these investigations, a silicon-based integrated carrier was designed and fabricated, incorporating resistors, capacitors, high-speed signal lines, and preformed AuSn structures. Test results demonstrate that the CPW transmission line structures fabricated on the silicon carrier exhibit excellent radio frequency performance with transmission losses below 1 dB within 67 GHz. The developed high-density capacitor structure achieves a remarkable capacitance density of 26.83 nF/mm2 and withstands voltages exceeding 24 V at 1 μA current, reaching state-of-the-art levels. This paper also proposes crosstalk reduction solutions including increased channel spacing, the addition of wave-absorbing materials, and the implementation of metal barriers. Experimental results confirm that the developed integrated carrier demonstrates outstanding performance and reliability in high-frequency communications and optoelectronic devices. Full article
Show Figures

Figure 1

18 pages, 2477 KiB  
Article
Electrochemical Detection of Dopamine with a Non-Enzymatic Sensor Based on Au@SiO2-APTES Composite
by Afef Dhaffouli, Pedro A. Salazar-Carballo, Soledad Carinelli, Michael Holzinger, Bruno V. M. Rodrigues and Houcine Barhoumi
Chemosensors 2025, 13(3), 87; https://doi.org/10.3390/chemosensors13030087 - 3 Mar 2025
Cited by 5 | Viewed by 1519
Abstract
A novel material composed of Au@SiO2-(3-Aminopropyl Triethoxysilane) (Au@SiO2-APTES) was successfully synthesised using the sol–gel method, and was used to modify glassy carbon electrodes. Its effectiveness as a molecular recognition element is evaluated in the design of an electrochemical sensor [...] Read more.
A novel material composed of Au@SiO2-(3-Aminopropyl Triethoxysilane) (Au@SiO2-APTES) was successfully synthesised using the sol–gel method, and was used to modify glassy carbon electrodes. Its effectiveness as a molecular recognition element is evaluated in the design of an electrochemical sensor for the precise detection of dopamine. The Au@SiO2-APTES composite was analysed using Fourier transform infrared spectroscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray diffraction. Elemental analysis verified the presence of oxygen, silicon, and gold, with atomic percentages of around 77.19%, 21.12%, and 1.65%, respectively. The corresponding elemental mapping for Au@SiO2-APTES composite showed that the spatial distribution of all the elements was fairly homogeneous throughout the composite, indicating that the Au NPs are embedded in the silica structures. Traces of dopamine were detected by differential pulse voltammetry with a low limit of detection (S/N = 3) and quantification (S/N = 10) of 1.4 × 10−8 molL−1 and 4.7 × 10−8 molL−1, respectively. The Au@SiO2-APTES composite had two linear ranges: from 4.7 × 10−8 to 1 × 10−7 molL−1 and 1.25 × 10−7 to 8.75 × 10−7 molL−1. Moreover, the sensor showed outstanding selectivity even in the presence of various potential interfering species. It also demonstrated good reusability and signal recovery when tested in human urine and plasma samples spiked with different dopamine concentrations. The electrochemical sensor, constructed using this novel composite material, shows great promise in the selective and sensitive detection of dopamine in the biological matrix. These results underscore the sensor’s capability for practical application in analysing real-world samples. Full article
Show Figures

Graphical abstract

12 pages, 1742 KiB  
Article
Simulation of Lead-Free Perovskite Solar Cells with Improved Performance
by Saood Ali, Praveen Kumar, Khursheed Ahmad and Rais Ahmad Khan
Crystals 2025, 15(2), 171; https://doi.org/10.3390/cryst15020171 - 10 Feb 2025
Cited by 5 | Viewed by 1107
Abstract
At present, lead halide PVSKSCs are promising photovoltaic cells but have some limitations, including their low stability in ambient conditions and the toxicity of lead. Thus, it will be of great significance to explore lead-free perovskite materials as an alternative absorber layer. In [...] Read more.
At present, lead halide PVSKSCs are promising photovoltaic cells but have some limitations, including their low stability in ambient conditions and the toxicity of lead. Thus, it will be of great significance to explore lead-free perovskite materials as an alternative absorber layer. In recent years, the numerical simulation of perovskite solar cells (PVSKSCs) via the solar cell capacitance simulation (SCAPS) method has attracted the attention of the scientific community. In this work, we adopted SCAPS for the theoretical study of lead (Pb)-free PVSKSCs. A cesium bismuth iodide (CsBi3I10; CBI) perovskite-like material was used as an absorber layer. The thickness of the CBI layer was optimized. In addition, different electron transport layers (ETLs), such as titanium dioxide (TiO2), tin oxide (SnO2), zinc oxide (ZnO), and zinc selenide (ZnSe), and different hole transport layers, such as spiro-OMeTAD (2,2,7,7-tetrakis(N,N-di(4-methoxyphenylamine)-9,9′-spirobifluorene), poly(3-hexylthiophene-2,5-diyl) (P3HT), poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine (PTAA), and copper oxide (Cu2O), were explored for the simulation of CBI-based PVSKSCs. A device structure of FTO/ETL/CBI/HTL/Au was adopted for simulation studies. The simulation studies showed the improved photovoltaic performance of CBI-based PVSKSCs using spiro-OMeTAD and TiO2 as the HTL and ETL, respectively. An acceptable PCE of 11.98% with a photocurrent density (Jsc) of 17.360258 mA/cm2, a fill factor (FF) of 67.10%, and an open-circuit voltage (Voc) of 1.0282 V were achieved under the optimized conditions. It is expected that the present study will be beneficial for researchers working towards the development of CBI-based PVSKSCs. Full article
(This article belongs to the Section Materials for Energy Applications)
Show Figures

Figure 1

19 pages, 8081 KiB  
Review
Enrichment Methods for Metal Recovery from Waste from Electrical and Electronic Equipment: A Brief Review
by Ernesto Chicardi, Antonio Lopez-Paneque, Victoria Humildad Gallardo García-Orta, Ranier Enrique Sepúlveda-Ferrer and Jose Maria Gallardo
Metals 2025, 15(2), 140; https://doi.org/10.3390/met15020140 - 29 Jan 2025
Cited by 1 | Viewed by 2064
Abstract
The growing global demand for minerals and metals, coupled with fluctuations in pricing and market disruptions, has emphasised the critical role of these resources in sustaining the global economy. Waste from Electrical and Electronic Equipment (WEEE) has emerged as a promising source of [...] Read more.
The growing global demand for minerals and metals, coupled with fluctuations in pricing and market disruptions, has emphasised the critical role of these resources in sustaining the global economy. Waste from Electrical and Electronic Equipment (WEEE) has emerged as a promising source of raw materials, particularly for metal recycling and the valorisation of plastic fractions. In 2022, approximately 62 million metric tons of e-waste were generated worldwide, with projections indicating a rise to 74 million metric tons by 2030. Despite the significant volume of WEEE, only 17.4% was collected and recycled, which reveals a considerable opportunity for resource recovery. This review highlights the composition of metals in WEEE, which includes valuable precious metals, such as gold, silver, and palladium, alongside base metals, such as copper and aluminium. The review also discusses current methodologies for metal recovery and focuses on mechanical size-reduction techniques and various physical separation methods, including a shaking table, magnetic, electrostatic, and eddy current separation, flotation, and the use of a hydrocyclone. These technologies play a vital role in enhancing recovery efficiencies, thereby contributing to sustainable practices in the recycling industry. Thus, the works evaluated in this paper reveal the possibility of recovering more than 90 wt.% of precious (Ag, Au, Pd, Pt) and main metals (Cu, Sn, Al, Fe, Ni) by a combination of these mechanical size-reduction and physical separation methods. Full article
Show Figures

Figure 1

22 pages, 29178 KiB  
Article
Molybdenite Re–Os and Zircon U–Pb Isotopic Constraints on Gold Mineralization Associated with Fine-Grained Granite in the Xiawolong Deposit, Jiaodong Peninsula, East China
by Mingchao Wu, Zhongliang Wang and Pengyu Liu
Appl. Sci. 2025, 15(3), 1199; https://doi.org/10.3390/app15031199 - 24 Jan 2025
Viewed by 737
Abstract
Molybdenite Re–Os and zircon U–Pb isotopic data are first obtained from the stockwork and disseminated-style gold-bearing ores and the fine-grained granite hosting these ores in the Xiawolong gold mine, respectively, which is located within the Muping–Rushan gold metallogenic belt, eastern Jiaodong Peninsula, so [...] Read more.
Molybdenite Re–Os and zircon U–Pb isotopic data are first obtained from the stockwork and disseminated-style gold-bearing ores and the fine-grained granite hosting these ores in the Xiawolong gold mine, respectively, which is located within the Muping–Rushan gold metallogenic belt, eastern Jiaodong Peninsula, so as to illustrate the genesis of gold mineralization and its implication for exploration. Four molybdenite samples yield a well-defined Re–Os isochron age of 118.4 ± 2.5 Ma (2σ), which is identical to the weighted average Re–Os model age of 118 ± 1.7 Ma (2σ). Integration of the new geochronologic data with those reported recently from the other gold mines in the Muping–Rushan gold metallogenic belt suggests that a discrete gold event occurred in Xiawolong ca. 4 m.y. older than that for the other gold mineralization at ca. 114 Ma in eastern Jiaodong. In addition, two fine-grained granite samples, measured using the LA-ICP-MS zircon U–Pb method, produce the first precise ages of 118 ± 2 to 117 ± 2 Ma (2σ), identical to the molybdenite Re–Os ages, within the margin of error and obtained in this study. The fine-grained granite has a similar lithology and emplacement age as those of the medium-grained monzogranite consisting of the marginal facies of the Sanfoshan batholith, and is considered to be the crystallization products of Sanfoshan granitic magma in the late stage. Combined with the previous S-Pb-D-O isotope, fluid inclusion and geological studies, which suggest that the ore-forming fluid of Xiawolong gold mineralization is from magmatic water, and the identification that the magnetite coexists with the gold-bearing pyrite and molybdenite in the gold ores, which indicates a high oxygen fugacity (fO2) of both the magma and resultant hydrothermal fluids, it is logical to infer that the Xiawolong gold deposit is genetically in relation to the Sanfoshan granitic magmatism, which is high in fO2 and rich in Au at the magmatic–hydrothermal transition stage, and the change in fO2 mostly likely makes a significant contribution to the precipitation of Au. This result reveals that the late-stage granitic magma with high fO2, which is crystallized into the fine-grained granite, probably is also rich in Au, except the W–Mo–Cu–Zn–U–Be–Li–Nb–Ta–Sn–Bi-elements. Therefore, based on the extensional tectonic regime for the early Cretaceous Jiaodong gold deposits, we propose that gold exploration in the Jiaodong should not only focus on the fault-hosted Au but also on the fine-grained granite-hosted Au around the apical portions of the late Early Cretaceous small-granitic intrusions with high fO2. This model could also be important for prospecting in other gold ore districts, which have a similar tectonic setting. Full article
(This article belongs to the Special Issue Technologies and Methods for Exploitation of Geological Resources)
Show Figures

Figure 1

Back to TopTop